Network Working Group                                     D. Bryant
Request for Comments: 2166                                3Com Corp
Category: Informational                                 P. Brittain
                                              Data Connection Ltd.
                                                         June 1997

                     APPN Implementer's Workshop
                        Closed Pages Document

                        DLSw v2.0 Enhancements

Status of this Memo

This memo provides information for the Internet community.  This memo
does not specify an Internet standard of any kind.  Distribution of
this memo is unlimited.

Abstract

  This document specifies

  - a set of extensions to RFC 1795 designed to improve the scalability
    of DLSw
  - clarifications to RFC 1795 in the light of the implementation
    experience to-date.

  It is assumed that the reader is familiar with DLSw and RFC 1795.  No
  effort has been made to explain these existing protocols or
  associated terminology.

  This document was developed in the DLSw Related Interest Group (RIG)
  of the APPN Implementers Workshop (AIW). If you would like to
  participate in future DLSw discussions, please subscribe to the DLSw
  RIG mailing lists by sending a mail to [email protected]
  specifying 'subscribe aiw-dlsw' as the body of the message.

Table of Contents

  1. INTRODUCTION ................................................    3
  2. HALT REASON CODES............................................    3
  3. SCOPE OF SCALABILITY ENHANCEMENTS............................    4
  4. OVERVIEW OF SCALABILITY ENHANCEMENTS.........................    6
  5. MULTICAST GROUPS AND ADDRESSING..............................    7
  5.1 USING MULTICAST GROUPS......................................    8
  5.2 DLSW MULTICAST ADDRESSES....................................    8
  6. DLSW MESSAGE TRANSPORTS......................................    8
  6.1 TCP/IP CONNECTIONS ON DEMAND................................    9
   6.1.1 TCP CONNECTIONS ON DEMAND RACE CONDITIONS................    9



Bryant & Brittain            Informational                      [Page 1]

RFC 2166              APPN Implementer's Workshop             June 1997


  6.2 SINGLE SESSION TCP/IP CONNECTIONS...........................    9
   6.2.1 EXPEDITED SINGLE SESSION TCP/IP CONNECTIONS..............   10
    6.2.1.1 TCP PORT NUMBERS......................................   10
    6.2.1.2 TCP CONNECTION SETUP..................................   10
    6.2.1.3 SINGLE SESSION SETUP RACE CONDITIONS..................   10
    6.2.1.4 TCP CONNECTIONS WITH NON-MULTICAST CAPABLE DLSW PEERS.   11
  6.3 UDP DATAGRAMS...............................................   12
   6.3.1 VENDOR SPECIFIC FUNCTIONS OVER UDP.......................   12
   6.3.2 UNICAST UDP DATAGRAMS....................................   12
   6.3.3 MULTICAST UDP DATAGRAMS..................................   13
  6.4 UNICAST UDP DATAGRAMS IN LIEU OF IP MULTICAST...............   13
  6.5 TCP TRANSPORT...............................................   14
  7. MIGRATION SUPPORT............................................   14
  7.1 CAPABILITIES EXCHANGE.......................................   14
  7.2 CONNECTING TO NON-MULTICAST CAPABLE NODES...................   15
  7.3 COMMUNICATING WITH MULTICAST CAPABLE NODES..................   15
  8. SNA SUPPORT..................................................   16
  8.1 ADDRESS RESOLUTION..........................................   16
  8.2 EXPLORER FRAMES.............................................   16
  8.3 CIRCUIT SETUP...............................................   17
  8.4 EXAMPLE SNA SSP MESSAGE SEQUENCE............................   17
  8.5 UDP RELIABILITY.............................................   19
   8.5.1 RETRIES..................................................   19
  9. NETBIOS......................................................   20
  9.1 ADDRESS RESOLUTION..........................................   21
  9.2 EXPLORER FRAMES.............................................   21
  9.3 CIRCUIT SETUP...............................................   21
  9.4 EXAMPLE NETBIOS SSP MESSAGE SEQUENCE........................   22
  9.5 MULTICAST RELIABILITY AND RETRIES...........................   24
  10. SEQUENCING..................................................   24
  11. FRAME FORMATS...............................................   25
  11.1 MULTICAST CAPABILITIES CONTROL VECTOR......................   25
   11.1.1 DLSW CAPABILITIES NEGATIVE RESPONSE.....................   26
  11.2 UDP PACKETS................................................   26
  11.3 VENDOR SPECIFIC UDP PACKETS................................   27
  12. COMPLIANCE STATEMENT........................................   28
  13. SECURITY CONSIDERATIONS.....................................   29
  14. ACKNOWLEDGEMENTS............................................   29
  15. AUTHORS' ADDRESSES..........................................   30
  16. APPENDIX - CLARIFICATIONS TO RFC 1795.......................   31











Bryant & Brittain            Informational                      [Page 2]

RFC 2166              APPN Implementer's Workshop             June 1997


  1. Introduction

  This document defines v2.0 of Data Link Switching (DLSw) in the form
  of a set of enhancements to RFC 1795. These enhancements are designed
  to be fully backward compatible with existing RFC 1795
  implementations. As a compatible set of enhancements to RFC 1795,
  this document does not replace or supersede RFC 1795.

  The bulk of these enhancements address scalability issues in DLSw
  v1.0.  Reason codes have also been added to the HALT_DL and
  HALT_DL_NOACK SSP messages in order to improve the diagnostic
  information available.

  Finally, the appendix to this document lists a number of
  clarifications to RFC 1795 where the implementation experience to-
  date has shown that the original RFC was ambiguous or unclear. These
  clarifications should be read alongside RFC 1795 to obtain a full
  specification of the base v1.0 DLSw standard.

2. HALT Reason codes

  RFC 1795 provides no mechanism for a DLSw to communicate to its peer
  the reason for dropping a circuit.  DLSw v2.0 adds reason code fields
  to the HALT_DL and HALT_DL_NOACK SSP messages to carry this
  information.

  The reason code is carried as 6 bytes of data after the existing SSP
  header.  The format of these bytes is as shown below.

  Byte       Description
  0-1        Generic HALT reason code in byte normal format

  2-5        Vendor-specific detailed reason code

  The generic HALT reason code takes one of the following decimal
  values (which are chosen to match the disconnect reason codes
  specified in the DLSw MIB).

  1 - Unknown error
  2 - Received DISC from end-station
  3 - Detected DLC error with end-station
  4 - Circuit-level protocol error (e.g., pacing)
  5 - Operator-initiated (mgt station or local console)

  The vendor-specific detailed reason code may take any value.






Bryant & Brittain            Informational                      [Page 3]

RFC 2166              APPN Implementer's Workshop             June 1997


  All V2.0 DLSws must include this information on all HALT_DL and
  HALT_DL_NOACK messages sent to v2.0 DLSw peers.  For backwards
  compatibility with RFC 1795, DLSw V2.0 implementations must also
  accept a HALT_DL or HALT_DL_NOACK message received from a DLSw peer
  that does not carry this information (i.e. RFC 1795 format for these
  SSP messages).

3. Scope of Scalability Enhancements

  The DLSw Scalability group of the AIW identified a number of
  scalability issues associated with existing DLSw protocols as defined
  in RFC 1795:

  - Administration

    RFC 1795 implies the need to define the transport address of all
    DLSw peers at each DLSw.  In highly meshed situations (such as
    those often found in NetBIOS networks), the resultant
    administrative burden is undesirable.

  - Address Resolution

    RFC 1795 defines point to point TCP (or other reliable transport
    protocol) connections between DLSw peers.  When attempting to
    discover the location of an unknown resource, a DLSw sends an
    address resolution packet to each DLSw peer over these connections.
    In highly meshed configurations, this can result in a very large
    number of packets in the transport network.  Although each packet
    is sent individually to each DLSw peer, they are each identical in
    nature.  Thus the transport network is burdened with excessive
    numbers of identical packets.  Since the transport network is most
    commonly a wide area network, where bandwidth is considered a
    precious resource, this packet duplication is undesirable.

  - Broadcast Packets

    In addition to the address resolution packets described above, RFC
    1795 also propagates NetBIOS broadcast packets into the transport
    network.  The UI frames of NetBIOS are sent as LAN broadcast
    packets.  RFC 1795 propagates these packets over the point to point
    transport connections to each DLSw peer.  In the same manner as
    above, this creates a large number of identical packets in the
    transport network, and hence is undesirable.  Since NetBIOS UI
    frames can be sent by applications, it is difficult to predict or
    control the rate and quantity of such traffic.  This compounds the
    undesirability of the existing RFC 1795 propagation method for
    these packets.




Bryant & Brittain            Informational                      [Page 4]

RFC 2166              APPN Implementer's Workshop             June 1997


  - TCP (transport connection) Overhead

    As defined in RFC 1795, each DLSw maintains a transport connection
    to its DLSw peers.  Each transport connection guarantees in order
    packet delivery.   This is accomplished using acknowledgment and
    sequencing algorithms which require both CPU and memory at the DLSw
    endpoints in direct proportion to the number transport connections.
    The DLSw Scalability group has identified two scenarios where the
    number of transport connections can become significant resulting in
    excessive overhead and corresponding equipment costs (memory and
    CPU).   The first scenario is found in highly meshed DLSw
    configurations where the number of transport connections
    approximates n2 (where n is the number of DLSw peers).  This is
    typically found in DLSw networks supporting NetBIOS.  The second
    scenario is found  in networks  where many remote locations
    communicate to few central sites.  In this case, the central sites
    must support n transport connections  (where n is the number of
    remote sites).    In both scenarios the resultant transport
    connection overhead is considered undesirable depending upon the
    value of n.

  - LLC2 overhead

    RFC 1795 specifies that each DLSw provides local termination for
    the LLC2 (SDLC or other SNA reliable data link  protocol) sessions
    traversing the SSP.   Because these reliable data links provide
    guaranteed in order packet delivery, the memory and CPU overhead of
    maintaining these connections can also become significant.   This
    is particularly undesirable in the second scenario described above,
    because the number of reliable connections maintained at the
    central site is the aggregate of the connections maintained at each
    remote site.

  It is not the intent of this document to address all the undesirable
  scalability issues associated with RFC 1795.  This paper identifies
  protocol enhancements to RFC 1795 using the inherent multicast
  capabilities of the underlying transport network to improve the
  scalability of RFC 1795.  It is believed that the enhancements
  defined, herein, address many of the issues identified above, such as
  administration, address resolution, broadcast packets, and, to a
  lesser extent, transport overhead.  This paper does not address LLC2
  overhead.  Subsequent efforts by the AIW and/or DLSw Scalability
  group may address the unresolved scalability issues.








Bryant & Brittain            Informational                      [Page 5]

RFC 2166              APPN Implementer's Workshop             June 1997


  While it is the intent of this paper to accommodate all transport
  protocols as best as is possible, it is recognized that the multicast
  capabilities of many protocols is not yet well defined, understood,
  or implemented. Since TCP is the most prevalent DLSw transport
  protocol in use today, the DLSw Scalability group has chosen to focus
  its definition around IP based multicast services. This document only
  addresses the implementation detail of IP based multicast services.

  This proposal does not consider the impacts of IPv6 as this was
  considered too far from widespread use at the time of writing.

4. Overview of Scalability Enhancements

  This paper describes the use of multicast services within the
  transport network to improve the scalability of DLSw based
  networking.  There are only a few main components of this proposal:

  - Single session TCP connections

    RFC 1795 defines a negotiation protocol for DLSw peers to choose
    either two unidirectional or one bi-directional TCP connection.
    DLSws implementing the enhancements described in this document must
    support and use(whenever required and possible)a single bi-
    directional TCP connection between DLSw peers. That is to say that
    the single tunnel negotiation support of RFC 1795 is a prerequisite
    function to this set of enhancements. Use of two unidirectional TCP
    connections is only allowed (and required)for migration purposes
    when communicating with DLSw peers that do not implement these
    enhancements.

    This document also specifies a faster method for bringing up a
    single TCP connection between two DLSw peers than the negotiation
    used in RFC 1795.  This faster method, detailed in section 6.2.1,
    must be used where both peers are known to support DLSw v2.0.

  - TCP connections on demand

    Two DLSw peers using these enhancements will only establish a TCP
    connection when necessary.  SSP connections to DLSw peers which do
    not implement these enhancements are assumed to be established by
    the means defined in RFC 1795.  DLSws implementing v2.0 utilize UDP
    based transport services to send address resolution packets
    (CANUREACH_ex, NETBIOS_NQ_ex, etc.).  If a positive response is
    received, then a TCP connection is only established to the
    associated DLSw peer if one does not already exist.
    Correspondingly, TCP connections are brought down when there are no
    circuits to a DLSw peer for an implementation defined period of
    time.



Bryant & Brittain            Informational                      [Page 6]

RFC 2166              APPN Implementer's Workshop             June 1997


  - Address resolution through UDP

    The main thrust of this paper is to utilize non-reliable transport
    and the inherent efficiencies of multicast protocols whenever
    possible and applicable to reduce network overhead.  Accordingly,
    the address resolution protocols of SNA and NetBIOS are sent over
    the non-reliable transport of IP, namely UDP.  In addition, IP
    multicast/unicast services are used whenever address resolution
    packets must be sent to multiple destinations. This avoids the need
    to maintain TCP SSP connections between two DLSw peers when no
    circuits are active.  CANUREACH_ex and ICANREACH_ex packets can be
    sent to all the appropriate DLSw peers without the need for pre-
    configured peers or pre-established TCP/IP connections.  In
    addition, most multicast services (including TCP's MOSPF, DVMRP,
    MIP, etc.) replicate and propagate messages only as necessary to
    deliver to all multicast members.   This avoids duplication and
    excessive bandwidth consumption in the transport network.

    To further optimize the use of WAN resources, address resolution
    responses are sent in a directed fashion (i.e., unicast) via UDP
    transport whenever possible.   This avoids the need to setup or
    maintain TCP connections when they are not required.  It also
    avoids the bandwidth costs associated with broadcasting.

    Note: It is also permitted to send some address resolution traffic
    over existing TCP connections.  The conditions under which this is
    permitted are detailed in section 7.

  - NetBIOS broadcasts over UDP

    In the same manner as above, NetBIOS broadcast packets are sent via
    UDP (unicast and multicast) whenever possible and appropriate. This
    avoids the need to establish TCP connections between DLSw peers
    when there are no circuits required.   In addition, bandwidth in
    the transport network is conserved by utilizing the efficiencies
    inherent to multicast service implementation.  Details covering
    identification of these packets and proper propagation methods are
    described in section 10.

5. Multicast Groups and Addressing

  IP multicast services provides an unreliable datagram oriented
  delivery service to multiple parties. Communication is accomplished
  by sending and/or listening to specific 'multicast' addresses.  When
  a given node sends a packet to a specific address (defined to be
  within the multicast address range), the IP network (unreliably)
  delivers the packet to every node listening on that address.




Bryant & Brittain            Informational                      [Page 7]

RFC 2166              APPN Implementer's Workshop             June 1997


  Thus, DLSws can make use of this service by simply sending and
  receiving (i.e., listening for) packets on the appropriate multicast
  addresses. With careful planning and implementation, networks can be
  effectively partitioned and network overhead controlled by sending
  and listening on different addresses groups.  It is not the intent of
  this paper to define or describe the techniques by which this can be
  accomplished.  It is expected that the networking industry (vendors
  and end users alike) will determine the most appropriate ways to make
  use of the functions provided by use of DLSw multicast transport
  services.

5.1 Using Multicast Groups

  The multicast addressing as described above can be effectively used
  to limit the amount of broadcast/multicast traffic in the network.
  It is not the intent of this document to describe how individual
  DLSw/SSP implementations would assign or choose group addresses.  The
  specifics of how this is done and exposed to the end user is an issue
  for the specific implementor.  In order to provide for multivendor
  interoperability and simplicity of configuration, however, this paper
  defines a single IP multicast address, 224.0.10.000, to be used as a
  default DLSw multicast address.  If a given implementation chooses to
  provide a default multicast address, it is recommended this address
  be used.  In addition, this address should be used for both
  transmitting and receiving of multicast SSP messages.  Implementation
  of a default multicast address is not, however, required.

5.2 DLSw Multicast Addresses

  For the purpose of long term interoperability, the AIW has secured a
  block of IP multicast addresses to be used with DLSw.  These
  addresses are listed below:

  Address Range        Purpose
  --------------------------------------------------------------------
  224.0.10.000         Default multicast address
  224.0.10.001-191     User defined DLSw multicast groups
  224.0.10.192-255     Reserved for future use by the DLSw RIG in DLSw
                       enhancements

6. DLSw Message Transports

  With the introduction of DLSw Multicast Protocols, SSP messages are
  now sent over two distinct transport mechanisms: TCP/IP connections
  and UDP services.  Furthermore, the UDP datagrams can be sent to two
  different kinds of IP addresses: unique IP addresses (generally
  associated with a specific DLSw), and multicast IP addresses
  (generally associated with a group of DLSw peers).



Bryant & Brittain            Informational                      [Page 8]

RFC 2166              APPN Implementer's Workshop             June 1997


6.1 TCP/IP Connections on Demand

  As is the case in RFC 1795, TCP/IP connections are established
  between DLSw peers.  Unlike RFC 1795, however, TCP/IP connections are
  only established to carry reliable circuit data (i.e., LLC2 based
  circuits).  Accordingly, a TCP/IP connection is only established to a
  given DLSw peer when the first circuit to that DLSw is required
  (i.e., the origin DLSw must send a CANUREACH_CS to a target DLSw peer
  and there is no existing TCP connection between the two).  In
  addition, the TCP/IP connection is brought down an implementation
  defined amount of time after the last active (not pending) circuit
  has terminated.  In this way, the overhead associated with
  maintaining TCP connections is minimized.

  With the advent of TCP connections on demand, the activation and
  deactivation of TCP connections becomes a normal occurrence as
  opposed to the exception event it constitutes in RFC 1795.  For this
  reason, it is recommended that implementations carefully consider the
  value of SNMP traps for this condition.

6.1.1 TCP Connections on Demand Race Conditions

  Non-circuit based SSP packetsn (e.g.,CANUREACH_ex, etc.) may still be
  sent/received over TCP connections after all circuits have been
  terminated.  Taking this into account implementations should still
  gracefully terminate these TCP connections once the connection is no
  longer supporting circuits.  This may require an implementation to
  retransmit request frames over UDP when no response to a TCP based
  unicast request is received and the TCP connection is brought down.
  This is not required in the case of multicast requests as these are
  received over the multicast transport mechanism.

6.2 Single Session TCP/IP Connections

  RFC 1795 defines the use of two unidirectional TCP/IP sessions
  between any pair of DLSw peers using read port number 2065 and write
  port number 2067.  Additionally, RFC 1795 allows for implementations
  to optionally use only one bi-directional TCP/IP session.  Using one
  TCP/IP session between DLSw peers is believed to significantly
  improve the performance and scalability of DLSw protocols.
  Performance is improved because TCP/IP acknowledgments are much more
  likely to be piggy-backed on real data when TCP/IP sessions are used
  bi-directionally.  Scalability is improved because fewer TCP control
  blocks, state machines, and associated message buffers are required.
  For these reasons, the DLSw enhancements defined in this paper
  REQUIRE the use of single session TCP/IP sessions.





Bryant & Brittain            Informational                      [Page 9]

RFC 2166              APPN Implementer's Workshop             June 1997


  Accordingly, DLSws implementing these enhancements must carry the TCP
  Connections Control Vector in their Capabilities Exchange.  In
  addition, the TCP Connections Control Vector must indicate support
  for 1 connection.

6.2.1 Expedited Single Session TCP/IP Connections

  In RFC 1795, single session TCP/IP connections are accomplished by
  first establishing two uni-directional TCP connections, exchanging
  capabilities, and then bringing down one of the connections.  In
  order to avoid the unnecessary flows and time delays associated with
  this process, a new single session bi-directional TCP/IP connection
  establishment algorithm is defined.

6.2.1.1 TCP Port Numbers

  DLSws implementing these enhancements will use a TCP destination port
  of 2067 (as opposed to RFC 1795 which uses 2065) for single session
  TCP connections.  The source port will be a random port number using
  the established TCP norms which exclude the possibility of either
  2065 or 2067.

6.2.1.2 TCP Connection Setup

  DLSw peers implementing these enhancements will establish a single
  session TCP connection whenever the associated peer is known to
  support this capability.  To do this, the initiating DLSw simply
  sends a TCP setup request to destination port 2067.  The receiving
  DLSw responds accordingly and the TCP three way handshake ensues.
  Once this handshake has completed, each DLSw is notified and the DLSw
  capabilities exchange ensues.  As in RFC 1795, no flows may take
  place until the capabilities exchange completes.

6.2.1.3 Single Session Setup Race Conditions

  The new expedited single session setup procedure described above
  opens up the possibility of a race condition that occurs when two
  DLSw peers attempt to setup single session TCP connections to each
  other at the same time.  To avoid the establishment of two TCP
  connections, the following rules are applied when establishing
  expedited single session TCP connections:

  1.If an inbound TCP connect indication is received on port 2067 while
    an outbound TCP connect request (on port 2067) to the same DLSw (IP
    address) is in process or outstanding, the DLSw with the higher IP
    address will close or reject the connection from the DLSw with the
    lower IP address.




Bryant & Brittain            Informational                     [Page 10]

RFC 2166              APPN Implementer's Workshop             June 1997


  2.To further expedite the process, the DLSw with the lower IP address
    may choose (implementation option) to close its connection request
    to the DLSw with the higher address when this condition is
    detected.
  3.If the DLSw with the lower IP address has already sent its
    capabilities exchange request on its connection to the DLSw with
    the higher IP address, it must resend its capabilities exchange
    request over the remaining TCP connection from its DLSw peer (with
    the higher IP address).
  4.The DLSw with the higher IP address must ignore any capabilities
    exchange request received over the TCP connection to be terminated
    (the one from the DLSw with the lower IP address).

6.2.1.4 TCP Connections with Non-Multicast Capable DLSw peers

  During periods of migration, it is possible that TCP connections
  between multicast capable and non-multicast capable DLSw peers will
  occur.  It is also possible that multicast capable DLSws may attempt
  to establish TCP connections with partners of unknown capabilities
  (e.g., statically defined peers).  To handle these conditions the
  following additional rules apply to expedited single session TCP
  connection setup:

  1.If the capability of a DLSw peer is not known, an implementation
    may choose to send the initial TCP connect request to either port
    2067 (expedited single session setup) or port 2065 (standard RFC
    1795 TCP setup).
  2.If a multicast capable DLSw receives an inbound TCP connect request
    on port 2065 while processing an outbound request on 2067 to the
    same DLSw, the sending DLSw will terminate its 2067 request and
    respond as defined in RFC 1795 with an outbound 2065 request
    (standard RFC 1795 TCP setup).
  3.If a multicast capable DLSw receives an indication that the DLSw
    peer is not multicast capable (the port 2067 setup request times
    out or a port not recognized rejection is received), it will send
    another connection request using port 2065 and the standard RFC
    1795 session setup protocol.














Bryant & Brittain            Informational                     [Page 11]

RFC 2166              APPN Implementer's Workshop             June 1997


6.3 UDP Datagrams

  As mentioned above, UDP datagrams can be sent two different ways:
  unicast (e.g., sent to a single unique IP address) or multicast
  (i.e., sent to an IP multicast address).  Throughout this document,
  the term UDP datagram will be used to refer to SSP messages sent over
  UDP, while unicast and multicast SSP messages will refer to the
  specific type/method of UDP packet transport.  In either case,
  standard UDP services are used to transport these packets.  In order
  to properly parse the inbound UDP packets and deliver them to the SSP
  state machines, all DLSw UDP packets will use the destination port of
  2067.

  In addition, the checksum function of UDP remains optional for DLSw
  SSP messages.  It is believed that the inherent CRC capabilities of
  all data link transports will adequately protect SSP packets during
  transmission.  And the incremental exposure to intermediate nodal
  data corruption is negligible.  For further information on UDP packet
  formats see the �Frame Formats� section.

6.3.1 Vendor Specific Functions over UDP

  In order to accommodate vendor specific capabilities over UDP
  transport, a new SSP packet format has been defined.  This new packet
  format is required because message traffic of this type is not
  necessarily preceded by a capabilities exchange.  Accordingly, DLSw's
  wishing to invoke a vendor specific function may send out this new
  SSP packet format over UDP.

  Because this packet can be sent over TCP connections and non-
  multicast capable nodes may not be able to recognize it,
  implementations may only send this packet over TCP to DLSw peers
  known to understand this packet format (i.e., multicast capable).  To
  avoid this situation in the future, DLSws implementing these
  enhancements must ignore SSP packets with an unrecognized DLSw
  version number in the range of x'31' to x'3F'.  Further information
  and the precise format for this new packet type is described below in
  the �Frame Formats� section.

6.3.2 Unicast UDP Datagrams

  Generically speaking, a unicast UDP datagram is utilized whenever an
  SSP message (not requiring reliable transport) must be sent to a
  unique set (not all) of DLSw peers.  This avoids the overhead of
  having to establish and maintain TCP connections when they are not
  required for reliable data transport.





Bryant & Brittain            Informational                     [Page 12]

RFC 2166              APPN Implementer's Workshop             June 1997


  A typical example of when unicast UDP might be used would be an
  ICANREACH_ex response from a peer DLSw (with which no TCP connection
  currently exists).  In this case, the sending DLSw knows the IP
  address of the intended receiver and can simply send the response via
  unicast UDP.  In addition, there are a number of NetBIOS cases where
  unicast UDP is used to handle UI frames directed to a specific DLSw
  (e.g., NetBIOS STATUS_RESPONSE).  Further detail is provided in the
  NetBIOS section of this document.

6.3.3 Multicast UDP Datagrams

  In a broad sense, multicast UDP datagrams are used whenever a given
  SSP message must be sent to multiple DLSw peers.  In the case of SNA,
  this is primarily the CANUREACH_ex packets.  In the case of NetBIOS,
  multicast datagrams are used to send broadcast UI frames such as
  NetBIOS user datagrams and broadcast datagrams.

  Note, however, it is sometimes possible to avoid broadcasting certain
  NetBIOS frames that would otherwise be broadcast in the LAN
  environment.  This is typically accomplished using name caching
  techniques not described in this paper.  In cases of this type when a
  single destination DLSw can be determined, unicast transport can be
  used to send the 'broadcast' NetBIOS frame to a single destination.
  A more detailed listing of NetBIOS SSP packets and transport methods
  can be found in the NetBIOS section of this document.

6.4 Unicast UDP Datagrams in Lieu of IP Multicast

  Because the use of IP multicast services is actually a function of IP
  itself and not DLSw proper, it is possible for implementations to
  simply make use of the UDP transport mechanisms described in this
  paper without making direct use of the IP multicast function.  While
  this is not considered to be as efficient as using multicast
  transport mechanisms, this practice is not explicitly prohibited.

  Implementations which choose to make use of UDP transport in this
  manner must first know the IP address of all the potential target
  DLSw peers and send individual unicast packets to each.  How this
  information is obtained and/or maintained is outside the scope of
  this paper.

  As a matter of compliance, implementers need not send SSP packets
  outbound over UDP as there are some conditions where this may not be
  necessary or desirable.  It is, however, required that implementers
  provide an option to receive SSP packets over UDP.






Bryant & Brittain            Informational                     [Page 13]

RFC 2166              APPN Implementer's Workshop             June 1997


6.5 TCP Transport

  Despite the addition of UDP based packet transport, TCP remains the
  fundamental form of communications between DLSw peers.  In
  particular, TCP is still used to carry all LLC2 based circuit data.

  Throughout this document wherever UDP unicast (not multicast) is
  discussed, the reader should be aware that TCP may be used instead.
  Moreover, it is strongly recommended that TCP be used in preference
  to UDP whenever a TCP connection to the destination already exists.
  Implementations, however, should be prepared to receive SSP packets
  from either transport (TCP or UDP).

7. Migration Support

  It is anticipated that some networks will experience a transition
  stage where both RFC 1795 (referred to as 'non-multicast' DLSws) and
  It will be important for these two DLSw node types to interoperate
  and thus the following accommodations for non-multicast DLSws are
  required:

7.1 Capabilities Exchange

  In order to guarantee both backward and forward capability, DLSws
  which implement these multicast enhancements will carry a �Multicast
  Capabilities� Control Vector in their capabilities exchange (see RFC
  1795 for an explanation of capabilities exchange protocols).
  Presence of the Multicast Capabilities control vector indicates
  support for the protocols defined in this document on a per DLSw peer
  basis.  Conversely, lack of the Multicast Capabilities control vector
  indicates no support for these extensions on a per DLSw peer basis.

  Additionally, nodes implementing these enhancement will carry a
  modified DLSw Version control vector (x'82') indicating support for
  version 2 release 0.

  Lastly, presence of these control vectors mandates a TCP Connections
  Control Vector indicating support for 1 TCP connection in the same
  Capabilities exchange.

  If a multicast capable DLSw receives a Capabilities Exchange CV that
  includes the Multicast Capabilites CV but does not meet the above
  criteria, it must reject the capabilities exchange by sending a
  negative response as described in section 11.1.1.







Bryant & Brittain            Informational                     [Page 14]

RFC 2166              APPN Implementer's Workshop             June 1997


7.2 Connecting to Non-Multicast Capable Nodes

  It is assumed that TCP connections to DLSw peers which do not support
  multicast services are established by some means outside the scope of
  this paper (i.e., non-multicast partner addresses are configured by
  the customer).  TCP connections must be established and maintained to
  down level nodes in the exact same manner as RFC 1795 requires,
  establishes, and maintains them.  And because non-multicast DLSw
  peers will not indicate support for multicast services in their
  capabilities exchange, a multicast capable DLSw will know all its
  non-multicast peers.

7.3 Communicating with Multicast Capable Nodes

  Because non-multicast nodes will not receive SSP frames via UDP
  (unicast or multicast) transmission, SSP messages to these DLSw peers
  must be sent over TCP connections.  Therefore, nodes which implement
  the multicast protocol enhancements must keep track of which DLSw
  peers do not support multicast extensions (as indicated in the
  capabilities exchange).  When a given packet is sent out via
  multicast services, it must also be sent over multicast UDP(to reach
  other multicast capable DLSw peers) and over the TCP connection to
  each non-multicast node.  And although the multicast service requires
  periodic retransmissions (for reliability reasons), this is not the
  case with TCP connections to non-multicast nodes. Therefore,
  multicast capable DLSws should not resend SSP packets over TCP
  transport connection but rather, rely upon TCP to recover any lost
  packets. Furthermore, communications with non-multicast nodes should
  be in exact compliance with RFC 1795 protocols.

  When sending a unicast UDP message, it is important to know that the
  destination DLSw supports multicast services.  This knowledge can be
  obtained from previous TCP connections/capabilities exchanges or
  inferred from a previously received UDP message, but how this
  information is obtained is outside the scope of this paper.  In the
  latter case, if the DLSw is non-multicast, then there would be a TCP
  connection to it and it would be known to be non-multicast.  If it is
  multicast capable and a TCP connection is in existence, then its
  level is known (via the prior capabilities exchange).  If its
  capabilities are not known and there is not an existing TCP
  connection, then it can be implied to be multicast capable by virtue
  of a cached entry but no active TCP connection (e.g., TCP peer on
  demand support).  This inference, however, could be erroneous in
  cases where the TCP connection (to a non-multicast DLSw) has failed
  for some reason. But normal UDP based unicast verification mechanisms
  will detect no active path to the destination and circuit setup will
  proceed correctly (i.e., succeed or fail in accordance with true
  connectivity).



Bryant & Brittain            Informational                     [Page 15]

RFC 2166              APPN Implementer's Workshop             June 1997


8. SNA Support

  Note: This paper does not attempt to address the unique issues
  presented by SNA/HPR and its non-ERP data links

  In SNA protocols the generalized packet sequence of interest is a
  test frame exchange followed by an XID exchange.  In all cases, DLSw
  uses the CANUREACH_ex and ICANREACH_ex SSP packets to complete
  address resolution and circuit establishment.  The following table
  describes how these packets are transported via UDP between two
  multicast capable DLSw peers.

                                             Transport
    Message Event          Action            Mechanism         Retry
  --------------------------------------------------------------------
  TEST                 SEND CANUREACH_ex    Multicast/Unicast   Yes
  TEST RESPONSE        SEND ICANREACH_ex       Unicast          No


  The following paragraphs provide more detail on how UDP transport and
  multicast protocol enhancements are used to establish SNA data links.

8.1 Address Resolution

  When a DLSw receives an incoming test frame from an attached data
  link, the assumption is that this is an exploratory frame in
  preparation for an XID exchange and link activation.  The DLSw must
  determine a correlation between the destination LSAP (mac and sap
  pairing) and some other DLSw in the transport network.  This paper
  generically refers to this process as �address resolution�.

8.2 Explorer frames

  Address resolution messages may be sent over a TCP connection to a
  multicast capable DLSw peer if such a connection already exists in
  order that they take advantage of the guaranteed delivery of TCP.
  This is particularly recommended for ICANREACH_ex frames.














Bryant & Brittain            Informational                     [Page 16]

RFC 2166              APPN Implementer's Workshop             June 1997


8.3 Circuit Setup

  Circuit setup is accomplished in the same manner as described in RFC
  1795.  More specifically, CANUREACH_cs, ICANREACH_cs, REACH_ACK,
  XIDFRAME, etc.  are all sent over the TCP connection to the
  appropriate DLSw.  This, of course, assumes the existence of a TCP
  connection between the DLSw peers.  If the sending DLSw (sending a
  CANUREACH_cs ) detects no active TCP connection to the DLSw peer,
  then a TCP connection setup is initiated and the packet sent.  All
  other circuit setup (and takedown) related sequences are now passed
  over the TCP connection.

8.4 Example SNA SSP Message Sequence

  The following diagram provides an example sequence of flows
  associated with an SNA LLC circuit setup.  All flows and states
  described below correspond precisely with those defined in RFC 1795.
  The only exception is the addition of a TCP connection setup and DLSw
  capabilities exchange that occurs when the origin DLSw must send a
  CANUREACH_CS and no TCP connection yet exists to the target DLSw
  peer.






























Bryant & Brittain            Informational                     [Page 17]

RFC 2166              APPN Implementer's Workshop             June 1997


======                            ___                           ======
|    |        ---------        __/   \__       ---------        |    |
|    |      __|  _|_  |__     /   IP    \    __|  _|_  |__      |    |
======        |   |   |      <  Network  >     |   |   |        ======
/______\       ---------       \__     __/      ---------       /______\
Origin       Origin DLSw         \___/        Target DLSw      Target
Station        partner                          partner        Station

             disconnected                    disconnected

TEST_cmd      DLC_RESOLVE_C    CANUREACH_ex               TEST_cmd
----------->  ----------->     ----------->               ---------->
  TEST_rsp   DLC_RESOLVE_R    ICANREACH_ex                 TEST_rsp
<---------    <-----------   <-----------                <----------
null XID      DLC_XID
----------->  ----------->
             circuit_start

                          TCP Connection Setup
                            <------------->
                           Capabilities Exch.
                            <------------->

                            CANUREACH_cs    DLC_START_DL
                            ----------->    ----------->
                                             resolve_pending
                            ICANREACH_cs    DLC_DL_STARTED
                            <-----------    <-------------
          circuit_established                circuit_pending
                             REACH_ACK
                             ----------->  circuit_established

                              XIDFRAME         DLC_XID       null XID
                              ----------->     --------->    -------->
       XID        DLC_XID      XIDFRAME         DLC_XID          XID
 <--------   <-----------   <-----------    <-----------    <--------
   XIDs         DLC_XIDs      XIDFRAMEs        DLC_XIDs         XIDs
<---------->  <---------->   <------------>  <------------>  <--------->
SABME         DLC_CONTACTED   CONTACT         DLC_CONTACT     SABME
----------->  ----------->     ----------->    ----------->    -------->
             connect_pending                 contact_pending

         UA     DLC_CONTACT     CONTACTED    DLC_CONTACTED          UA
 <---------   <-----------  <-----------    <-----------    <--------
                 connected                      connected
IFRAMEs       DLC_INFOs        IFRAMEs        DLC_INFOs       IFRAMEs
<---------->  <----------->  <------------>  <------------>  <-------->




Bryant & Brittain            Informational                     [Page 18]

RFC 2166              APPN Implementer's Workshop             June 1997


8.5 UDP Reliability

  It is important to note, that UDP (unicast and multicast)transport
  services do not provide a reliable means of delivery.  Existing RFC
  1795 protocols guarantee the delivery (or failure notification) of
  CANUREACH_ex and ICANREACH_ex messages.  UDP will not provide the
  same level of reliability.  It is, therefore, possible that these
  messages may be lost in the network and (CANUREACH_ex) retries will
  be necessary.

8.5.1 Retries

  Test Frames are generally initiated by end stations every few
  seconds.  Many existing RFC 1795 DLSw implementations take advantage
  of the reliable SSP TCP connections and filter out end station Test
  frame retries when a CANUREACH_ex is outstanding.  Given the
  unreliable nature of UDP transport for these messages, however, this
  filtering technique may not be advisable.  Neither RFC 1795 nor this
  paper address this issue specifically.  It is simply noted that the
  UDP transport mechanism is unreliable and implementations should take
  this into account when determining a scheme for Test frame filtering
  and explorer retries.  Accordingly, the �Retry� section in the table
  above only serves as an indicator of situations where retries may be
  desirable and/or necessary, but does not imply any requirement to
  implement retries. Also note, that retry logic only applies to non-
  response type packets.  It is not appropriate to retry response type
  SSP packets (i.e., ICANREACH_ex) as there is no way of knowing if the
  original response was ever received (and whether retry is necessary).
  So in the case of SNA, CANUREACH_ex messages may need retry logic and
  ICANREACH_ex messages do not.





















Bryant & Brittain            Informational                     [Page 19]

RFC 2166              APPN Implementer's Workshop             June 1997


9. NetBIOS

  With the introduction of DLSw Multicast transport, all multicast
  NetBIOS UI frames are carried outside the TCP connections between
  DLSw peers (i.e., via UDP datagrams).  The following table defines
  the various NetBIOS UI frames and how they are transported via UDP
  between multicast capable DLSw peers:

                                             Transport
Message Event            Action               Mechanism           Retry
---------------------------------------------------------------------------
ADD_GROUP_NAME_QUERY     SEND DATAFRAME       Multicast            Yes
ADD_NAME_QUERY           SEND NETBIOS_ANQ     Multicast            Yes
ADD_NAME_RESPONSE        SEND NETBIOS_ANR     Unicast1             No
NAME_IN_CONFLICT         SEND DATAFRAME       Multicast            No
STATUS_QUERY             SEND DATAFRAME       Unicast/Multicast(2) Yes
STATUS_RESPONSE          SEND DATAFRAME       Multicast(5)         No
TERMINATE_TRACE (x'07')  SEND DATAFRAME       Multicast            No
TERMINATE_TRACE (X'13')  SEND DATAFRAME       Multicast            No
DATAGRAM                 SEND DATAFRAME(3)    Unicast/Multicast(2) No
DATAGRAM_BROADCAST       SEND DATAFRAME       Multicast            No
NAME_QUERY               SEND NETBIOS_NQ_ex   Unicast/Multicast(2) Yes
NAME_RECOGNIZED          SEND NETBIOS_NR_ex   Unicast(4)           No

  Note 1:
  Upon receipt of an ADD_NAME_RESPONSE frame, a NETBIOS_ANR SSP message
  is returned via unicast UDP to the originator of the NETBIOS_ANQ
  message.

  Note 2:
  These frames may be sent either Unicast or Multicast UDP.  If the
  implementation has sufficient cached information to resolve the
  NetBIOS datagram destination to a single DLSw peer, then the SSP
  message can and should be sent via unicast.  If the cache does not
  contain such information then the resultant SSP message must be sent
  via multicast UDP.

  Note 3:
  Note that this frame is sent as either a DATAFRAME or DGRMFRAME
  according to the rules as specified in RFC 1795.

  Note 4:
  Upon receipt of a NAME_RECOGNIZED frame, a NETBIOS_NR_ex SSP message
  is returned via unicast UDP to the originator of the NETBIOS_NQ_ex
  frame.  Notice that although the NAME_RECOGNIZED frame is sent as an
  All Routes Explorer (source routing LANs only) frame, the resultant
  NETBIOS_NR_ex is sent as a unicast UDP directed response to the DLSw
  originating the NETBIOS_NQ_ex.  This is because there is no value in



Bryant & Brittain            Informational                     [Page 20]

RFC 2166              APPN Implementer's Workshop             June 1997


  sending NETBIOS_NR_ex as a multicast packet in the transport network.
  The use of ARE transmission in the LAN environment is to accomplish
  some form of load sharing in the source routed LAN environment.
  Since no analogous capability exists in the (TCP) transport network,
  it is not necessary to emulate this function there.  It is important
  to note, however, that when converting a received NETBIOS_NR_ex to a
  NAME_RECOGNIZED frame, the DLSw sends the NAME_RECOGNIZED frame onto
  the LAN as an ARE (source routing LANs only) frame.  This preserves
  the source route load sharing in the LAN environments on either side
  of the DLSw transport network.

  Note 5:
  Although RFC 1795 does not attempt to optimize STATUS_RESPONSE
  processing, it is possible to send a STATUS_RESPONSE as a unicast UDP
  response.  To do this, DLSws receiving an incoming SSP DATAFRAME
  containing a STATUS_QUERY must remember the originating DLSw's
  address and STATUS_QUERY correlator.  Then upon receipt of the
  corresponding STATUS_RESPONSE, the DLSw responds via unicast UDP to
  the originating DLSw(using the remembered originating DLSw address).
  Note, however, that in order to determine whether a frame is a
  STATUS_QUERY, all multicast capable DLSw implementations will need to
  parse the contents of frames that would normally be sent as DATAFRAME
  SSP messages.

  All other multicast frames are sent into the transport network using
  the appropriate multicast group address.

9.1 Address Resolution

  Typical NetBIOS circuit setup using multicast services is essentially
  the same as specified in RFC 1795.  The only significant difference
  is that NETBIOS_NQ_ex messages are sent via UDP to the appropriate
  unicast/multicast IP address and the NETBIOS_NR_ex is sent via
  unicast UDP to the DLSw originating the NETBIOS_NQ_ex.

9.2 Explorer Frames

  Address resolution messages may be sent over a TCP connection to a
  multicast capable partner if such a connection already exists in
  order that they take advantage of the guaranteed delivery of TCP.
  This is particularly recommended for NETBIOS_NR_ex frames.

9.3 Circuit Setup

  Following successful address resolution, a NetBIOS end station
  typically sends a SABME frame to initiate a formal LLC2 connection.
  Receipt of this message results in normal circuit setup as described
  in RFC 1795 (and the SNA case described above).  That is to say that



Bryant & Brittain            Informational                     [Page 21]

RFC 2166              APPN Implementer's Workshop             June 1997


  the CANUREACH_cs messages etc. are sent on a TCP connection to the
  appropriate DLSw peer.  If no such TCP connection exists, one is
  brought up.

9.4 Example NetBIOS SSP Message Sequence

  The following diagram provides an example sequence of flows
  associated with a NetBIOS circuit setup.  All flows and states
  described below correspond precisely with those defined in RFC 1795.
  The only exception is the addition of a TCP connection setup and DLSw
  capabilities exchange that occurs when the origin DLSw must send a
  CANUREACH_cs and no TCP connection yet exists to the target DLSw
  peer.






































Bryant & Brittain            Informational                     [Page 22]

RFC 2166              APPN Implementer's Workshop             June 1997


======                            ___                           ======
|    |        ---------        __/   \__       ---------        |    |
|    |      __|  _|_  |__     /   IP    \    __|  _|_  |__      |    |
======        |   |   |      <  Network  >     |   |   |        ======
/______\       ---------       \__     __/      ---------       /______\
Origin       Origin DLSw         \___/        Target DLSw      Target
Station        partner                          partner        Station

             disconnected                     disconnected

NAME_QUERY    DLC_DGRM        NETBIOS_NQ_ex   DLC_DGRM       NAME_QUERY
----------->  ----------->    ----------->    ----------->   --------->

 NAME_RECOG    DLC_DGRM      NETBIOS_NR_ex     DLC_DGRM    NAME_RECOG
<-----------  <------------   <-----------    <-----------  <---------

SABME         DLC_CONTACTED
----------->  ----------->
              circuit_start

                           TCP Connection Setup
                             <------------->
                           Capabilities Exch.
                             <------------->

                             CANUREACH_cs    DLC_START_DL
                             ----------->    ----------->
                                            resolve_pending


                             ICANREACH_cs    DLC_DL_STARTED
                             <-----------    <-----------
           circuit_established                circuit_pending
                             REACH_ACK
                             ----------->   circuit_established

                             CONTACT         DLC_CONTACT     SABME
                             ----------->    ----------->    --------->
            connect_pending                   contact_pending

         UA   DLC_CONTACT       CONTACTED    DLC_CONTACTED           UA
 <---------   <-----------   <-----------    <-----------    <---------
               connected                        connected

  IFRAMEs       DLC_INFOs       IFRAMEs        DLC_INFOs       IFRAMEs
<------------> <------------> <------------>  <------------>  <-------->





Bryant & Brittain            Informational                     [Page 23]

RFC 2166              APPN Implementer's Workshop             June 1997


9.5 Multicast Reliability and Retries

  In the case of NetBIOS, many more packets are being sent via UDP than
  in the SNA case.  Therefore, the exposure to the unreliability of
  these services is greater than that of SNA. For address resolution
  frames, such as NAME_QUERY, etc., successful message delivery is an
  issue.  In addition, the retry interval for these types of frames is
  considerably shorter than SNA with the defaults being: retry interval
  = 0.5 seconds and retry count = 6.  Once again, neither RFC 1795 nor
  this paper attempt to address the issue of LAN frame filtering
  optimizations. This issue is outside the scope of this paper.  But it
  is important for implementers to recognize the inherent unreliable
  nature of UDP transport services for frames of this type and to
  implement retry schemes that are appropriate to successful operation.
  Again, it is only appropriate to consider retry of non-response type
  packets.  Specific NetBIOS messages where successful message delivery
  is considered important (and retries possibly necessary) are
  indicated in the table above with an �Yes� in the �Retry� column.

10. Sequencing

  It is important to note that UDP transport services do not provide
  guaranteed packet sequencing like TCP does for RFC 1795.  In a steady
  state network, in order packet delivery can be generally assumed.
  But in the presence of network outages and topology changes, packets
  may take alternate routes to the destination and arrive out of
  sequence with respect to their original transmission order.  For SNA
  address resolution this should not be a problem given that there is
  no inherent significance to the order of packets being transmitted
  via UDP.

  In the case of NetBIOS, in order delivery is not guaranteed in the
  normal case (e.g., LANs).  This is because LAN broadcasting
  mechanisms suffer the same problems of packet sequencing as do WAN
  multicast mechanisms.  But one might argue the greater likelihood of
  topology related changes in the WAN environment and thus a greater
  level of concern.  The vast majority of NetBIOS UI frames (being
  handled via UDP and Multicast) have correlator values and do not rely
  upon packet sequencing.












Bryant & Brittain            Informational                     [Page 24]

RFC 2166              APPN Implementer's Workshop             June 1997


  The only NetBIOS frames of special note would be: DATAGRAM,
  DATAGRAM_BROADCAST, and STATUS_RESPONSE.  In the case of DATAGRAM and
  DATAGRAM_BROADCAST it is generally assumed that datagrams do not
  provide any guarantee of in order packet delivery.  Thus applications
  utilizing this NetBIOS service are assumed to have no dependency on
  in order packet delivery.  STATUS_RESPONSE can actually be sent as a
  sequence of STATUS_RESPONSE messages.  In cases where this occurs,
  the STATUS_RESPONSE will be exposed to potential out of sequence
  delivery.

11. Frame Formats

11.1 Multicast Capabilities Control Vector

  This control vector is carried in the Capabilities Exchange Request.
  When present, it must be accompanied by a TCP Connections Control
  Vector indicating support for 1 TCP/IP connection and a DLSw version
  CV indicating support for version 2 release 0.  Like all control
  vectors in this SSP message, it is an LT structure.  LT structures
  consist of a 1 byte length field followed by a 1 byte type field.
  The length field includes itself as well as the type and data fields.

  Byte Bit    Description
  0   0-7    Length, in binary, of the Multicast Capabilities control
  vector (inclusive of this byte, always 3)

  1   0-7    Type:  x'8C'

  2   0-7    Multicast Version Number:
              A binary numerical representation of the level of
              multicast services provided.  The protocols as identified
              in this document constitute version one.   Accordingly,
              x'01' is encoded in this field.  Any subsequent version
              must provide the services of all previous versions.

  The intended use of this CV for Multicast support is to detect when
  the multicast CANUREACH_ex flows will suffice between partners.  If
  this CV is present in a CAPEX from a partner, that partner is also
  multicast capable and therefore does not need to receive CANUREACH_ex
  messages over the TCP link that exists between them (and there must
  be one or else the CAPEX would not have flowed) because it will
  receive the multicast copies.

  A DLSw includes this control vector on a peer-wise basis.  That is to
  say, that a DLSw implementation may support multicast services but
  choose not to indicate this in its capabilities exchange to all
  partners. Therefore, a DLSw may include this capabilities CV with
  some DLSw peers and not with others.  Not including this vector can



Bryant & Brittain            Informational                     [Page 25]

RFC 2166              APPN Implementer's Workshop             June 1997


  be used to force TCP connections with other multicast capable nodes
  and degrade to normal RFC 1795 operations.  This capability is
  allowed to provide greater network design flexibility.

  When sending this capabilities exchange control vector, the following
  rules apply:

        Required                       Allowed @
   ID   @ Startup  Length  Repeatable* Runtime  Order  Content
  ====  =========  ======  ==========  =======  =====  ===============
  0x8C     Y        0x03        N         N       5+    Multicast
                                                        Capabilities

*Note: "Repeatable" means a Control Vector is repeatable within a single
  message.

11.1.1 DLSw Capabilities Negative Response

  DLSws that implement these enhancements must provide support for both
  multicast version 1 and single TCP connections.  This means that the
  capabilities exchange request must contain a DLSw Version ID control
  vector (x'82') indicating support for version 2 release 0, a
  Multicast Capabilities control vector, and the TCP Connections
  control vector indicating support for 1 TCP connection within a given
  capabilities exchange. If a multicast capable DLSw receives a
  capabilities exchange with a Multicast Capabilities, but either a
  missing or inappropriate TCP Connections CV (i.e., connections not
  equal to one)or DLSw Version control vector, then the inbound
  capabilities exchange should be rejected with a DLSw capabilities
  exchange negative response (see RFC 1795) using the following new
  reason code:

  x'000D'Inconsistent DLSw Version,  Multicast Capabilities, and TCP
  Connections CV received on the inbound Capabilities exchange

11.2 UDP Packets

  SSP frame formats are defined in RFC 1795.  Multicast protocol
  enhancements do not change these formats in any way.  The multicast
  protocol enhancements, however, do introduce the notion of SSP packet
  transport via UDP.  In this case, standard UDP services and headers
  are used to transport SSP packets.









Bryant & Brittain            Informational                     [Page 26]

RFC 2166              APPN Implementer's Workshop             June 1997


  The following section describes the proper UDP header for DLSw SSP
  packets.

  Byte       Description
  0-1        Source Port address
              In DLSw multicast protocols, this particular field is not
              relevant.  It may be set to any value.

  2-3        Destination Port address
              Always set to 2067

  4-5        Length

  6-7        Checksum
              The standard UDP checksum value.  Use of the UDP checksum
              function is optional.

11.3 Vendor Specific UDP Packets

  In order to accommodate the addition of vendor specific functions
  over UDP transport, a new SSP packet header has been defined. As
  described above, it is possible to receive these packets over both
  UDP and TCP (when a TCP connection already exists).

  It is important to note that the first 4 bytes of this packet match
  the format of existing RFC 1795 SSP packets.  This is done so that
  implementations in the future can expect that the DLSw �Version
  Number� is found in byte one and that the following bytes describe
  the packet header and message length.

  Furthermore, to assist DLSws in detecting 'out-of-sync' conditions
  whereby packet or parsing errors lead to improper length
  interpretations in the TCP datastream, valid DLSw version numbers
  will be restricted to the range of x'31' through x'3F' inclusive.

  DLSw multicast Vendor Specific frame format differs from existing RFC
  1795 packets in the following ways:

  1) The �Version Number� field is set to x'32' (ASCII '2') and now
  represents a packet type more than a DLSw version number.  More
  precisely, it is permitted and expected that DLSw may send packets of
  both types (x'31' and x'32').

  2) The message length field is followed by a new 3 byte field that
  contains the specific vendor's IEEE Organizationally Unique
  Identifier (OUI).





Bryant & Brittain            Informational                     [Page 27]

RFC 2166              APPN Implementer's Workshop             June 1997


  3) All fields following the new OUI field are arbitrary and defined
  by implementers.

  The following section defines this new packet format:

  Byte       Description
  0          DLSw packet type, Always set to x'32'

  1          Header Length
              Always 7 or higher

  2-3        Message Length
              Number of bytes within the data field following the
              header.


  4-6        Vendor specific OUI
              The IEEE Organizationally Unique Identifier (OUI)
              associated with the vendor specific function in
              question.

  7-n        Defined by the OUI owner


12. Compliance Statement

  All DLSw v2.0 implementations must support

  - Halt reason codes
  - the Multicast Capabilities control vector in the DLSw
    capabilities exchanges messages.

  The presence of the Multicast Capabilities control vector in a
  capabilities exchange message implies that the DLSw that issued the
  message supports all the scalability enhancements defined in this
  document.  These are:

  - use of multicast IP (if it is available in the underlying network)
  - use of 2067 as the destination port for UDP and TCP connections
  - single tunnel bring-up of TCP connections to DLSw peers
  - peer-on-demand
  - quiet ignore of all unrecognized vendor-specific UDP/TCP packets.









Bryant & Brittain            Informational                     [Page 28]

RFC 2166              APPN Implementer's Workshop             June 1997


13. Security Considerations

  This document addresses only scalability problems in RFC 1795.  No
  attempt is made to define any additional security mechanisms.  Note
  that, as in RFC 1795, a given implementation may still choose to
  refuse TCP connections from DLSw peers that have not been configured
  by the user.  The mechanism by which the user configures this
  behavior is not specified in this document.

14. Acknowledgements

  This specification was developed in the DLSw Related Interest Group
  (RIG) of the APPN Implementers Workshop.  This RIG is chaired by
  Louise Herndon- Wells ([email protected]) and edited by Paul
  Brittain ([email protected]).

  Much of the work on the scalability enhancements for v2.0 was
  developed by Dave Bryant (3COM).

  Other significant contributors to this document include:

  Frank Bordonaro (Cisco)
  Jon Houghton (IBM)
  Steve Klein (IBM)
  Ravi Periasamy (Cisco)
  Mike Redden (Proteon)
  Doug Wolff (3COM)

  Many thanks also to all those who participated in the DLSw RIG
  sessions and mail exploder discussions.

  If you would like to participate in future DLSw discussions, please
  subscribe to the DLSw RIG mailing lists by sending a mail to
  [email protected] specifying 'subscribe aiw-dlsw' as the body
  of the message.

  If you would like further information on the activities of the AIW,
  please refer to the AIW web site at
  http://www.raleigh.ibm.com/app/aiwhome.htm.












Bryant & Brittain            Informational                     [Page 29]

RFC 2166              APPN Implementer's Workshop             June 1997


15. Authors' Addresses

  The editor of this document is:

        Paul Brittain
        Data Connection Ltd
        Windsor House
        Pepper Street
        Chester
        CH1 1DF
        UK

        tel:   +44 1244 313440
        email: [email protected]

  Much of the work on this document was created by:

        David Bryant
        3Com Corporation
        5400 Bayfront Plaza MS 2418
        Santa Clara, CA 95052

        tel:   (408) 764-5272
        email: [email protected]



























Bryant & Brittain            Informational                     [Page 30]

RFC 2166              APPN Implementer's Workshop             June 1997


16. Appendix - Clarifications to RFC 1795

  This appendix attempts to clarify the areas of RFC 1795 that have
  proven to be ambiguous or hard to understand in the implementation
  experience to- date.  These clarifications should be read in
  conjunction with RFC 1795 as this document does not reproduce the
  complete text of that RFC.

  The clarifications are ordered by the section number in RFC 1795 to
  which they apply.  Where one point applies to more than one place in
  RFC 1795, it is listed below by the first relevant section.

  If any implementers encounter further difficulties in understanding
  RFC 1795 or these clarifications, they are encouraged to query the
  DLSw mail exploder (see section 1.1) for assistance.

  3. Send Port

  It is not permitted for a DLSw implementation to check that the send
  port used by a partner is 2067.  All implementations must accept
  connections from partners that do not use this port.

  3   TCP Tunnel bringup

  The paragraph below the figure should read as follows:

     Each Data Link Switch will maintain a list of DLSw capable routers
     and their status (active/inactive). Before Data Link Switching can
     occur between two routers, they must establish two TCP connections
     between them. These connections are treated as half duplex data
     pipes. A Data Link Switch will listen for incoming connections on
     its Read Port (2065), and initiate outgoing connections on its
     Write Port (2067).  Each Switch is responsible for initiating one
     of the two TCP connections.  After the TCP connections are
     established, SSP messages are exchanged to establish the
     capabilities of the two Data Link Switches.  Once the exchange is
     complete, the DLSw will employ SSP control messages to establish
     end-to-end circuits over the transport connection.  Within the
     transport connection, DLSw SSP messages are exchanged.  The
     message formats and types for these SSP messages are documented in
     the following sections.










Bryant & Brittain            Informational                     [Page 31]

RFC 2166              APPN Implementer's Workshop             June 1997


  3.2 RII bit in SSP header MAC addresses

  The RII bit in MAC addresses received from the LAN must be set to
  zero before forwarding in the source or destination address field in
  a SSP message header.  This requirement aims to avoid ambiguity of
  circuit IDs.  It is also recommended that all implementations ignore
  this bit in received SSP message headers.

  3.3 Transport IDs

  All implementations must allow for the DLSw peer varying the
  Transport ID up to and including when the ICR_cs message flows, and
  at all times reflect the most recent TID received from the partner in
  any SSP messages sent.  The TID cannot vary once the ICR_cs message
  has flowed.

  3.4 LF bits

  LF-bits should be propagated from LAN to SSP to LAN (and back) as per
  a bridge (i.e. they can only be revised downwards at each step if
  required).

  3.5 KEEPALIVE messages

  The SSP KEEPALIVE message (x1D) uses the short ("infoframe") version
  of the SSP header.  All DLSw implementation must support receipt and
  quiet ignore of this message, but there is not requirement to send
  it.  There is no response to a KEEPALIVE message.

  3.5 MAC header for Netbios SSP frames

  The MAC header is included in forwarded SSP Netbios frames in the
  format described below:
       -    addresses are always in non-canonical format
       -    src/dest addresses are as per the LLC frame
       -    AC/FC bits may be reset and must be ignored
       -    SSAP, DSAP and command fields are included
       -    RII bit in src address is copied from the LLC frame
       -    the RIF length is not extended to include padding
       -    all RIFs are padded to 18 bytes so that the data is
            in a consistent place.

  3.5.7 Unrecognized control vectors

  All implementations should quietly ignore unrecognized control
  vectors in any SSP messages.  In particular, unrecognized SSP frames
  or unrecognized fields in a CAPEX message should be quietly ignored
  without dropping the TCP connection.



Bryant & Brittain            Informational                     [Page 32]

RFC 2166              APPN Implementer's Workshop             June 1997


  5.4 Use of CUR-cs/CUR-ex

  The SSAP and DSAP numbers in CUR_ex messages should reflect those
  actually used in the TEST (or equivalent) frame that caused the
  CUR_ex message to flow.  This would mean that the SAP numbers in a
  'typical' CUR_ex frame for SNA traffic switched from a LAN will be a
  source SAP of x04 and a destination SAP of x00.

  The CUR_cs frame should only be sent when the DSAP is known.
  Specifically, CUR_ex should be used when a NULL XID is received that
  is targeted at DSAP zero, and CUR_cs when a XID specifying the (non-
  zero) DSAP is received.

  Note that this does not mean that an implementation can assume that
  the DSAP on a CUR_ex will always be zero.  The ICR_ex must always
  reflect the SSAP and DSAP values sent on the CUR_ex.  This is still
  true even if an implementation always sends a TEST with DSAP = x00 on
  its local LAN(s) in response to a CUR_ex to any SAP.

  An example of a situation where the CUR_ex may flow with a non-zero
  DSAP is when there is an APPN stack local to the DLSw node.  The APPN
  stack may then issue a connection request specifying the DSAP as a
  non-zero value.  This would then be passed on the CUR_ex message.

  7.6.1 Vendor IDs

  The Vendor ID field in a CAPEX may be zero.  However, a zero Vendor
  Context ID is not permitted, which implies that an implementation
  that uses a zero ID cannot send any vendor-specific CVs (other than
  those specified by other vendors that do have a non-zero ID)

  7.6.3 Initial Pacing Window

  The initial pacing window may be 1.  There is no requirement on an
  implementation to use any minimum value for the initial pacing
  window.

  7.6.7 TCP Tunnel bringup

  The third paragraph should read:

     If TCP Connections CV values agree and the number of connections
     is one, then the DLSw with the higher IP address must tear down
     the TCP connections on its local port 2065. This connection is
     torn down after a CAPEX response has been both sent and received.
     After this point, the remaining TCP connection is used to exchange
     data in both directions.




Bryant & Brittain            Informational                     [Page 33]

RFC 2166              APPN Implementer's Workshop             June 1997


  7.7 CAPEX negative responses

  If a DLSw does not support any of the options specified on a CAPEX
  received from a partner, or if it thinks the CAPEX is malformed, it
  must send a CAPEX negative response to the partner.  The receiver of
  a CAPEX negative response is then responsible for dropping the
  connection.  It is not permitted to drop the link instead of sending
  a CAPEX negative response.

  8.2 Flow Control ACKs

  The first flow-control ack (FCACK) does not have to be returned on
  the REACH_ACK even if the ICR_cs carried the FCIND bit.  However it
  should be returned on the first SSP frame flowing for that circuit
  after the REACH_ACK.




































Bryant & Brittain            Informational                     [Page 34]