Network Working Group                                          S. Chiang
Request for Comments: 2106                                        J. Lee
Category: Informational                              Cisco Systems, Inc.
                                                              H. Yasuda
                                              Mitsubishi Electric Corp.
                                                          February 1997


              Data Link Switching Remote Access Protocol

Status of this Memo

  This memo provides information for the Internet community.  This memo
  does not specify an Internet standard of any kind.  Distribution of
  this memo is unlimited.

Abstract

  This memo describes the Data Link Switching Remote Access Protocol
  that is used between workstations and routers to transport SNA/
  NetBIOS traffic over TCP sessions. Any questions or comments should
  be sent to [email protected].

1.  Introduction

  Since the Data Link Switching Protocol, RFC 1795, was published, some
  software vendors have begun implementing DLSw on workstations. The
  implementation of DLSw on a large number of workstations raises
  several important issues that must be addressed. Scalability is the
  major concern. For example, the number of TCP sessions to the DLSw
  router increases in direct proportion to the number of workstations
  added. Another concern is efficiency. Since DLSw is a switch-to-
  switch protocol, it is not efficient when implemented on
  workstations.

  DRAP addresses the above issues. It introduces a hierarchical
  structure to resolve the scalability problems. All workstations are
  clients to the router (server) rather than peers to the router. This
  creates a client/server model. It also provides a more efficient
  protocol between the workstation (client) and the router (server).











Chiang, et. al.              Informational                      [Page 1]

RFC 2106                         DLSRAP                    February 1997


2.  Overview

2.1.  DRAP Client/Server Model

     +-----------+              +-----------+       +---------+
     | Mainframe |              | IP Router +- ppp -+ DLSw    |
     +--+--------+              +-----+-----+       | Work    |
        |                             |             | Station |
        |                             |             +---------+
     +--+--+      +-------------+     |
     | FEP +- TR -+ DLSw Router +-- IP Backbone
     +-----+      +-------------+     |
                                      |
                                      |
                                +-----------+       +---------+
                                | IP Router +- ppp -+ DLSw    |
                                +-----+-----+       | Work    |
                                                    | Station |
                                                    +---------+

                          |         DLSw Session          |
                          +-------------------------------+
 Figure 2-1. Running DLSw on a large number of workstations creates a
                        scalability problem.

  Figure 2-1 shows a typical DLSw implementation on a workstation. The
  workstations are connected to the central site DLSw router over the
  IP network.  As the network grows, scalability will become an issue
  as the number of TCP sessions increases due to the growing number of
  workstations.





















Chiang, et. al.              Informational                      [Page 2]

RFC 2106                         DLSRAP                    February 1997


                                 +-----------+       +-------+
      +-----------+              | DLSw/DRAP |       | DRAP  |
      | Mainframe |              |   Router  +- ppp -+ Client|
      +--+--------+              +-----+-----+       +-------+
         |                             |
         |                             |
      +--+--+      +-------------+     |
      | FEP +- TR -+ DLSw Router +-- IP Backbone
      +-----+      +-------------+     |
                                       |
                                       |
                                 +-----------+       +-------+
                                 | DLSw/DRAP |       | DRAP  |
                                 |   Router  +- ppp -+ Client|
                                 +-----+-----+       +-------+

                        | DLSw Session |  | DRAP Session |
                        +--------------+  +--------------+
Figure 2-2. DLSw Remote Access Protocol solves the scalability problem.

  In a large network, DRAP addresses the scalability problem by
  significantly reducing the number of peers that connect to the
  central site router. The workstations (DRAP client) and the router
  (DRAP server) behave in a Client/Server relationship. Workstations
  are attached to a DRAP server. A DRAP server has a single peer
  connection to the central site router.

2.2.  Dynamic Address Resolution

  In a DLSw network, each workstation needs a MAC address to
  communicate with a FEP attached to a LAN. When DLSw is implemented on
  a workstation, it does not always have a MAC address defined. For
  example, when a workstation connects to a router through a modem via
  PPP, it only consists of an IP address. In this case, the user must
  define a virtual MAC address. This is administratively intensive
  since each workstation must have an unique MAC address.

  DRAP uses the Dynamic Address Resolution protocol to solve this
  problem. The Dynamic Address Resolution protocol permits the server
  to dynamically assign a MAC address to a client without complex
  configuration.

  For a client to initiate a session to a server, the workstation sends
  a direct request to the server. The request contains the destination
  MAC address and the destination SAP. The workstation can either
  specify its own MAC address, or request the server to assign one to
  it. The server's IP address must be pre-configured on the
  workstation. If IP addresses are configured for multiple servers at a



Chiang, et. al.              Informational                      [Page 3]

RFC 2106                         DLSRAP                    February 1997


  workstation, the request can be sent to these servers and the first
  one to respond will be used.

  For a server to initiate a session to a client, the server sends a
  directed request to the workstation. The workstation must pre-
  register its MAC address at the server. This can be done either by
  configuration on the server or registration at the server (both MAC
  addresses and IP addresses will be registered).

2.3.  TCP Connection

  The transport used between the client and the server is TCP. Before a
  TCP session is established between the client and the server, no
  message can be sent. The default parameters associated with the TCP
  connections between the client and the server are as follows:

     Socket Family     AF_INET        (Internet protocols)
     Socket Type       SOCK_STREAM    (stream socket)
     Port Number       1973

  There is only one TCP connection between the client and the server.
  It is used for both read and write operations.

3.  DRAP Format

3.1.  General Frame Format

  The General format of the DRAP frame is as follows:

            +-------------+-----------+-----------+
            | DRAP Header | DRAP Data | User Data |
            +-------------+-----------+-----------+
                    Figure 3-1. DRAP Frame Format

  The DRAP protocol is contained in the DRAP header, which is common to
  all frames passed between the DRAP client and the server. This header
  is 4 bytes long. The next section will explain the details.

  The next part is the DRAP Data. The structure and the size are based
  on the type of messages carried in the DRAP frame. The DRAP data is
  used to process the frame, but it is optional.

  The third part of the frame is the user data, which is sent by the
  local system to the remote system. The size of this block is variable
  and is included in the frame only when there is data to be sent to
  the remote system.





Chiang, et. al.              Informational                      [Page 4]

RFC 2106                         DLSRAP                    February 1997


3.2.  Header Format

  The DRAP header is used to identify the message type and the length
  of the frame. This is a general purpose header used for each frame
  that is passed between the DRAP server and the client. More
  information is needed for frames like CAN_U_REACH and I_CAN_REACH,
  therefore, it is passed to the peer as DRAP data. The structure of
  the DRAP data depends on the type of frames, and will be discussed in
  detail in later sections.

  The DRAP Header is given below:

            +-------------------------------------------+
            | DRAP Packet Header (Each row is one byte) |
            +===========================================+
          0 | Protocol ID / Version Number              |
            +-------------------------------------------+
          1 | Message Type                              |
            +-------------------------------------------+
          2 | Packet Length                             |
            + - - - - - - - - - - - - - - - - - - - - - +
          3 |                                           |
            +-------------------------------------------+
                    Figure 3-2. DRAP Header Format

  o The Protocol ID uses the first 4 bits of this field and is set to
    "1000".

  o The Version Number uses the next 4 bits in this field and is set
    to "0001".

  o The message type is the DRAP message type.

  o The Total Packet length is the length of the packet including the
    DRAP header, DRAP data and User Data. The minimum size of the
    packet is 4, which is the length of the header.

3.3.  DRAP Messages

  Most of the Drap frames are based on the existing DLSw frames and
  have the same names. The information in the corresponding DRAP and
  DLSw frames may differ; but the functionalities are the same. Thus
  the DLSw State Machine is used to handle these DRAP frames. Some new
  DRAP frames were created to handle special DRAP functions. For
  example, the new DRAP frames, I_CANNOT_REACH and START_DL_FAILED
  provide negative acknowledgment. The DLSw frames not needed for DRAP,
  are dropped.




Chiang, et. al.              Informational                      [Page 5]

RFC 2106                         DLSRAP                    February 1997


  The following table lists and describes all available DRAP messages:

  DRAP Frame Name     Code  Function
  ---------------     ----  --------
  CAN_U_REACH         0x01  Find if the station given is reachable
  I_CAN_REACH         0x02  Positive response to CAN_U_REACH
  I_CANNOT_REACH      0x03  Negative response to CAN_U_REACH
  START_DL            0x04  Setup session for given addresses
  DL_STARTED          0x05  Session Started
  START_DL_FAILED     0x06  Session Start failed
  XID_FRAME           0x07  XID Frame
  CONTACT_STN         0x08  Contact destination to establish SABME
  STN_CONTACTED       0x09  Station contacted - SABME mode set
  DATA_FRAME          0x0A  Connectionless Data Frame for a link
  INFO_FRAME          0x0B  Connection oriented I-Frame
  HALT_DL             0x0C  Halt Data Link session
  HALT_DL_NOACK       0x0D  Halt Data Link session without ack
  DL_HALTED           0x0E  Session Halted
  FCM_FRAME           0x0F  Data Link Session Flow Control Message
  DGRM_FRAME          0x11  Connectionless Datagram Frame for a circuit
  CAP_XCHANGE         0x12  Capabilities Exchange Message
  CLOSE_PEER_REQUEST  0x13  Disconnect Peer Connection Request
  CLOSE_PEER_RESPONSE 0x14  Disconnect Peer Connection Response
  PEER_TEST_REQ       0x1D  Peer keepalive test request
  PEER_TEST_RSP       0x1E  Peer keepalive response

                        Table 3-1. DRAP Frames

3.4.  DRAP Data formats

  The DRAP data is used to carry information required for each DRAP
  frame. This information is used by the Server or the Client and it
  does not contain any user data. The DRAP data frame types are listed
  in the following sections. Please note that the sender should set the
  reserved fields to zero and the receiver should ignore these fields.

3.4.1.  CAN_U_REACH, I_CAN_REACH, and I_CANNOT_REACH Frames

  These frame types are used to locate resources in a network. A
  CAN_U_REACH frame is sent to the server to determine if the resource
  is reachable. The server responds with an I_CAN_REACH frame if it can
  reach the workstation identified in the CAN_U_REACH frame, or with an
  I_CANNOT_REACH if the station is not reachable. The server should not
  send the CAN_U_REACH frame to the clients. When a server receives an
  explorer whose destination is a known client, the server should
  respond to it directly.





Chiang, et. al.              Informational                      [Page 6]

RFC 2106                         DLSRAP                    February 1997


          +---------------+-----------------------+
          | Field Name    | Information           |
          +---------------+-----------------------+
          | Message Type  | 0x01, 0x02, or 0x03   |
          +---------------+-----------------------+
          | Packet Length | 0x0C                  |
          +---------------+-----------------------+
   Figure 3-3. CAN_U_REACH, I_CAN_REACH, and I_CANNOT_REACH Header

            +-----------------------------------+
            | Field Name (Each row is one byte) |
            +===================================+
          0 | Target MAC Address                |
            + - - - - - - - - - - - - - - - - - +
          1 |                                   |
            + - - - - - - - - - - - - - - - - - +
          2 |                                   |
            + - - - - - - - - - - - - - - - - - +
          3 |                                   |
            + - - - - - - - - - - - - - - - - - +
          4 |                                   |
            + - - - - - - - - - - - - - - - - - +
          5 |                                   |
            +-----------------------------------+
          6 | Source SAP                        |
            +-----------------------------------+
          7 | Reserved                          |
            +-----------------------------------+
    Figure 3-4. CAN_U_REACH, I_CAN_REACH, and I_CANNOT_REACH Data

  The MAC Address field carries the MAC address of the target
  workstation that is being searched. This is a six-byte MAC Address
  field. The same MAC Address is returned in the I_CAN_REACH and the
  I_CANNOT_REACH frames.

  Byte 6 is the source SAP. The destination SAP is set to zero when an
  explorer frame is sent to the network.

  If the sender did not receive a positive acknowledgment within a
  recommended threshold value of 60 seconds, the destination is
  considered not reachable.

3.4.2.  START_DL, DL_STARTED, and START_DL_FAILED Frames

  These frame types are used by DRAP to establish a link station
  (circuit). The START_DL frame is sent directly to the server that
  responds to the CAN_U_REACH frame. When the server receives this
  frame, it establishes a link station with the source and destination



Chiang, et. al.              Informational                      [Page 7]

RFC 2106                         DLSRAP                    February 1997


  addresses and saps provided in the START_DL frame. If the circuit
  establishment is successful, a DL_STARTED frame is sent back as a
  response. A failure will result in a START_DL_FAILED response. The
  server can also send START_DL frames to clients, to establish
  circuits.

          +---------------+-----------------------+
          | Field Name    | Information           |
          +---------------+-----------------------+
          | Message Type  | 0x04, 0x05, or 0x06   |
          +---------------+-----------------------+
          | Packet Length | 0x18                  |
          +---------------+-----------------------+
     Figure 3-5. START_DL, DL_STARTED, and START_DL_FAILED Header





































Chiang, et. al.              Informational                      [Page 8]

RFC 2106                         DLSRAP                    February 1997


            +-----------------------------------+
            | Field Name (Each row is one byte) |
            +===================================+
          0 | Host MAC Address                  |
            + - - - - - - - - - - - - - - - - - +
          1 |                                   |
            + - - - - - - - - - - - - - - - - - +
          2 |                                   |
            + - - - - - - - - - - - - - - - - - +
          3 |                                   |
            + - - - - - - - - - - - - - - - - - +
          4 |                                   |
            + - - - - - - - - - - - - - - - - - +
          5 |                                   |
            +-----------------------------------+
          6 | Host SAP                          |
            +-----------------------------------+
          7 | Client SAP                        |
            +-----------------------------------+
          8 | Origin Session ID                 |
            +-----------------------------------+
          9 |                                   |
            + - - - - - - - - - - - - - - - - - +
          10|                                   |
            + - - - - - - - - - - - - - - - - - +
          11|                                   |
            +-----------------------------------+
          12| Target Session ID                 |
            + - - - - - - - - - - - - - - - - - +
          13|                                   |
            + - - - - - - - - - - - - - - - - - +
          14|                                   |
            + - - - - - - - - - - - - - - - - - +
          15|                                   |
            +-----------------------------------+
          16| Largest Frame Size                |
            +-----------------------------------+
          17| Initial Window size               |
            +-----------------------------------+
          18| Reserved                          |
            + - - - - - - - - - - - - - - - - - +
          19|                                   |
            +-----------------------------------+
      Figure 3-6. START_DL, DL_STARTED, and START_DL_FAILED Data

  The Host MAC address is the address of the target station if the
  session is initiated from the client, or it is the address of the
  originating station if the session is initiated from the server.



Chiang, et. al.              Informational                      [Page 9]

RFC 2106                         DLSRAP                    February 1997


  The next two fields are the Host and Client SAPs. Each is one byte
  long. The Host SAP is the SAP used by the station with the Host MAC
  address. The Client SAP is the SAP used by the client.

  The Origin Session ID, is the ID of the originating station that
  initiates the circuit. The originating station uses this ID to
  identify the newly created circuit. Before the START_DL frame is sent
  to the target station, the originating station sets up a control
  block for the circuit. This link station information is set because
  DRAP does not use a three-way handshake for link station
  establishment. In the DL_STARTED and the START_DL_FAILED messages,
  the Origin Session ID is returned as received in the START_DL frame.
  The Target Session ID is set by the target station and returned in
  the DL_STARTED message.

  The Target Session ID is not valid for the START_DL and the
  START_DL_FAILED frame, and should be treated as Reserved fields. In
  the DL_STARTED frame, it is the session ID that is used to set up
  this circuit by the target station.

  The Largest Frame Size field is used to indicate the maximum frame
  size that can be used by the client. It is valid only when it is set
  by the server. The Largest Frame Size field must be set to zero when
  a frame is sent by the client. Both START_DL and DL_STARTED use the
  Largest Frame Size field and only its rightmost 6 bits are used.  The
  format is defined in the IEEE 802.1D Standard, Annex C, Largest Frame
  Bits (LF). Bit 3 to bit 5 are base bits. Bit 0 to bit 2 are extended
  bits. The Largest Frame Size field is not used in the START_DL_FAILED
  frame and must be set to zero.

          bit   7    6    5    4    3    2    1    0
                r    r    b    b    b    e    e    e
                    Figure 3-7. Largest Frame Size

  Please note that if the client is a PU 2.1 node, the client should
  use the maximum I-frame size negotiated in the XID3 exchange.

  The Initial window size in the START_DL frame gives the receive
  window size on the originating side, and the target DRAP station
  returns its receive window size in the DL_STARTED frame. The field is
  reserved in the START_DL_FAILED frame. The usage of the window size
  is the same as the one used in DLSw.  Please refer to RFC 1795 for
  details.

  The last two bits are reserved for future use. They must be set to
  zero by the sender and ignored by the receiver.





Chiang, et. al.              Informational                     [Page 10]

RFC 2106                         DLSRAP                    February 1997


  If the sender of the START_DL frame did not receive a START_DL_FAILED
  frame within a recommended threshold value of 60 seconds, the
  connection is considered unsuccessful.

3.4.3.  HALT_DL, HALT_DL_NOACK, and DL_HALTED Frames

  These frame types are used by DRAP to disconnect a link station. A
  HALT_DL frame is sent directly to the remote workstation to indicate
  that the sender wishes to disconnect. When the receiver receives this
  frame, it tears down the session that is associated with the Original
  Session ID and the Target Session ID provided in the HALT_DL frame.
  The receiver should respond with the DL_HALTED frame. The DL_HALTED
  frame should use the same Session ID values as the received HALT_DL
  message without swapping them. The HALT_DL_NOACK frame is used when
  the response is not required.

          +---------------+-----------------------+
          | Field Name    | Information           |
          +---------------+-----------------------+
          | Message Type  | 0x0C, 0x0D, or 0x0E   |
          +---------------+-----------------------+
          | Packet Length | 0x10                  |
          +---------------+-----------------------+
       Figure 3-8. HALT_DL, HALT_DL_NOACK, and DL_HALTED Header



























Chiang, et. al.              Informational                     [Page 11]

RFC 2106                         DLSRAP                    February 1997


            +-----------------------------------+
            | Field Name (Each row is one byte) |
            +===================================+
          0 | Sender Session ID                 |
            + - - - - - - - - - - - - - - - - - +
          1 |                                   |
            + - - - - - - - - - - - - - - - - - +
          2 |                                   |
            + - - - - - - - - - - - - - - - - - +
          3 |                                   |
            +-----------------------------------+
          4 | Receiver Session ID               |
            + - - - - - - - - - - - - - - - - - +
          5 |                                   |
            + - - - - - - - - - - - - - - - - - +
          6 |                                   |
            + - - - - - - - - - - - - - - - - - +
          7 |                                   |
            +-----------------------------------+
          8 | Reserved                          |
            + - - - - - - - - - - - - - - - - - +
          9 |                                   |
            + - - - - - - - - - - - - - - - - - +
          10|                                   |
            + - - - - - - - - - - - - - - - - - +
          11|                                   |
            +-----------------------------------+
      Figure 3-9. START_DL, DL_STARTED, and START_DL_FAILED Data

3.4.4.  XID_FRAME, CONTACT_STN, STN_CONTACTED, INFO_FRAME, FCM_FRAME,
       and DGRM_FRAME

  These frame types are used to carry the end-to-end data or establish
  a circuit. The Destination Session ID is the Session ID created in
  the START_DL frame or the DL_STARTED frame by the receiver. The usage
  of the flow control flag is the same as the one used in DLSw.  Please
  refer to RFC 1795 for details.

          +---------------+----------------------------+
          | Field Name    | Information                |
          +---------------+----------------------------+
          | Message Type  | Based on Message type      |
          +---------------+----------------------------+
          | Packet Length | 0x0C + length of user data |
          +---------------+----------------------------+
                   Figure 3-10. Generic DRAP Header





Chiang, et. al.              Informational                     [Page 12]

RFC 2106                         DLSRAP                    February 1997


            +-----------------------------------+
            | Field Name (Each row is one byte) |
            +===================================+
          0 | Destination Session ID            |
            + - - - - - - - - - - - - - - - - - +
          1 |                                   |
            + - - - - - - - - - - - - - - - - - +
          2 |                                   |
            + - - - - - - - - - - - - - - - - - +
          3 |                                   |
            +-----------------------------------+
          4 | Flow Control Flags                |
            +-----------------------------------+
          5 | Reserved                          |
            + - - - - - - - - - - - - - - - - - +
          6 |                                   |
            + - - - - - - - - - - - - - - - - - +
          7 |                                   |
            +-----------------------------------+
                Figure 3-11. Generic DRAP Data Format

3.4.5.  DATA_FRAME

  This frame type is used to send connectionless SNA and NetBIOS
  Datagram (UI) frames that do not have a link station associated with
  the source and destination MAC/SAP pair. The difference between
  DGRM_FRAME and DATA_FRAME is that DGRM_FRAME is used to send UI
  frames received for stations that have a link station opened, whereas
  DATA_FRAME is used for frames with no link station established.

          +---------------+-----------------------------+
          | Field Name    | Information                 |
          +---------------+-----------------------------+
          | Message Type  | 0x0A                        |
          +---------------+-----------------------------+
          | Packet Length | 0x10 + Length of user data  |
          +---------------+-----------------------------+
                    Figure 3-12. DATA_FRAME Header













Chiang, et. al.              Informational                     [Page 13]

RFC 2106                         DLSRAP                    February 1997


            +-----------------------------------+
            | Field Name (Each row is one byte) |
            +===================================+
          0 | Host MAC Address                  |
            + - - - - - - - - - - - - - - - - - +
          1 |                                   |
            + - - - - - - - - - - - - - - - - - +
          2 |                                   |
            + - - - - - - - - - - - - - - - - - +
          3 |                                   |
            + - - - - - - - - - - - - - - - - - +
          4 |                                   |
            + - - - - - - - - - - - - - - - - - +
          5 |                                   |
            +-----------------------------------+
          6 | Host SAP                          |
            +-----------------------------------+
          7 | Client SAP                        |
            +-----------------------------------+
          8 | Broadcast Type                    |
            +-----------------------------------+
          9 | Reserved                          |
            + - - - - - - - - - - - - - - - - - +
          10|                                   |
            + - - - - - - - - - - - - - - - - - +
          11|                                   |
            +-----------------------------------+
                 Figure 3-13. DATA_FRAME Data Format

  The definition of the first 8 bytes is the same as the START_DL
  frame. The Broadcast Type field indicates the type of broadcast
  frames in use; Single Route Broadcast, All Route Broadcast, or
  Directed. The target side will use the same broadcast type. In the
  case of Directed frame, if the RIF information is known, the target
  peer can send a directed frame. If not, a Single Route Broadcast
  frame is sent.

3.4.6.  CAP_XCHANGE Frame

  In DRAP, the capability exchange frame is used to exchange the
  client's information, such as its MAC address, with the server. If a
  DRAP client has its own MAC address defined, it should put it in the
  MAC address field. Otherwise, that field must be set to zero.

  When the DRAP server receives the CAP_XCHANGE frame, it should cache
  the MAC address if it is non zero. The DRAP server also verifies that
  the MAC address is unique. The server should return a CAP_XCHANGE
  response frame with the MAC address supplied by the client if the MAC



Chiang, et. al.              Informational                     [Page 14]

RFC 2106                         DLSRAP                    February 1997


  address is accepted. If a client does not have its own MAC address,
  the server should assign a MAC address to the client and put that
  address in the CAP_XCHANGE command frame.

  A client should record the new MAC address assigned by the server and
  return a response with the assigned MAC address. If the client cannot
  accept the assigned MAC address, another CAP_XCHANGE command with the
  MAC address field set to zero should be sent to the server. The
  server should allocate a new MAC address for this client.

  During the capability exchange, both the client and the server can
  send command frames. The process stops when either side sends a
  CAP_XCHANGE response frame. When the response frame is sent, the MAC
  address in the CAP_XCHANGE frame should be the same as the one in the
  previous received command. The sender of the CAP_XCHANGE response
  agrees to use the MAC address defined in the previous command.

  The number of CAP_XCHANGE frames that need to be exchanged is
  determined by the client and the server independently. When the
  number of exchange frames has exceeded the pre-defined number set by
  either the server or the client, the session should be brought down.

  The flag is used to show the capability of the sender. The following
  list shows the valid flags:

  0x01 NetBIOS support. If a client sets this bit on, the server will
       pass all NetBIOS explorers to this client. If this bit is not
       set, only SNA traffic will be sent to this client.

  0x02 TCP Listen Mode support. If a client supports TCP listen mode,
       the server will keep the client's MAC and IP addresses even
       after the TCP session is down. The cached information will be
       used for server to connect out. If a client does not support
       TCP listen mode, the cache will be deleted as soon as the TCP
       session is down.

  0x04 Command/Response. If this bit is set, it is a command,
       otherwise, it is a response.

  The values 0x01 and 0x02 are used only by the client. When a server
  sends the command/response to a client, the server does not return
  these values.

  Starting with the Reserved field, implementors can optionally
  implement the Capability Exchange Control Vector. Each Capability
  Exchange Control Vector consists of three fields: Length (1 byte),
  Type (1 byte), and Data (Length - 2 bytes). Two types of Control
  Vectors are defined: SAP_LIST and VENDOR_CODE (described below). To



Chiang, et. al.              Informational                     [Page 15]

RFC 2106                         DLSRAP                    February 1997


  ensure compatibility, implementors should ignore the unknown Control
  Vectors instead of treating them as errors.

  0x01 SAP_LIST. Length: 2+n bytes, where n ranges from 1 to 16.
     This control vector lists the SAPs that the client can support.
     The maximum number of SAPs a client can define is 16. Therefore,
     the length of this Control Vector ranges from 3 to 18. If the
     SAP_LIST is not specified in the capability exchange, the server
     assumes that the client can support all the SAP values. For
     example, if a client can only support SAP 4 and 8, then the
     following Control Vectors should be sent: "0x04, 0x01, 0x04,
     0x08". The first byte indicates the length of 4. The second byte
     indicates the control vector type of SAP_LIST. The last two bytes
     indicate the supported SAP values; 0x04 and 0x08. This Control
     Vector is used only by the client. If the server accepts this
     Control Vector, it must return the same Control Vector to the
     client.

  0x02 VENDOR_CODE. Length: 6 bytes.
     Each vendor is assigned a vendor code that identifies the vendor.
     This Control Vector does not require a response.

  After the receiver responds to a Control Vector, if the capability
  exchange is not done, the sender does not have to send the same
  Control Vector again.

          +---------------+-----------------------+
          | Field Name    | Information           |
          +---------------+-----------------------+
          | Message Type  | 0x12                  |
          +---------------+-----------------------+
          | Packet Length | 0x1C                  |
          +---------------+-----------------------+
                   Figure 3-14. CAP_XCHANGE Header

















Chiang, et. al.              Informational                     [Page 16]

RFC 2106                         DLSRAP                    February 1997


            +-----------------------------------+
            | Field Name (Each row is one byte) |
            +===================================+
          0 | MAC Address                       |
            + - - - - - - - - - - - - - - - - - +
          1 |                                   |
            + - - - - - - - - - - - - - - - - - +
          2 |                                   |
            + - - - - - - - - - - - - - - - - - +
          3 |                                   |
            + - - - - - - - - - - - - - - - - - +
          4 |                                   |
            + - - - - - - - - - - - - - - - - - +
          5 |                                   |
            +-----------------------------------+
          6 | Flag                              |
            +-----------------------------------+
          7 | Reserved                          |
            +-----------------------------------+
                 Figure 3-15. CAP_XCHANGE Data Format

3.4.7.  CLOSE_PEER_REQ Frames

  This frame is used for peer connection management and contains a
  reason code field. The following list describes the valid reason
  codes:

  0x01 System shutdown. This indicates shutdown in progress.

  0x02 Suspend. This code is used when there is no traffic between the
     server and the client, and the server or the client wishes to
     suspend the TCP session. When the TCP session is suspended, all
     circuits should remain intact. The TCP session should be re-
     established when new user data needs to be sent. When the TCP
     session is re-established, there is no need to send the
     CAP_XCHANGE frame again.

  0x03 No MAC address available. This code is sent by the server when
     there is no MAC address is available from the MAC address pool.

          +---------------+-----------------------+
          | Field Name    | Information           |
          +---------------+-----------------------+
          | Message Type  | 0x13                  |
          +---------------+-----------------------+
          | Packet Length | 0x08                  |
          +---------------+-----------------------+
                  Figure 3-16. CLOSE_PEER_REQ Header



Chiang, et. al.              Informational                     [Page 17]

RFC 2106                         DLSRAP                    February 1997


            +-----------------------------------+
            | Field Name (Each row is one byte) |
            +===================================+
          0 | Reason Code                       |
            +-----------------------------------+
          1 | Reserved                          |
            + - - - - - - - - - - - - - - - - - +
          2 |                                   |
            + - - - - - - - - - - - - - - - - - +
          3 |                                   |
            +-----------------------------------+
               Figure 3-17. CLOSE_PEER_REQ Data Format

3.4.8.  CLOSE_PEER_RSP, PEER_TEST_REQ, and PEER_TEST_RSP Frames

  These three frames are used for peer connection management. There is
  no data associated with them.

  o CLOSE_PEER_RSP
    CLOSE_PEER_RSP is the response for CLOSE_PEER_REQ.

  o PEER_TEST_REQ and PEER_TEST_RSP
    PEER_TEST_REQ and PEER_TEST_RSP are used for peer level keepalive.
    Implementing PEER_TEST_REQ is optional, but PEER_TEST_RSP must be
    implemented to respond to the PEER_TEST_REQ frame. When a
    PEER_TEST_REQ frame is sent to the remote station, the sender
    expects to receive the PEER_TEST_RSP frame in a predefined time
    interval (the recommended value is 60 seconds). If the
    PEER_TEST_RSP frame is not received in the predefined time
    interval, the sender can send the PEER_TEST_REQ frame again. If a
    predefined number of PEER_TEST_REQ frames is sent to the remote
    station, but no PEER_TEST_RSP frame is received (the recommended
    number is 3), the sender should close the TCP session with this
    remote station and terminate all associated circuits.


          +---------------+-----------------------+
          | Field Name    | Information           |
          +---------------+-----------------------+
          | Message Type  | 0x14, 0x1D, or 0x1E   |
          +---------------+-----------------------+
          | Packet Length | 0x04                  |
          +---------------+-----------------------+
  Figure 3-18. CLOSE_PEER_RSP, PEER_TEST_REQ, and PEER_TEST_RSP DRAP







Chiang, et. al.              Informational                     [Page 18]

RFC 2106                         DLSRAP                    February 1997


4.  References

  [1] Wells, L., Chair, and A. Bartky, Editor, "DLSw: Switch-to-Switch
      Protocol", RFC 1795, October 1993.

  [2] IEEE 802.1D Standard.

Authors' Addresses

  Steve T. Chiang
  InterWorks Business Unit
  Cisco Systems, Inc.
  170 Tasman Drive
  San Jose, CA 95134

  Phone: (408) 526-5189
  EMail: [email protected]


  Joseph S. Lee
  InterWorks Business Unit
  Cisco Systems, Inc.
  170 Tasman Drive
  San Jose, CA 95134

  Phone: (408) 526-5232
  EMail: [email protected]


  Hideaki Yasuda
  System Product Center
  Network Products Department
  Network Software Products Section B
  Mitsubishi Electric Corp.
  Information Systems Engineering Center
  325, Kamimachiya Kamakura Kanagawa 247, Japan

  Phone: +81-467-47-2120
  EMail: [email protected]












Chiang, et. al.              Informational                     [Page 19]