Network Working Group                                          K. Nagami
Request for Comments: 2129                                    Y. Katsube
Category: Informational                                     Y. Shobatake
                                                                A. Mogi
                                                           S. Matsuzawa
                                                              T. Jinmei
                                                               H. Esaki
                                                     Toshiba R&D Center
                                                             April 1997


 Toshiba's Flow Attribute Notification Protocol (FANP) Specification

Status of this Memo

  This memo provides information for the Internet community.  This memo
  does not specify an Internet standard of any kind.  Distribution of
  this memo is unlimited.

Abstract

  This memo discusses Flow Attribute Notification Protocol (FANP),
  which is a protocol between neighbor nodes for the management of
  cut-through packet forwarding functionalities. In cut-through packet
  forwarding, a router doesn't have to perform conventional IP packet
  processing for received packets.  FANP indicates mapping information
  between a datalink connection and a packet flow to the neighbor node
  and helps a pair of nodes manage the mapping information.  By using
  FANP, routers (e.g., CSR; Cell Switch Router) can forward incoming
  packets based on their datalink-level connection identifiers,
  bypassing usual IP packet processing.  The design policy of the FANP
  is;

      (1)  soft-state cut-through path (Dedicated-VC) management
      (2)  protocol between neighbor nodes instead of end-to-end
      (3)  applicable to any connection oriented datalink platform

1.  Background

  Due to the scalability requirement, connection oriented (CO) datalink
  platforms, e.g., ATM and Frame Relay, are going to be used as well as
  connection less (CL) datalink platforms, e.g., Ethernet and FDDI.
  One of the important features of the CO datalink is the presence of a
  datalink-level connection identifier.  In the CO datalink, we can
  establish multiple virtual connections (VCs) with their VC
  identifiers among the nodes. When we aggregate packets that have the
  same direction (e.g., having the same destination IP address) into a
  single VC, we can forward the packets in the VC without IP



Nagami, et. al.              Informational                      [Page 1]

RFC 2129                   FANP Specification                 April 1997


  processing.  With this configuration, routers can decide which node
  is the next-hop for the packets based on the VC identifier.  CSRs [1]
  can forward the incoming packets using an ATM switch engine bypassing
  the conventional IP processing.  According to the ingress VPI/VCI
  value with ingress interface information, CSR determines the egress
  interface and egress VPI/VCI value.

  In order to configure the cut-through packet forwarding state, a pair
  of neighbor nodes have to share the mapping information between the
  packet flow and the datalink VC.  FANP (Flow Attribute Notification
  Protocol) described in this memo is the protocol to configure and
  manage the cut-through packet forwarding state.

2.  Protocol Requirements and Future Enhancement

2.1 Protocol Requirements

  The followings are the protocol requirements for FANP.

  (1) Applicable to various types of CO datalink platforms

  (2) Available with various connection types (i.e., SVC, PVC, VP)

  (3) Robust operation
      The system should operate correctly even under the following
      conditions.

       (a) VC failure
           Some systems can detect VC failure as the function of
           datalink (e.g., OAM function in the ATM).  However, we can
           not assume all nodes in the system can detect VC failure.
           The system has to operate correctly, assuming that every
           node can not detect VC failure.

       (b) Message loss
           Control messages in the FANP may be lost.  The system has to
           operate correctly, even when some control messages are lost.

       (c Node failure
           A node may be down without any explicit notification to its
           neighbors.  The system has to operate correctly, even with
           node failure.

  Though FANP is not the protocol only for ATM, the following
  discussion assumes that the datalink is an ATM network.






Nagami, et. al.              Informational                      [Page 2]

RFC 2129                   FANP Specification                 April 1997


2.2  Future Enhancement

  The followings are the future enhancements to be done.

       (1) Aggregated flow

         In this memo, we define the flow which contain source and
         destination IP address.  As this may require many VC
         resources, we also need a new definition of aggregated flow
         which includes several end-to-end flows.  The concrete
         definition of the aggregated flow is for future study.

       (2) Providing multicast service
       (3) Supporting IP level QOS signaling like RSVP
       (4) Supporting IPv6

3. Terminology and Definition

  o VCID (Virtual Connection IDentifier)
     Since VPI/VCI values at the origination and the termination points
     of a VC (and VP) may not be the same, we need an identifier to
     uniquely identify the datalink connection between neighbor nodes.
     We define this identifier as a VCID.  Currently, only one type of
     VCID is defined.  This VCID contains the ESI (End System
     Identifier) of a source node and the unique identifier within a
     source node.

  o Flow ID (Flow IDentifier)
     IP level packet flow is identified by some parameters in a packet.
     Currently, only one type of flow ID is defined.  This flow ID
     contains a source IP address and a destination IP address.  Note
     that flow ID used in this specification is not the same as the
     flow-id specified in IPv6.

  o Cut-through packet forwarding
     Packets are forwarded without any IP processing at the router
     using the datalink level information (e.g.,VPI/VCI).
     Internetworking level information (e.g., destination IP address)
     is mapped to the corresponding datalink-level identifier by using
     the FANP.

  o Hop-by-Hop packet forwarding
     Packets are forwarded using IP level information like conventional
     routers.  In ATM, cells are re-assembled into packets at the
     router to analyze the IP header.






Nagami, et. al.              Informational                      [Page 3]

RFC 2129                   FANP Specification                 April 1997


  o Default-VC
     Default-VC is used for hop-by-hop packet forwarding.  Cells
     received from the Default-VC are reassembled into IP packets.
     Conventional IP processing is performed for these packets.  The
     encapsulation over the Default-VC is LLC for routed non-ISO
     protocols defined by RFC1483 [3].

  o Dedicated-VC
     Dedicated-VC is used for the specific IP packet flow identified by
     the flow-ID.  When the flow-ID for an incoming VC and an outgoing
     VC are the same at a CSR, it can forward the packets belonging to
     the flow through the cut-through packet forwarding.  The
     encapsulation over the Dedicated-VC is LLC for routed non-ISO
     protocols defined by RFC1483 [3].

  o Cut-through trigger
     When a FANP capable node receives a trigger packet, it tries to
     establish Dedicated-VC and to notify the mapping information
     between the Dedicated-VC and the IP packet flow which the received
     trigger packet belongs to.  Trigger packets are defined by the
     port-ID of TCP/UDP with the local policy of each FANP capable
     node.  In general, they would be the port-ID's of sessions with a
     long life-time and/or with large amount of packets; e.g., http,
     ftp and nntp.  Future implementation will include other triggers
     such as an arrival of resource reservation request.

4. Protocol Overview

  Figure 1 shows an operational overview of FANP.  In the figure, a
  cut-through packet forwarding path is established from host 1 (H1) to
  host 2 (H2) using two Dedicated-VCs.  H1 and H2 are connected to
  Ethernets, and R1, R2 and R3 are routers which can speak FANP.  R1
  and R3 have both an ATM interface and an Ethernet interface.  R2 has
  two ATM interfaces.

  When R1 receives an IP packet from H1, R1 analyzes the payload of the
  received IP packet whether it is a trigger packet or not.  When the
  received packet is a trigger packet, R1 fetches a Dedicated-VC to its
  downstream neighbor(R2) and sends FANP messages.  FANP is effective
  between the neighboring nodes only.  The same procedure would be
  performed between R2 and R3 independently from the procedure between
  R1 and R2.  The flow-ID of the packet flow from H1 to H2 is
  represented as id(H1,H2).  Here, id(H1,H2) is the set of the IP
  address of H1 and that of H2.







Nagami, et. al.              Informational                      [Page 4]

RFC 2129                   FANP Specification                 April 1997


  The Dedicated-VC is released when no packet is transferred on it for
  a given period.  We do not need to explicitly indicate release of the
  Dedicated-VC to the neighbor node, since the state management in FANP
  is of soft-state, rather than of hard-state.

   +--+ Ethernet +--+   +-----+   +--+   +-----+   +--+ Ethernet +--+
   |H1|----------|R1|---| ATM |---|R2|---| ATM |---|R3|----------|H2|
   +--+          +--+   +-----+   +--+   +-----+   +--+          +--+
      trigger pkt
      |----------> trigger packet
                   |------------->   trigger packet
                      FANP          |-------------->  trigger pkt
                   <=============>        FANP        |----------->
                                    <==============>

                   |=============|
                    Dedicated-VC    |==============|
                                      Dedicated-VC

            Figure 1. Trigger packet and FANP initiation

5. Protocol Sequence

  FANP has the following five procedures, that are (1) Dedicated-VC
  selection, (2) VCID negotiation, (3) flow-ID notification, (4)
  Dedicated-VC refresh and (5) Dedicated-VC release.  Procedures (2),
  (3) and (4) have nothing to do with the kind of the Dedicated-
  VC;i.e.,SVC,PVC or VP.  On the contrary, the procedures (1) and (5)
  with SVC are different from the procedures with PVC and with VP.

  The detailed procedures are described in the following subsections.

5.1 Dedicated-VC Selection Procedure

  A VC is picked up in order to use as a Dedicated-VC.  The ways of
  picking up the Dedicated-VC is either of the followings.

  (1) A number of VCs are prepared in advance, and registered into an
     un-used VC list.  When a Dedicated-VC is needed, one of them is
     picked up from the un-used VC list.

  (2) A new VC is established through ATM signaling on demand.

  With ATM PVC/VP configuration, a Dedicated-VC is activated by the
  procedure (1).






Nagami, et. al.              Informational                      [Page 5]

RFC 2129                   FANP Specification                 April 1997


  With ATM SVC configuration, a Dedicated-VC is activated by the
  procedure (1) or (2).  When the procedure (1) is used, some number of
  VCs are prepared in advance through ATM signaling.  These VCs are
  registered into the un-used VC list.  When a Dedicated-VC is needed,
  a VC is picked up from the un-used VC list.  When the procedure (2)
  is used, a Dedicated-VC is established through ATM signaling each
  time it is required.

  The procedure (1) can decrease a time to activate a Dedicated-VC.
  But the necessary VC resource will increase as it need to prepare
  additional VCs.  Which procedure should be applied to is a matter of
  local decision in each node, taking the economical requirement and
  the system responsiveness into account.

  A Dedicated-VC is used as a uni-directional VC, although it is
  generally bi-directional.  This means that packets are transferred
  only from upstream node to downstream node in the Dedicated-VC. The
  packets from downstream node to upstream node are transferred through
  the Default-VC or through another Dedicated-VC.

5.2 VCID Negotiation Procedure

  After the Dedicated-VC selection procedure, the upstream node
  transmits the PROPOSE message to the downstream node through the
  Dedicated-VC.  The PROPOSE message contains a VCID for the
  Dedicated-VC and IP address (target IP address) of downstream node.
  When the downstream node accepts the PROPOSE message, it transmits
  the PROPOSE ACK message to the upstream node through the Default-VC.
  With this procedure, the upstream and the downstream nodes (both
  end-points of the Dedicated-VC) can share the same indicator "VCID"
  for the Dedicated-VC.  When the downstream node can not accept the
  proposal from the upstream node with some reason (e.g., policy), the
  downstream node sends an ERROR message to the upstream node through
  the Default-VC.

  The procedure at the downstream node which has received PROPOSE
  message is;

   1. if(Target IP address of the PROPOSE message isn't equal to my IP
         address)
      then Goto end.

   2. if(The PROPOSE message should be refused)
      then  Send an ERROR(refuse by policy) message. Go to end.

   3. if(VCID Type in the PROPOSE message isn't known)
      then Send an ERROR(unknown VCID Type) message. Go to end.




Nagami, et. al.              Informational                      [Page 6]

RFC 2129                   FANP Specification                 April 1997


   4. if(The VCID in the PROPOSE message is  the same as the VCID which
      has already been registered for another Dedicated-VC in the node)
      then Delete the registered VCID.
      Release the old Dedicated-VC.

   5. if(A VCID is registered for the Dedicated-VC which has received
      the PROPOSE message)
      then Delete the registered VCID.

   6. Register the mapping between VCID and  I/F, VPI, VCI for the
      Dedicated-VC.

   7. if(The mapping is successful)
      then Send a PROPOSE ACK.
      else Send an ERROR(resource unavailable).

  The upstream node retransmits the PROPOSE message when it neither
  receive PROPOSE ACK message nor ERROR message.  When the upstream
  node has received neither of the messages even with five
  retransmissions of the PROPOSE message, the Dedicated-VC picked up
  through the Dedicated-VC selection procedure should be released.
  Here, the number of retransmissions (five in this specification)is
  recommended value and can be modified in the future.

  The purpose of the VCID negotiation procedure is not only to share
  the VCID information regarding the Dedicated-VC, but also to confirm
  whether the Dedicated-VC is available and whether the neighbor node
  operates correctly.

  If the VCID negotiation procedure with a neighbor node always fails,
  it is considered that the node may not be FANP-capable node.
  Therefore the upstream node should not try the VCID negotiation
  procedure to that node for a certain time period.

5.3 Flow-ID Notification Procedure

  After the VCID negotiation procedure, the upstream node transmits an
  OFFER message to the downstream node through the Default-VC.  The
  OFFER message contains the VCID of the Dedicated-VC, the flow-ID of
  the packet flow transferred through the Dedicated-VC and the refresh
  interval of a READY message.

  When the downstream node receives the OFFER message from the upstream
  node, it transmits the READY message to the upstream node through the
  Default-VC in order to indicate that the OFFER message issued by the
  upstream node is accepted.  By the reception of the READY message,
  the upstream node realizes that the downstream node can receive IP
  packets transferred through the Dedicated-VC.



Nagami, et. al.              Informational                      [Page 7]

RFC 2129                   FANP Specification                 April 1997


  The upstream node retransmits the OFFER message when it does not
  receive a READY message from the downstream node.  When the upstream
  node has not receive a READY message even with five retransmissions,
  the Dedicated-VC should be released.  Here, the number of
  retransmissions (i.e., five in this specification) is a recommended
  value and may be modified in the future.

  The node transmits an ERROR message to its neighbor in the following
  cases.  When the node receives the ERROR message, the Dedicated-VC
  should be released.

   (a) unknown VCID: The VCID in the message is unknown.
   (b) unknown VCID Type: The VCID Type is unknown.
   (c) unknown flow-ID Type: the flow-ID Type is unknown.

  When the downstream node accepts the OFFER message from the upstream
  node, it must send a READY message to the upstream node within the
  refresh interval offered by the upstream node.  If it can not, the
  downstream node sends the ERROR message (this refresh interval is not
  supported) to the upstream node.  The downstream node should accept
  the refresh interval larger than 120 seconds.  Therefore the
  downstream node shouldn't send the ERROR message (this refresh
  interval is not supported) when the refresh interval in the OFFER
  message is larger than 120 seconds.

  The following describes the procedure of the node which has received
  an OFFER message.

   1. if(unknown version in the OFFER message)
      then Discard the message.  Goto end.

   2. if(unknown VCID Type in the OFFER message)
      then Send an ERROR (unknown VCID Type) message.  Goto end.

   3. if(VCID in the OFFER message has not been registered)
      then Send an ERROR (unknown VCID) message.  Goto end.

   4. if(unknown Flow ID Type in the OFFER message)
      then Send an ERROR (unknown Flow ID Type) message.  Goto end.

   5. if(refuse Flow ID in the OFFER message)
      then Send an ERROR (refused by policy) message.  Goto end.

   6. if(refuse refresh interval in the OFFER message)
      then Send an ERROR(This refresh interval is not supported)
      message.  Goto end.





Nagami, et. al.              Informational                      [Page 8]

RFC 2129                   FANP Specification                 April 1997


   7. if(the mapping between Flow ID and VCID already exists and
         Flow ID in the OFFER message is different from the registered
         Flow ID for the corresponding VCID)
      then Do Flow-ID removal procedure.  Goto end.

   8. Do the procedure of receiving the OFFER message.

   7. if(successful)
      then Send a READY message.
      else Send an ERROR (resource unavailable) message.

   8. end.

  The procedure of the node which has received a READY message is
  described.

   1. if(unknown version in the READY message)
      then Discard the message.  Goto end.

   2. if(unknown VCID Type in the READY message)
      then Send an ERROR (unknown VCID Type) message.  Goto end.

   3. if(VCID in the READY message has not been registered)
      then Send an ERROR (unknown VCID) message.  Goto end.

   4. if(unknown Flow ID Type in the READY message)
      then Send an ERROR (unknown Flow ID Type) message.  Goto end.

   5. if((the mapping between Flow ID and VCID doesn't exist)||
         (the mapping between Flow ID and VCID already exists and
          Flow ID in the READY message is different from registered Flow
          ID for the corresponding VCID))
      then Send an ERROR (unknown VCID) message.  Goto end.

   6. Do the procedure of receiving the READY message.

   7. end.

5.4 Flow ID Refresh Procedure

  While the downstream node receives IP packets through the Dedicated-
  VC, it should periodically (with a refresh interval) send the READY
  message to the upstream node.  When the downstream node does not
  receive any IP packet during the refresh interval, it does not send
  the READY message to the upstream node.






Nagami, et. al.              Informational                      [Page 9]

RFC 2129                   FANP Specification                 April 1997


  While the upstream node continues to receive READY messages, it
  realizes that it can transmit the IP packets through the Dedicated-
  VC.  When it does not receive a READY message at all for a
  predetermined period (dead interval), it removes the mapping between
  the Flow IP and VCID.  The dead interval is defined below.

  When the upstream node falls into failure without the Flow ID removal
  procedure for a Dedicated-VC, its mapping must be removed by the
  downstream node.  The downstream node removes the mapping between the
  Flow ID and VCID for the Dedicated-VC when it does not receive any IP
  packet for a "removal period" (=refresh interval times m).

  The refresh interval, the dead interval and the removal period should
  satisfy the following equation.

   refresh interval < dead interval < removal period (=refresh
   interval times m)

   The recommended values are:
       refresh interval =  2 minutes
       dead interval    =  6 minutes (=refresh interval x 3)
       removal period  = 20 minutes (=refresh interval x 10)

5.5 Flow ID Removal Procedure

  When the upstream node realizes that the Dedicated-VC is not used, it
  performs a Flow ID removal procedure.

  The Flow ID removal procedure differs between the case of PVC/VP
  configuration and the case of SVC configuration.

  With the PVC/VP configuration, the upstream node issues a REMOVE
  message to the downstream node, and the downstream node sends back a
  REMOVE ACK message to the upstream node.  The upstream node
  retransmits REMOVE messages when it does not receive a REMOVE ACK
  message.  The upstream node assumes that the downstream node is in
  failure state when it dose not receive any REMOVE ACK message from
  the downstream node even with five REMOVE message retransmissions.













Nagami, et. al.              Informational                     [Page 10]

RFC 2129                   FANP Specification                 April 1997


  With SVC configuration, two procedures are possible.  One is that the
  mapping between the Flow ID and the VCID is removed without the
  release of the ATM connection, which is the same procedure as the
  PVC/VP configuration.  The other procedure is that the mapping
  between the Flow ID and the VCID is removed by releasing the VC
  through ATM signaling.  The former procedure can promptly create and
  delete the mapping between Flow ID and VCID, since the ATM signaling
  does not have to be performed each time.  However, an un-used ATM
  connections have to be maintained by the node.  Which procedure is
  applied to is a matter of each CSR's local decision, taking the VC
  resource cost and responsiveness into account.

  The downstream node may want to remove the mapping between the Flow
  ID and the VCID.  When the upstream node receives the REMOVE message,
  it sends a REMOVE ACK message to the downstream node.

            +--+                              +--+
            |R1|------------------------------|R2|
            +--+                              +--+
              |           PROPOSE              |
              |===============================>|
     VCID     |       [VCID, target IP]        |
 negotiation  |          PROPOSE ACK           |
              |<===============================|
              |            [VCID]              |
              |                                |
              |            OFFER               |
              |===============================>|
    Flow-ID   |       [VCID, flow-ID]          |
 notification |            READY               |
              |<===============================|
              |       [VCID, flow-ID]          |
              |                                |
                   :         :           :
                   :         :           :
              |           READY                |
              |<===============================|
 Dedicated-VC |       [VCID, flow-ID]          |
 refresh      |           READY                |
              |<===============================|
              |       [VCID, flow-ID]          |

         Figure 2. Flow ID notification and refresh procedure








Nagami, et. al.              Informational                     [Page 11]

RFC 2129                   FANP Specification                 April 1997


            +--+                              +--+
            |R1|------------------------------|R2|
            +--+                              +--+
              |                                 |
              |             REMOVE              |
              |================================>|
              |             [VCID]              |
              |                                 |
              |           REMOVE ACK            |
              |<================================|
              |             [VCID]              |

         (a) Flow ID removal (independent of ATM signaling)

            +--+                              +--+
            |R1|------------------------------|R2|
            +--+                              +--+
              |          ATM signaling          |
              |           (release)             |
              |<===============================>|
              |                                 |

           (b) Flow ID removal through ATM signaling

            Figure 3.  Flow ID removal procedure

6. Message Format

  FANP control procedure includes seven messages described from 6.2 to
  6.8.  Among them, a PROPOSE message used for VCID negotiation
  procedure uses an extended ATM ARP message format defined in RFC1577
  [2].  The other messages are encapsulated into IP packets.

  The destination IP address in the IP packet header signifies the
  neighbor node's IP address and the source IP address signifies
  sender's IP address.  Currently, the protocol ID for these messages
  is 110(decimal).  This protocol ID must be registered by IANA.

  The reserved field in the following packet format must be zero.












Nagami, et. al.              Informational                     [Page 12]

RFC 2129                   FANP Specification                 April 1997


6.1 Field Format

6.1.1 VCID field

  VCID type value decides VCID field format.  Currently, only type "1"
  is defined.  The VCID field format of VCID type 1 is shown below.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                    ESI of upstream node                       |
   +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                               |                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   |                              ID                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      ESI field: ESI of upstream node
      ID       : upstream node decides unique identifier.

6.1.2 Flow ID field

  Flow ID type value decides flow-ID field format.  Currently, flow-ID
  type "0" and "1" are defined.  The flow ID type value "0" signifies
  that the flow ID field is null.  When flow ID type value is "1", the
  format shown below is used.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                   Source IP address                           |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                   Destination IP address                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Source IP address      : source IP address of flow
      Destination IP address : destination IP address of flow

6.2 PROPOSE message

  PROPOSE message uses the extended ATM-ARP message format [2] to which
  the VCID type and the VCID field are added.  Type & Length fields are
  set to zero, because the messages don't need sender/target ATM
  address.  This message is transferred from the upstream node to the
  downstream node through the Dedicated-VC.

  PROPOSE message is transferred from the upstream node to the
  downstream node through the Dedicated-VC.



Nagami, et. al.              Informational                     [Page 13]

RFC 2129                   FANP Specification                 April 1997


    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Hardware Type = 0x13          |  Protocol Type = 0x0800       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Type&Length 1 | Type&Length 2 |      Opereation Code          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |    Length 1   | Type&Length 3 | Type&Length 4 |   Length 2    |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Sender IP Address                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                     Target IP Address                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |   VCID Type   |VCID Length    |       Reserved                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        VCID                                   |
   /                                                               /
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type&Length 1 ; Type & Length of sender ATM number = 0
   Type&Length 2 ; Type & Length of sender ATM subnumber = 0
   Type&Length 3 ; Type & Length of sender ATM number = 0
   Type&Length 4 ; Type & Length of sender ATM subnumber =0
   Length 1      ; Source IP address length
   Length 2      ; Target IP address length

   Operation code
            0x10 = PROPOSE

   VCID Type:   Currently , VCID Type = 1 is defined.
   VCID Length: Length of VCID field
   VCID :       VCID described previous

6.3 PROPOSE ACK

  PROPOSE ACK messages is transferred through the Default-VC.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Version       |Op code = 1    |        Checksum               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | VCID type     |Flow-ID type=0 |         Reserved              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           VCID                                |
   /                                                               /
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+




Nagami, et. al.              Informational                     [Page 14]

RFC 2129                   FANP Specification                 April 1997


   Version
       This field indicates the version   number of FANP.    Currently,
       Version = 1

   Operation Code

       This field  indicates the operation code   of the message. There
       are five operation codes, below.

       operation code = 1 : PROPOSE ACK message

   Checksum
       This field is the 16 bits checksum for whole body of FANP message.
       The checksum algorithm is same as the IP header.

   VCID Type
       This field indicates the VCID type.  Currently, only "1" is
       defined.

6.4 OFFER message

  OFFER message is transferred from an upstream node to a downstream
  node.  The following is the message format.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Version = 1   | Op Code = 2   |        Checksum               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | VCID type     |Flow-ID type   |     Refresh Interval          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           VCID                                |
   /                                                               /
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Flow-ID                               |
   /                                                               /
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Refresh Interval
       This field indicates the interval of refresh timer.  The refresh
       interval is represented by second in integer.  This field is
       used only in OFFER message.  Recommended value is 120 (second).









Nagami, et. al.              Informational                     [Page 15]

RFC 2129                   FANP Specification                 April 1997


6.5 READY message

  READY message is transfered from a downstream node to an upstream
  node. This message is transferred when the downstream node receives
  OFFER message. And this message is transferred periodically in each
  refresh interval. The following is the message format.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Version = 1   | Op Code = 3   |        Checksum               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | VCID type     |Flow-ID type   |     Reserved                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           VCID                                |
   /                                                               /
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Flow-ID                               |
   /                                                               /
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

6.6 ERROR message

  ERROR message is transfered from a downstream node to an upstream
  node or from an upstream node to a downstream node. This message is
  transferred when some of the fields in the receive message is unknown
  or refused.  When the receive message is the ERROR message, ERROR
  message isn't sent.  VCID type ,VCID, Flow ID Type and Flow ID field
  in the ERROR message are filled with the same field in the receive
  message.

  The following is the message format.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Version = 1   | Op Code = 4   |        Checksum               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | VCID type     |Flow-ID type   |     Error code                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           VCID                                |
   /                                                               /
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                         Flow-ID                               |
   /                                                               /
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+





Nagami, et. al.              Informational                     [Page 16]

RFC 2129                   FANP Specification                 April 1997


   Error Code = 1 : unknown VCID type
              = 2 : unknown Flow-ID type
              = 3 : unknown VCID
              = 4 : resource is unavailable
              = 5 : unavailable refresh interval is offered
              = 6 : refuse by policy

6.7 REMOVE message

  REMOVE message is transfered from a downstream node to an upstream
  node or vice versa.  This message is transferred to remove the
  mapping relationship between the flow ID and and the VCID. The node
  which receives REMOVE message must send REMOVE ACK message, even when
  VCID in the receive message isn't known .

  The following is the message format.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Version = 1   | Op Code = 5   |        Checksum               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | VCID type     |Flow-ID type   |     Reserved                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           VCID                                |
   /                                                               /
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

6.8 REMOVE ACK message

  REMOVE ACK message is transferred from a downstream node to an
  upstream node or from an upstream node to a downstream node.  The
  following is the message format.

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Version = 1   | Op Code = 6   |        Checksum               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | VCID type     |Flow-ID type   |     Reserved                  |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                           VCID                                |
   /                                                               /
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+







Nagami, et. al.              Informational                     [Page 17]

RFC 2129                   FANP Specification                 April 1997


7. Security Considerations

  Security issues are not discussed in this memo.

8. References


  [1] Katsube, Y., Nagami, K., and H. Esaki, "Router Architecture
      Extensions for ATM; overview", Work in Progress.

  [2] Laubach, M., "Classical IP and ARP over ATM", RFC 1577,
      October 1993.

  [3] Heinanen, J., "Multiprotocol Encapsulation over ATM Adaptation
      Layer 5", RFC 1483, July 1993.

  Ethernet is a registered trademark of Xerox Corp.  All other product
  names mentioned herein may be trademarks of their respective
  companies.

9. Authors' Addresses

  Ken-ichi Nagami
  R&D Center, Toshiba
  1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210 Japan
  Phone : +81-44-549-2238
  EMail : [email protected]

  Yasuhiro Katsube
  R&D Center, Toshiba
  1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210 Japan
  Phone : +81-44-549-2238
  EMail : [email protected]

  Yasuro Shobatake
  R&D Center, Toshiba
  1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210 Japan
  Phone : +81-44-549-2238
  Email : [email protected]

  Akiyoshi Mogi
  R&D Center, Toshiba
  1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210 Japan
  Phone : +81-44-549-2238
  EMail : [email protected]






Nagami, et. al.              Informational                     [Page 18]

RFC 2129                   FANP Specification                 April 1997


  Shigeo Matsuzawa
  R&D Center, Toshiba
  1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210 Japan
  Phone : +81-44-549-2238
  EMail : [email protected]

  Tatsuya Jinmei
  R&D Center, Toshiba
  1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210 Japan
  Phone : +81-44-549-2238
  EMail : [email protected]

  Hiroshi Esaki
  R&D Center, Toshiba
  1 Komukai Toshiba-cho, Saiwai-ku, Kawasaki 210 Japan
  Phone : +81-44-549-2238
  EMail : [email protected]


































Nagami, et. al.              Informational                     [Page 19]