Network Working Group                                         M. Oehler
Request for Comments: 2085                                          NSA
Category: Standards Track                                      R. Glenn
                                                                  NIST
                                                         February 1997


          HMAC-MD5 IP Authentication with Replay Prevention

Status of This Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  This document describes a keyed-MD5 transform to be used in
  conjunction with the IP Authentication Header [RFC-1826]. The
  particular transform is based on [HMAC-MD5].  An option is also
  specified to guard against replay attacks.

Table of Contents

  1.  Introduction...................................................1
  1.1    Terminology.................................................2
  1.2    Keys........................................................2
  1.3    Data Size...................................................3
  2.  Packet Format..................................................3
  2.1    Replay Prevention...........................................4
  2.2    Authentication Data Calculation.............................4
  3.  Security Considerations........................................5
  Acknowledgments....................................................5
  References.........................................................6
  Authors' Addresses.................................................6

1. Introduction

  The Authentication Header (AH) [RFC-1826] provides integrity and
  authentication for IP datagrams. The transform specified in this
  document uses a keyed-MD5 mechanism [HMAC-MD5].  The mechanism uses
  the (key-less) MD5 hash function [RFC-1321] which produces a message
  digest. When combined with an AH Key, authentication data is
  produced. This value is placed in the Authentication Data field of
  the AH [RFC-1826]. This value is also the basis for the data
  integrity service offered by the AH protocol.



Oehler & Glenn              Standards Track                     [Page 1]

RFC 2085                        HMAC-MD5                  February 1997


  To provide protection against replay attacks, a Replay Prevention
  field is included as a transform option.  This field is used to help
  prevent attacks in which a message is stored and re-used later,
  replacing or repeating the original.  The Security Parameters Index
  (SPI) [RFC-1825] is used to determine whether this option is included
  in the AH.

  Familiarity with the following documents is assumed: "Security
  Architecture for the Internet Protocol" [RFC-1825], "IP
  Authentication Header" [RFC-1826], and "HMAC-MD5: Keyed-MD5 for
  Message Authentication" [HMAC-MD5].

  All implementations that claim conformance or compliance with the IP
  Authentication Header specification [RFC-1826] MUST implement this
  HMAC-MD5 transform.

1.1 Terminology

  In  this  document,  the  words  that  are  used  to   define   the
  significance  of each particular requirement are usually capitalized.
  These words are:

  - MUST

  This word or the adjective "REQUIRED" means that  the  item  is  an
  absolute requirement of the specification.

  - SHOULD

  This word or the adjective "RECOMMENDED"  means  that  there  might
  exist  valid reasons in particular circumstances to ignore this item,
  but the full implications should be understood and the case carefully
  weighed before taking a different course.

1.2 Keys

  The "AH Key" is used as a shared secret between two communicating
  parties.  The Key is not a "cryptographic key" as used in a
  traditional sense. Instead, the AH key (shared secret) is hashed with
  the transmitted data and thus, assures that an intervening party
  cannot duplicate the authentication data.

  Even though an AH key is not a cryptographic key, the rudimentary
  concerns of cryptographic keys still apply. Consider that the
  algorithm and most of the data used to produce the output is known.
  The strength of the transform lies in the singular mapping of the key
  (which needs to be strong) and the IP datagram (which is known) to
  the authentication data.  Thus, implementations should, and as



Oehler & Glenn              Standards Track                     [Page 2]

RFC 2085                        HMAC-MD5                  February 1997


  frequently as possible, change the AH key. Keys need to be chosen at
  random, or generated using a cryptographically strong pseudo-random
  generator seeded with a random seed. [HMAC-MD5]

  All conforming and compliant implementations MUST support a key
  length of 128 bits or less.  Implementations SHOULD support longer
  key lengths as well.  It is advised that the key length be chosen to
  be the length of the hash output, which is 128 bits for MD5.  For
  other key lengths the following concerns MUST be considered.

  A key length of zero is prohibited and implementations MUST prevent
  key lengths of zero from being used with this transform, since no
  effective authentication could be provided by a zero-length key.
  Keys having a length less than 128 bits are strongly discouraged as
  it would decrease the security strength of the function.  Keys longer
  than 128 bits are acceptable, but the extra length may not
  significantly increase the function strength.  A longer key may be
  advisable if the randomness of the key is suspect.  MD5 operates on
  64-byte blocks.  Keys longer than 64-bytes are first hashed using
  MD5.  The resulting hash is then used to calculate the authentication
  data.

1.3 Data Size

  MD5 produces a 128-bit value which is used as the authentication
  data.  It is naturally 64 bit aligned and thus, does not need any
  padding for machines with native double words.

2. Packet Format

    +---------------+---------------+---------------+---------------+
    | Next Header   | Length        |           RESERVED            |
    +---------------+---------------+---------------+---------------+
    |                              SPI                              |
    +---------------+---------------+---------------+---------------+
    |                     Replay Prevention                         |
    |                                                               |
    +---------------+---------------+---------------+---------------+
    |                                                               |
    +                     Authentication Data                       |
    |                                                               |
    +---------------+---------------+---------------+---------------+
     1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

  The Next Header, RESERVED, and SPI fields are specified in [RFC-
  1826].  The Length field is the length of the Replay Prevention field
  and the Authentication Data in 32-bit words.




Oehler & Glenn              Standards Track                     [Page 3]

RFC 2085                        HMAC-MD5                  February 1997


2.1 Replay Prevention

  The Replay Prevention field is a 64-bit value used to guarantee that
  each packet exchanged between two parties is different.  Each IPsec
  Security Association specifies whether Replay Prevention is used for
  that Security Association.  If Replay Prevention is NOT in use, then
  the Authentication Data field will directly follow the SPI field.

  The 64-bit field is an up counter starting at a value of 1.

  The secret shared key must not be used for a period of time that
  allows the counter to wrap, that is, to transmit more than 2^64
  packets using a single key.

  Upon receipt, the replay value is assured to be increasing.  The
  implementation may accept out of order packets. The number of packets
  to accept out of order is an implementation detail. If an "out of
  order window" is supported, the implementation shall ensure that any
  and all packets accepted out of order are guaranteed not to have
  arrived before. That is, the implementation will accept any packet at
  most once.

  When the destination address is a multicast address, replay
  protection is in use, and more than one sender is sharing the same
  IPsec Security Association to that multicast destination address,
  then Replay Protection SHOULD NOT be enabled.  When replay protection
  is desired for a multicast session having multiple senders to the
  same multicast destination address, each sender SHOULD have its own
  IPsec Security Association.

  [ESP-DES-MD5] provides example code that implements a 32 packet
  replay window and a test routine to show how it works.

2.2 Authentication Data Calculation

  The authentication data is the output of the authentication algorithm
  (MD5).  This value is calculated over the entire IP datagram. Fields
  within the datagram that are variant during transit and the
  authentication data field itself, must contain all zeros prior to the
  computation [RFC-1826].  The Replay Prevention field if present, is
  included in the calculation.

  The definition and reference implementation of MD5 appears in [RFC-
  1321].  Let 'text' denote the data to which HMAC-MD5 is to be applied
  and K be the message authentication secret key shared by the parties.
  If K is longer than 64-bytes it MUST first be hashed using MD5.  In
  this case, K is the resulting hash.




Oehler & Glenn              Standards Track                     [Page 4]

RFC 2085                        HMAC-MD5                  February 1997


  We define two fixed and different strings ipad and opad as follows
  (the 'i' and 'o' are mnemonics for inner and outer):

            ipad = the byte 0x36 repeated 64 times
            opad = the byte 0x5C repeated 64 times.
  To compute HMAC-MD5 over the data `text' we perform
            MD5(K XOR opad, MD5(K XOR ipad, text))
  Namely,
   (1) append zeros to the end of K to create a 64 byte string
       (e.g., if K is of length 16 bytes it will be appended with 48
       zero bytes 0x00)
   (2) XOR (bitwise exclusive-OR) the 64 byte string computed in step
       (1) with ipad
   (3) append the data stream 'text' to the 64 byte string resulting
       from step (2)
   (4) apply MD5 to the stream generated in step (3)
   (5) XOR (bitwise exclusive-OR) the 64 byte string computed in
       step (1) with opad
   (6) append the MD5 result from step (4) to the 64 byte string
       resulting from step (5)
   (7) apply MD5 to the stream generated in step (6) and output
       the result

     This computation is described in more detail, along with example
     code and performance improvements, in [HMAC-MD5]. Implementers
     should consult [HMAC-MD5] for more information on this technique
     for keying a cryptographic hash function.

3. Security Considerations

  The security provided by this transform is based on the strength of
  MD5, the correctness of the algorithm's implementation, the security
  of the key management mechanism and its implementation, the strength
  of the associated secret key, and upon the correctness of the
  implementations in all of the participating systems.  [HMAC-MD5]
  contains a detailed discussion on the strengths and weaknesses of
  MD5.

Acknowledgments

  This document is largely based on text written by Hugo Krawczyk.  The
  format used was derived from work by William Simpson and Perry
  Metzger.  The text on replay prevention is derived directly from work
  by Jim Hughes.







Oehler & Glenn              Standards Track                     [Page 5]

RFC 2085                        HMAC-MD5                  February 1997


References

  [RFC-1825]    Atkinson, R., "Security Architecture for the Internet
                Protocol", RFC 1852, Naval Research Laboratory,
                July 1995.
  [RFC-1826]    Atkinson, R., "IP Authentication Header",
                RFC 1826, August 1995.
  [RFC-1828]    Metzger, P., and W. Simpson, "IP Authentication using
                Keyed MD5", RFC 1828, August 1995.
  [RFC-1321]    Rivest, R., "The MD5 Message-Digest Algorithm",
                RFC 1321, April 1992.
  [HMAC-MD5]    Krawczyk, H., Bellare, M., and R. Canetti,
                "HMAC: Keyed-Hashing for Message Authentication",
                RFC 2104, February 1997.
  [ESP-DES-MD5] Hughes, J., "Combined DES-CBC, MD5, and Replay
                Prevention Security Transform", Work in Progress.

Authors' Addresses

  Michael J. Oehler
  National Security Agency
  Atn: R23, INFOSEC Research and Development
  9800 Savage Road
  Fort Meade, MD 20755

  EMail: [email protected]


  Robert Glenn
  NIST
  Building 820, Room 455
  Gaithersburg, MD 20899

  EMail: [email protected]

















Oehler & Glenn              Standards Track                     [Page 6]