Network Working Group                                       H. Berkowitz
Request for Comments: 2072                             PSC International
Category: Informational                                     January 1997


                       Router Renumbering Guide

Status of this Memo

  This memo provides information for the Internet community.  This memo
  does not specify an Internet standard of any kind.  Distribution of
  this memo is unlimited.

Abstract

  IP addresses currently used by organizations are likely to undergo
  changes in the near to moderate term.  Change can become necessary
  for a variety of reasons, including enterprise reorganization,
  physical moves of equipment, new strategic relationships, changes in
  Internet Service Providers (ISP), new applications, and the needs of
  global Internet connectivity.  Good IP address management may in
  general simplify continuing system administration; a good renumbering
  plan is also a good numbering plan.    Most actions taken to ease
  future renumbering will ease routine network administration.

  Routers are the components that interconnect parts of the IP address
  space identified by unique prefixes.  Obviously, they will be
  impacted by renumbering.  Other interconnection devices, such as
  bridges, layer 2 switches (i.e., specialized bridges), and ATM
  switches may be affected by renumbering.  The interactions of these
  lower-layer interconnection devices with routers must be considered
  as part of a renumbering effort.

  Routers interact with numerous network infrastructure servers,
  including DNS and SNMP.  These interactions, not just the pure
  addressing and routing structure, must be considered as part of
  router renumbering.














Berkowitz                    Informational                      [Page 1]

RFC 2072                Router Renumbering Guide            January 1997


Table of Contents

  1.   Introduction . . . . . . . . . . . . . . . . . . . . . . . .  2
  2.   Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . .  3
  3.   Motivations for Renumbering  . . . . . . . . . . . . . . . .  3
  4.   Numbering and Renumbering. . . . . . . . . . . . . . . . . .  9
  5.   Moving toward a Renumbering-Friendly Enterprise. . . . . . . 13
  6.   Potential Pitfalls in Router Renumbering.  .  .  . . . . . . 20
  7.   Tools and Methods for Renumbering  . .  .  . . . . . . . . . 25
  8.   Router Identifiers . . . . . . . . . . . . . . . . . . . . . 29
  9.   Filtering and Access Control . . . . . . . . . . . . . . . . 35
 10.   Interior Routing . . . . . . . . . . . . . . . . . . . . . . 37
 11.   Exterior Routing . . . . . . . . . . . . . . . . . . . . . . 39
 12.   Network Management . . . . . . . . . . . . . . . . . . . . . 41
 13.   IP and Protocol Encapsulation  . . . . . . . . . . . . . . . 43
 14.   Security Considerations. . . . . . . . . . . . . . . . . . . 44
 15.   Planning and Implementing the Renumbering  . . . . . . . . . 44
 16.   Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 46
 17.   References . . . . . . . . . . . . . . . . . . . . . . . . . 47
 18.   Author's Address . . . . . . . . . . . . . . . . . . . . . . 48

1.  Introduction

  Organizations can decide to renumber part or all of their IP address
  space for a variety of reasons.  Overall motivations for renumbering
  are discussed in [RFC2071].  This document deals with the router-
  related aspects of a renumbering effort, once the decision to
  renumber has been made.

  A renumbering effort must be well-planned if it is to be successful.
  This document deals with planning and implementation guidelines for
  the interconnection devices of an enterprise. Of these devices,
  routers have the clearest association with the IP numbering plan.

  Planning begins with understanding the problem to be solved.  Such
  understanding includes both the motivation for renumbering and the
  technical issues involved in renumbering.

     1.  Begin with a short and clear statement of the reason to
         renumber.  Section 3  of this document discusses common
         reasons.

     2.  Understand the principles of numbering in the present and
         planned environments.  Section 4 reviews numbering and
         suggests a method for describing the scope of renumbering.






Berkowitz                    Informational                      [Page 2]

RFC 2072                Router Renumbering Guide            January 1997


     3.  Before the actual renumbering, it can be useful to evolve
         the current environment and current numbering to a more
         "renumbering-friendly" system.  Section 5 discusses ways to
         introduce renumbering friendliness into current systems.

     4.  Be aware of potential pitfalls.  These are discussed in
         Section 6.

     5.  Identify potential requirements for tools, discussed in
         Section 7.

     6.  Evaluate the specific router mechanisms that will be affected
         by renumbering.  See Sections 8 through 13.

     7.  Set up a specific transition plan framework.  Guidelines
         for such planning are in Section 15.

  When trying to understand the interactions of renumbering on routers,
  remember there different aspects to the problem, depending on the
  scope of the renumbering involved.  Remember that even an
  enterprise-wide renumbering probably will not affect all IP addresses
  visible within the enterprise, since some addresses (e.g., Internet
  service providers, external business partners) are outside the
  address space under the control of the enterprise.

2. Disclaimer

  The main part of this document is intended to be vendor-independent.
  Not all features discussed, of course, have been implemented on all
  routers.    This document should not be used as a general comparison
  of the richness of features of  different implementations.
  References here are only to those features affected by renumbering.
  Some illustrative examples may be used that cite vendor-specific
  characteristics.  These examples do not necessarily reflect the
  current status of products.

3.  Motivations for Renumbering

  Reasons to renumber can be technological, organizational, or both.
  Technological reasons fall into several broad categories discussed
  below.  Just as there can be both technological and organizational
  motivations for renumbering [RFC2071], there can be multiple
  technological reasons.

  There may not be a clear line between organizational and technical
  reasons for renumbering.  While networks have a charm and beauty all
  their own, the organizational reasons should be defined first in
  order to justify the budget for the technical renumbering.  There



Berkowitz                    Informational                      [Page 3]

RFC 2072                Router Renumbering Guide            January 1997


  also may be pure technnical reasons to renumber, such as changes in
  technology (e.g., from bridging to routing).

  While this document is titled "Router Renumbering Guide," it
  recognizes that renumbering may be required due to the initial
  installation of routers in a bridged legacy network. Organizations
  may have had an adequate bridging solution that did not scale with
  growth.  Some organizations could not able to move to routers until
  router forwarding performance improved [Carpenter] to be comparable
  to bridges.

  Other considerations include compliance with routing outside the
  organization.  Routing issues here are primarily those of the global
  Internet, but may also involve bilateral private links to other
  enterprises.

  Certain new transmission technologies have tended to redefine the
  basic notion of an IP subnet.  The numbering plan needs to work with
  these new ideas.  Legacy bridged networks and leading-edge workgroup
  switched networks may very well need changes in the subnetting
  structure.  Renumbering needs may also develop with the introduction
  of new WAN technologies, especially nonbroadcast multiaccess (NBMA)
  services such as frame relay.  Other WAN technologies, dialup media
  using modems or ISDN, also may have new routing and numbering
  requirements.  Switched virtual circuit services such as ATM, X.25,
  or switched frame relay also interact with routing and addressing.

3.1  Internet Global Routing

  Many discussions of renumbering emphasize interactions among
  organizations' numbering plans and those of the global Internet
  [RFC1900].  There can be equally strong motivations for renumbering
  in organizations that never connect to the global Internet.

  According to RFC1900, "Unless and until viable alternatives are
  developed, extended deployment of Classless Inter-Domain Routing
  (CIDR) is vital to keep the Internet routing system alive and to
  maintain continuous uninterrupted growth of the Internet....To
  contain the growth of routing information, whenever such an
  organization changes to a new service provider, the organization's
  addresses will have to change.

  Occasionally, service providers themselves may have to change to a
  new and larger block of address space. In either of these cases, to
  contain the growth of routing information, the organizations
  concerned would need to renumber.... If the organization does not
  renumber, then some of the potential consequences may include (a)
  limited (less than Internet-wide) IP connectivity, or (b) extra cost



Berkowitz                    Informational                      [Page 4]

RFC 2072                Router Renumbering Guide            January 1997


  to offset the overhead associated with the organization's routing
  information that Internet Service Providers have to maintain, or
  both."

3.2  Bridge Limitations; Internal Use of LAN Switching

  Introducing workgroup switches may introduce subtle renumbering
  needs. Fundamentally, workgroup switches are specialized, high-
  performance bridges, which make their main forwarding decisions
  based on Layer 2 (MAC) address information.   Even so, they rarely
  are independent of Layer 3 (IP) address structure.  Pure Layer 2
  switching has a "flat" address space that will need to be renumbered
  into a hierarchical, subnetted space consistent with routing.
  Traditional bridged networks share many of the problems of workgroup
  switches,  but have additional performance problems when bridged
  connectivity extends across slow WAN links.

  Introducting single switches or stacks of switches may not have
  significant impact on addressing, as long as it is remembered that
  each system of switches is a single broadcast domain.  Each broadcast
  domain should map to a single IP subnet.

  Virtual LANs (VLAN) further extend the complexity of the role of
  workgroup switches.  It is generally true that moving an end station
  from one switch port to another within the same "color" VLAN will not
  cause major changes in addressing. Many discussions of this
  technology do not make it clear that moving the same end station
  between different colors will move the end station into another IP
  subnet, requiring a significant address change.

  Switches are commonly managed by SNMP applications.  These network
  management applications communicate with managed devices using IP.
  Even if the switch does not do IP forwarding, it will itself need IP
  addresses if it is to be managed.  Also, if the clients and servers
  in the workgroup are managed by SNMP, they will need IP addresses.
  The workgroup, therefore, will need to appear as one or more IP
  subnets.

  Increasingly, internetworking products are not purely Layer 2 or
  Layer 3 devices.  A workgroup switch product often includes a router
  function, so the numbering plan must support both flat Layer 2 and
  hierarchical Layer 3 addresses.









Berkowitz                    Informational                      [Page 5]

RFC 2072                Router Renumbering Guide            January 1997


3.3  Internal Use of NBMA Cloud Services

  "Cloud" services such as frame relay often are more economical than
  traditional services.  At first glance, when converting existing
  enterprise networks to NBMA, it might appear that the existing subnet
  structure should be preserved, but this is often not the case.

  Many organizations  often  began by treating the "cloud" as a single
  subnet, but experience has shown it is often better to treat the
  individual virtual circuits as separate subnets.  When the individual
  point-to-point VCs become separate subnets, efficient address
  utilization requires the use of /30 prefixes for these subnets.  This
  typically means the addressing and routing plan must support multiple
  prefix lengths, establishing one or more prefix lengths for LAN media
  with more than two hosts, and subdividing one or more of these
  shorter prefixes into longer /30 prefixes that minimize address loss.

  There are alternative ways to configure routing over NBMA, using
  special mechanisms to exploit or simulate point-to-multipoint VCs.
  These often have a significant performance impact on the router, and
  may be less reliable because a single point of failure is created.
  Mechanics of these alternatives are discussed later in this section,
  but the motivations for such alternatives tend to include:

     1.  A desire not to use VLSM.  This is often founded in fear
         rather than technology.
     2.  Router implementation issues that limit the number of subnets
         or interfaces a given router can support.
     3.  An inherently point-to-multipoint application (e.g., remote
         hosts to a data center).  In such cases, some of the
         limitations are due to the dynamic routing protocol in use.
         In such "star" applications, static routing may actually be
         preferable from performance and flexibility standpoints,
         since it does not produce routing traffic and is unaffected
         by split horizon.

  To understand how use of NBMA services affects the addressing
  structure and routers, it is worth reviewing what would appear to be
  very basic concepts of IP subnets.  The traditional view is that a
  single subnet is associated with a single physical medium.  All hosts
  physically connected to this medium are assumed to be able to reach
  all other hosts on the same medium, using data link level services.
  These services are medium specific:  hosts connected to a LAN medium
  can broadcast to one another, while hosts connected to a point-to-
  point line simply need to transmit to the other end.






Berkowitz                    Informational                      [Page 6]

RFC 2072                Router Renumbering Guide            January 1997


  When one host desires to transmit to another, it first determines if
  the destination is local or remote.  A local destination is on the
  same subnet and assumed to be reachable through data link services.
  A remote destination is on a different subnet, and it is assumed that
  router intervention is needed to reach it.

  The first NBMA problem comes up when a single subnet is implemented
  over an NBMA service.  Frame Relay provides single virtual circuits
  between hosts that have connectivity.  It is quite common to design
  Frame Relay services as partial meshes, where not all hosts have VCs
  to all others.  When the set of hosts in a partial mesh is in a
  single IP subnet, partial mesh violates the local model of full
  connectivity.  Even when there is full meshing, a pessimistic but
  reasonable operational model must consider that individual VCs do
  fail, and full connectivity may be lost transiently.

  There are several ways to deal with this violation, each with their
  own limitations.  If a specific "central" host has connectivity to N
  all other hosts, that central host can replicate all frames it
  receives from one host onto outgoing VCs connecting it with the (N-1)
  other hosts in the subnet.  Such replication usually causes an
  appreciable CPU load in the replicating router.   The replicating
  router also is a single point of failure for the subnet.  This method
  does not scale well when extended to fuller meshes within the subnet.

  In a routing protocol, such as OSPF, that has a concept of designated
  routers, explicit configuration usually is needed.  Other problems in
  using a meshed subnet is that all VCs may not have the same
  performance, but the router cannot prefer individual paths within the
  subnet.

  One of the simplest methods is not to attempt to emulate a broadcast
  medium, but simply to treat each VC as a separate subnet.  This will
  cause a need for renumbering.  Efficient use of the address space
  dictates a /30 prefix be used for the per-VC subnets.  Such a prefix
  often needs VLSM support in the routers.

3.4  Expansion of Dialup Services

  Dialup services, especially public Internet access providers, are
  undergoing explosive growth.   This success represents a particular
  drain on the available address space, especially with a commonly used
  practice of assigning unique addresses to each customer.








Berkowitz                    Informational                      [Page 7]

RFC 2072                Router Renumbering Guide            January 1997


  In this practice, individual users announce their address to the
  access server using PPP's IP configuration option [RFC1332].  The
  server may validate the proposed address against some user
  identifier, or simply make the address active in a subnet to which
  the access server (or set of bridged access servers) belongs.

  These access server functions may be part of the software of a
  "router" and thus are within the scope of this Guide.

  The preferred technique [Hubbard] is to allocate dynamic addresses to
  the user from a pool of addresses available to the access server.
  Various mechanisms are used actually to do this assignment, and are
  discussed in Section 5.5.

3.5  Internal Use of Switched Virtual Circuit Services

  Services such as ATM virtual circuits, switched frame relay, etc.,
  present challenges not considered in the original IP design.  The
  basic IP decision in forwarding a packet is whether the destination
  is local or remote, in relation to the source host's subnet.  Address
  resolution mechanisms are used to find the medium address of the
  destination in the case of local destinations, or to find the medium
  address of the router in the case of remote routers.

  In these new services, there are cases where it is far more effective
  to "cut-through" a new virtual circuit to the destination.  If the
  destination is on a different subnet than the source, the cut-through
  typically is to the egress router that serves the destination subnet.

  The advantage of cut-through in such a case is that it avoids the
  latency of multiple router hops, and reduces load on "backbone"
  routers.  The cut-through decision is usually made by an entry router
  that is aware of both the routed and switched environments.

  This entry router communicates with a address resolution server using
  the Next Hop Resolution Protocol (NHRP) [Cansever] [Katz].  This
  server maps the destination network address to either a next-hop
  router (where cut-through is not appropriate) or to an egress router
  reached over the switched service.  Obviously, the data base in such
  a server may be affected by renumbering.  Clients may have a hard-
  coded address of the server, which again may need to change.

  While the NHRP work is in progress at the time of this writing,
  commercial implementations based on drafts of the protocol standard
  are in use.






Berkowitz                    Informational                      [Page 8]

RFC 2072                Router Renumbering Guide            January 1997


4.  Numbering and Renumbering

  What is the role of any numbering plan?  To understand the general
  problem, it can be worthwhile to review the basic principles of
  routers.  While most readers will have a good intuitive sense of
  this, the principles have refined in the current usage of IP.

  A router receives an inbound IP datagram on one of its interfaces,
  and examines some number of bits of the destination address.  The
  sequence of bits examined by the router always begin at the left of
  the address (i.e., the most significant bit).  We call this sequence
  a "prefix."

  Routing decisions are made on totalPrefix bits, which start at the
  leftmost (i.e., most significant) bit position of the IP address.
  Those totalPrefix bits may be completely under the control of the
  enterprise (e.g., if they are in the private address space), or the
  enterprise may control the lowOrderPrefix bits while the
  highOrderPrefix bits are assigned by an outside organization.

  The router looks up the prefix in its routing table (formally called
  a Forwarding Information Base).  If the prefix is in the routing
  table, the router then selects an outgoing interface that will take
  the routed packet to the next hop IP address in the end-to-end route.
  If the prefix cannot be found in the routing table, the router
  returns an ICMP Destination Unreachable message to the source address
  in the received datagram.

  Assuming the prefix is found in the routing table, the router then
  transmits the datagram through the indicated outgoing interface. If
  multicast routing is in effect, the datagram may be copied and sent
  out multiple outgoing interfaces.



















Berkowitz                    Informational                      [Page 9]

RFC 2072                Router Renumbering Guide            January 1997


4.1  Categorizing the topology

  From the router renumbering perspective, renumbering impact is apt to
  be greatest in highly connected parts of "backbones," and least in
  "stub" parts of the routing domain that have a single route to the
  backbone.

                        Global Internet
                           ^
                           |
                           |
                         Back1-------------------Back2
                           |                       |
                     +-----------+              +----------+
                     |           |              |          |
                   Reg1.1------Reg1.2          Reg2.1-----Reg2.2
                   |           |               |          |
                   |           |               |          |
                 Branch       Branch         Branch      Branch
                 1.1.1 to     1.2.1 to       2.1.1 to    2.2.1 to
                 1.1.N        1.2.N          2.1.N       2.2.N

  In this drawing, assume Back1 and Back2 exchange full routes; Back1
  is also the exterior router.  Regional routers (Reg) exchange full
  routes with one another and aggregate addresses to the backbone
  routers.  Branch routers default to regional routers.

  From a pure topological standpoint, the higher in the hierarchy, the
  greater are apt to be the effects of renumbering.  This is a first
  approximation to scoping the task, assuming addresses have been
  assigned systematically.  Systematic address space is rarely the case
  in legacy networks.



















Berkowitz                    Informational                     [Page 10]

RFC 2072                Router Renumbering Guide            January 1997


4.2  Categorizing the address space

  An inventory of present and planned address space is a prerequisite
  to successful renumbering.  Begin by identifying the prefixes in or
  planned into your network, and whether they have been assigned in a
  systematic and hierarchical manner.

      +--Unaffected by renumbering [A]
      |
      |
      +--Existing prefixes to be renumbered
      |  |
      |  |
      |  +----To be directly renumbered on "flag day"
      |  |
      |  |
      |  +----Initially to be renumbered to temporary address
      |
      |
      +--Existing prefixes to be retired
      |
      |
      +--Planned new prefixes
         |
         |
         +---totalPrefix change, no length change
         |
         |
         +---highOrderPart change only, no length change
         |
         |
         +---lowOrderPart change only, no length change
         |
         |
         +---highOrderPart change only, high length change
         |
         |
         +---lowOrderPart change only, low length change
         |
         |
         +---totalPrefix change only, changes in high and low
         |
         |
         +---highOrderPart change only, no length change

  Ideally, a given prefix should either be "unchanged," "old," or
  "new." Renumbering will be easiest when each "old" prefix can be
  mapped to a single "new" prefix.



Berkowitz                    Informational                     [Page 11]

RFC 2072                Router Renumbering Guide            January 1997


  Unfortunately, the ideal often will not be attainable.  It may be
  necessary to run parts of the new and old address spaces in parallel.

  Renumbering applies first to prefixes and then to host numbers to the
  right of the prefix.  To understand the scope of renumbering, it is
  essential to:

     1.  Identify the prefixes (and possibly host fields) potentially
         affected by the renumbering operation.

     2.  Identify the authority that controls the values of the prefix,
         or part of the prefix, affected by renumbering.

  In a given enterprise, prefixes may be present that will be under the
  complete or partial control of the enterprise, as well as totally
  outside the control of the enterprise.  Let us review the principles
  of control over address space.

  More commonly, the most significant bits of the prefix are assigned
  to the enterprise by an address registry (e.g., InterNIC, RIPE, or
  APNIC) or by an Internet Service Provider (ISP).  This assignment of
  a value in the most significant bit positions historically has been
  called a "network number," when the assigned high-order part is 8,
  16, or 24 bits long.  More recent usage does not limit the assigned
  part to a byte boundary.  The preferred term for the assigned part is
  a "CIDR block" of a certain number of bits [RFC1518].

  The enterprise then extends the prefix to the right, creating
  "subnets."  It is critical to realize that routers make routing
  decisions based on the total prefix of interest, regardless of who
  controls which bits.  In other words, the router really doesn't know
  or care about subnet boundaries.

  The way to think about subnetting is that it creates a longer prefix.
  Even before CIDR, we collapsed multiple subnets into a single network
  number advertisement sent to external routers.  In a more general
  way, we now think of extending the prefix to the right as subnetting
  and collapsing it to the left as supernetting, aggregating, or
  summarizing.  Depending on the usage of subnetting or aggregation,
  different prefix lengths are significant at different router
  interfaces.

4.3  Renumbering Scope

  Prefixes may be taken from the private address space [RFC1918] that
  is not routable on the global Internet.  Since these addresses are
  not routable on the global Internet, changing parts of private
  address space prefixes is an enterprise-local decision.



Berkowitz                    Informational                     [Page 12]

RFC 2072                Router Renumbering Guide            January 1997


  If a prefix is totally outside the control of the enterprise, it is
  external, and will be minimally affected by routing.  Potential
  interactions of external prefixes with enterprise renumbering
  include:

     1)  Inadvertent alteration or deletion  of external addresses
         as part of router reconfiguration.
     2)  Loss of connectivity to application servers inside the
         enterprise, because the external client no longer knows
         the internal address of the server.
     3)  DNS/BGP
     4)  Security

  Prefixes partially under the control of the enterprise may change.
  The scope of this will vary depending on whether only the externally
  controlled part of the prefix changes, or if part of the internally
  controlled part is to be renumbered.  If the length of either the
  high-order or low-order parts change, the process becomes more
  complex.

  High-order-part-only renumbering is most common when an organization
  changes ISPs, and needs to renumber into the new provider's space.
  The old prefix may have been assigned to the enterprise but will no
  longer be used for global routing, or the old prefix may have been
  assigned to the previous provider.  Note that administrative
  procedures may be necessary to return the previous prefix, although
  this usually will be done by the previous provider.  There often will
  need to be a period of coexistence between the old and new prefixes.

  Low-order-part-only renumbering can occur when an enterprise modifies
  its internal routing structure, and the changes only affect the
  internal subnet structure of the enterprise network. This is typical
  of efforts involved in increasing the number of available subnets
  (e.g., for more point-to-point media) or increasing the number of
  hosts on a medium (e.g., in greater use of workgroup switches).

  Both the high-order and low-order parts may change.  This might
  happen when the enterprise changes to a new ISP, who assigns address
  space from a CIDR block rather than a classful network previously
  used.  With a different high-order prefix length, the enterprise
  might be forced to change its subnet structure.

5. Moving toward a Renumbering-Friendly Enterprise

  Renumbering affects both the configuration of specific router
  "boxes," and the overall system of routers in a routing domain.  The
  emphasis of this section is on making the current enterprise more
  renumbering-friendly, before any prefixes are actually changed.



Berkowitz                    Informational                     [Page 13]

RFC 2072                Router Renumbering Guide            January 1997


  Renumbering will have the least impact when the minimum number of
  reconfiguration options are needed.  When planning renumbering on
  routers, consider that many existing configurations may contain
  hard-coded IP addresses that may not be necessary, even if
  renumbering were not to occur.  Part of a router renumbering effort
  should include, wherever possible, replacing router mechanisms based
  on hard-coded addresses with more flexible mechanisms.

  Renumbering will also generally be easier if the configuration
  changes can be made offline on appropriate servers, and then
  downloaded to the router if the router implementation permits.

5.1  Default Routes

  A well-known method for reducing the amount of reference by one
  router to other routers is to use a default route to a higher-level,
  better-connected router.  This assumes a hierarchical network design,
  which is generally desirable in the interest of scaling.

  Default routes are most appropriate for stub routers inside a routing
  domain, and for boundary routers that connect the domain to a single
  ISP.

5.2  Route Summarization and CIDR

  When routes need to be advertised, summarize as much as is practical.
  Summarization is most effective when address prefixes have been
  assigned in a consistent and contiguous manner, which is often not
  the case in legacy networks.  Nevertheless, there is less to change
  when we can refer to blocks of prefixes.

  Not all routing mechanisms support general summarization.  Interior
  routing mechanisms that do include RIPv2, OSPF, EIGRP, IS-IS, and
  systems of static routes.  RIPv1 and IGRP do support classful
  summarization (i.e., at Class A/B/C network boundaries only).

  If existing addresses have been assigned hierarchically, it may be
  possible to renumber below the level of summarization, while hiding
  the summarization to the rest of the network.  In other words, if all
  the address bits being renumbered are to the right of the summarized
  prefix length, the change can be transparent to the overall routing
  system.

  Even when effective summarization is possible to hide the details of
  routing, DNS, filters, and other services may be affected by any
  renumbering.





Berkowitz                    Informational                     [Page 14]

RFC 2072                Router Renumbering Guide            January 1997


5.3  Server References in Routers

  Routers commonly communicate with an assortment of network management
  and other infrastructural servers.  Examples of these servers are
  given in the "Network Management" section below.  DNS itself,
  however, may be an important exception.

  Wherever possible, servers should be referenced by DNS name rather
  than by IP address.  If a specific router implementation only
  supports explicit address  references, this should be documented as
  part of the renumbering  plan.

  Routers may also need to  forward end host broadcasts to other
  infrastructure services (e.g., DNS, DHCP/BOOTP).  Configurations that
  do this are likely to contain hard-coded IP addresses of the
  destination hosts or their subnets, which will need to be changed as
  part of renumbering.

5.4  DNS and Router Renumbering

  The Domain Name Service is a powerful tool in any renumbering effort,
  and can help routers as well as end hosts.  If traceroute displays
  DNS names rather than IP addresses, certain debugging options can be
  transparent through the address transition.

  Be aware that dynamically learned names and addresses may be cached
  in router tables.  For a router to learn changes in address to name
  correspondence, it may be necessary to restart the router or
  explicitly clear the cache.

  Alternatively, router configuration files may contain hard-coded
  address/name correspondences that will not be affected by a change in
  the DNS server.

  Different DNS databases are affected by renumbering.  For example,
  the enterprise usually controls its own "forward" data base, but the
  reverse mapping data base may be maintained by its ISP.  This can
  require coordination when changing providers.

  Commonly, router renumbering goes through a transition period.
  During this transition, old and new addresses may coexist in the
  routing system.  Coexistence over a significant period of time is
  especially likely for DNS references to addresses that are known in
  the global Internet [deGroot].  Various DNS servers throughout the
  world may cache addresses for periods of days.






Berkowitz                    Informational                     [Page 15]

RFC 2072                Router Renumbering Guide            January 1997


  If, for example, a given router interface may have a coexisting new
  and old address, it can be appropriate to introduce the new address
  as an additional A record for the new address.

  DNS RR statements can end with a semicolon, indicating the rest of
  the line is a comment.  This can be used as the basis of tools to
  renumber DNS names for router addresses, by putting a comment (e.g.,
  ";newaddr") at the end of the A statements for the new addresses.  At
  an appropriate time, a script could generate a new zone file in which
  the new addresses become the primary definitions on A records, and
  the old addresses could become appropriately commented A records.  At
  a later time, these commented entries could be removed.

  Care should be taken to assure that PTR reverse mapping entries are
  defined for new addresses, because some router vendor tools depend on
  reverse mapping.

5.5  Dynamic Addressing

  Renumbering is easiest when addresses need to be changed in the least
  possible number of places.  Dynamic address assignment is especially
  attractive for end hosts, and routers may play a key role in this
  process.  Routers may act as servers and actually assign addresses,
  or may be responsible for forwarding end host address assignment
  requests to address assignment servers.

  The most common use of dynamic address assignment is to provide IP
  addresses to end systems.  Dynamic address assignment, however, is
  also used to assign IP addresses to router interfaces.  An address
  assignment server may assign an IP address to a router either in the
  usual DHCP way, based on a MAC address in the router, or simply based
  on the physical connectivity of the new router.  In other words, any
  router connected on a specific interface of the configuring router
  would be assigned the same IP address.

5.5.1 Router Roles in LAN-based DHCP Address Assignment

  End hosts attached to LANs often obtain address assignments from
  BOOTP or DHCP servers.  If the server is not on the same medium as
  the end hosts, routers may need to play a role in establishing
  connectivity between the end host and the address server.

  If the client is not on the same medium as the address assignment
  server, routers either must act as address assignment services, or
  forward limited broadcasts to the location of appropriate servers.






Berkowitz                    Informational                     [Page 16]

RFC 2072                Router Renumbering Guide            January 1997


  If the router acts as an address assignment server, its database of
  addresses that it can assign may change during renumbering.  If the
  router forwards to a DHCP or BOOTP server, it must know the address
  of that server.  That server address can itself change as a result of
  renumbering.

  While the usual perception of DHCP is that it assigns addresses from
  a pool, such that assignments to a given host at a given time is
  random within the pool, DHCP can also return a constant IP address
  for a specific MAC address.  This may be much easier to manage and
  troubleshoot, especially during renumbering.

  Clearly, if the DHCP server identifies end hosts based on their MAC
  address, consideration must be given to making that address unique,
  and changing the DHCP database if either the MAC address or the IP
  address changes.  One way to reduce such reconfiguration is to use
  Locally-Administered Addresses (LAA) on end hosts, rather than
  globally unique addresses stored in read-only memory (ROM).  Using
  LAAs solves the problem of MAC addresses changing when a network
  interface card changes, but LAAs have their own management problems
  of configuration into end systems and maintaining uniqueness within
  the enterprise.

5.5.2 Router Roles in Dialup Address Assignment

  There are several possible ways in which an dialup end host interacts
  with address assignment.  Routers/access servers can play critical
  roles in this process, either to provide connectivity between client
  and server, or directly to assign addresses.

  Different vendors handle address assignment in different ways.
  Methods include:

     1.  The access server forwards the request to a DHCP server, using
         a unique 48-bit identifier associated with the client.  Note
         that this usually should not be the MAC address of the access
         server, since the same MAC address would then be associated
         with different hosts.

     2.  The server forwards the request to an authentication server,
         which in turn gets a dynamic address either from:

        a.  internal pools
        b.  a DHCP server to which it forwards

     3.  The server selects an address from locally configured pools
         and provides it to the dialing host without the intervention
         of other services.



Berkowitz                    Informational                     [Page 17]

RFC 2072                Router Renumbering Guide            January 1997


  When the router contains assignable addresses, these may need to
  change as part of renumbering.  Alternatively, hard-coded references
  to address assignment or authentication servers may need to change.

5.5.3 Router Autoonfiguration

  This initial address assignment may provide an address only for a
  single connection (i.e., between the new and configuring routers).
  The newly assigned address may then be used to "bootstrap" a full
  configuration into the new router.

  Dynamic address assignment to routers is probably most common at
  outlying "stub" or "edge" routers that connect via WAN links to a
  central location with a configuration server.  Such edge devices may
  be shipped to a remote site, plugged in to a WAN line, and use
  proprietary methods to acquire part or all of their address
  configuration.

  When such autoconfiguration is used on edge routers, it may be
  necessary to force a restart of the edge router after renumbering.
  Restarting may be the only way to force the autoconfigured router to
  learn its new address.  Other out-of-band methods may be available to
  change the edge router addresses.

5.6  Network Address Translation

  Network address translation (NAT) is a valuable technique for
  renumbering, or even for avoiding the need to renumber significant
  parts of an enterprise [RFC1631].  It is not always transparent to
  network layer protocols, upper layer protocols, and network
  management tools, and must not be regarded as a panacea.

  In the classic definition of NAT, certain parts of the routing system
  are designated as stub domains, and connect to the global domain only
  through NAT functions.  The NAT contains a translation mechanism that
  maps a stub address to a global address.  This mechanism may map
  statically or dynamically.

  A more general NAT mechanism often is implemented in firewall bastion
  hosts, which isolate "inside" and "outside" addresses through
  transport- or application-level authenticated gateways.  Mappings
  from a "local" or "inside" address to a global address often is not
  one-to-one, because an inside address is dynamically mapped to a TCP
  or UDP port on an outside interface address.

  In general, if there are multiple NATs, their translation mechanisms
  should be synchronized.  There are specialized cases when a given
  stub address appears in more than one stub domain, and ambiguity



Berkowitz                    Informational                     [Page 18]

RFC 2072                Router Renumbering Guide            January 1997


  develops if one wishes to map, say, from 10.1.0.1/16 in stub domain A
  to 10.1.0.1/16 in stub domain B.  In this case, both 10.1.0.1
  addresses identify different hosts.   Special mechanisms would have
  to exist to map the domain A local address into one global address,
  and to map the domain B local address into a different global
  address.

  NAT can have a valuable role in renumbering.  Its intelligent use can
  greatly minimize the amount of renumbering that needs to be done.
  NAT, however, is not completely transparent.

  Specifically, it can interfere with the proper operation of any
  protocol that carries an IP address as data, since NAT does not
  understand passenger fields and is unaware numbers need to change.

  Examples of protocols affected are:

     --TCP and UDP checksums that are in part based on the
       IP header.   This includes end-to-end encryption schemes
       that include the TCP/UDP checksum
     --ICMP messages containing IP addresses
     --DNS queries that return addresses or send addresses
     --FTP interactions that use an ASCII-encoded IP address
       as part of the PORT command

  It may be possible to avoid conflict if only certain hosts use
  affected protocols.  Such hosts could be assigned only global
  addresses, if the network topology and routing plan permit.

  Early NAT experiments suggested that it needs a sparse end-to-end
  traffic mapping database for reasonable performance.  This may or may
  not be an issue in more hardware-based NAT implementations.

  Another concern with NAT is that unique host addresses are hidden
  outside the local stub domains.  This may in fact be desirable for
  security, but may present network management problems.  One
  possibility would be to develop a NAT MIB that could be queried by
  SNMP to find the specific local-to-global mappings in effect.

  There are also issues for DNS, DHCP, and other address management
  services.  There presumably would need to be local servers within
  stub domains, so address requests would be resolved uniquely in each
  stub (or would return appropriate global addresses).








Berkowitz                    Informational                     [Page 19]

RFC 2072                Router Renumbering Guide            January 1997


6.  Potential Pitfalls in Router Renumbering

  One way to categorize potential pitfalls is to look at those
  associated with the overall numbering plan itself and routing
  advertisement, and those associated with protocol behavior.  In
  general, the former case is static and the latter is dynamic.

6.1  Static

  Problems can be implicit to the address/routing structure itself.
  These can include failures of components to understand arbitrary
  prefix addressing (i.e., classless routing), reachability due to
  inappropriate default or aggregated routes, etc.

6.1.1  Classless Routing Considerations

  Among the major reasons to renumber is to gain globally routable
  address  space.  In the global Internet, routable address space is
  based on arbitrary-length prefixes rather than traditional address
  classes.  Classless Inter-Domain Routing (CIDR) is the administrative
  realization of prefix addressing in the global Internet.  Inside
  enterprises, arbitrary prefix length addressing often is called
  Variable Length Subnet Masking (VLSM) or "subnetting a subnet."

  The general rules of prefix addressing must be followed in CIDR.
  Among these are permitting use of the all-zeroes and all-one subnets
  [RFC1812], and not assuming that a route to a "Class A/B/C network
  number" implies routes to all subnets of that network.  Assumptions
  also should not be made that  a prefix length is implied by the
  structure of the high-order bits of  the IP address (i.e., the "First
  Octet Rule").

  This ideal, unfortunately, is not understood by a significant number
  of routers (and terminal access servers that participate in routing),
  and an even more significant number of host IP implementations.

  When planning renumbering, network designers must know if the new
  address has been allocated using CIDR rules rather than traditional
  classful addressing. If CIDR rules have been followed in address
  assignment, then steps need to be taken to assure the router
  understands them, or appropriate steps need to be taken to interface
  the existing environment to the CIDR environment.

  Current experience suggests that it is best, when renumbering, to
  maintain future compatibility by moving to a CIDR-supportive routing
  environment.  While this is usually thought to mean introducing a
  classless dynamic routing protocol, this need not mean that routing
  become much more complex.  In a RIPv1 environment, moving to RIPv2



Berkowitz                    Informational                     [Page 20]

RFC 2072                Router Renumbering Guide            January 1997


  may be a relatively simple change.  Alternative simple methods
  include establishing a default route from a non-CIDR-compliant
  routing domain to a CIDR-compliant service provider, or making use of
  static routes that are CIDR-compliant.

  Some routers support classless routing  without further
  configuration, other routers support classless routing but require
  specific configuration steps to enable it, while other routers only
  understand classful routing.  In general, most renumbering will
  eventually require classless routing support.  It is essential to
  know if a given router can support classless routing.  If it does
  not, workarounds may be possible.  Workarounds are likely to be
  necessary.

6.1.1.1  Aggregation Problems

  In experimenting with the CIDR use of a former Class A network
  number, it was shown in RFC1879 that CIDR compliance rules must be
  enabled explicitly in some routers, while other routers do not
  understand CIDR rules.

  RFC 1897 demonstrated problems with some existing equipment,
  especially "equipment that depends on use of a classful routing
  protocol, such as RIPv1 are prone to misconfiguration.  Tested
  examples are current   Ascend and Livingston gear, which continue to
  use RIPv1 as the default/only routing protocol.  RIPv1 use will
  create an aggregate announcement.... The Ascend was told to announce
  39.1.28/24, but since RIPv1 can't do this, the Ascend instead sent
  39/8."  RIPv1, like all classful interior protocols, is obsolescent.

6.1.1.2  Discontiguous Networks

  Another problem that can occur with routers or routing mechanisms
  that do not understand arbitrary length prefix addressing is that of
  discontiguous networks.   This problem is easy to create
  inadvertently when renumbering.  In the example below, assume the
  enterprise has been using 10.0.0.0/8 as its primary prefix, but has
  introduced an ISP whose registered addresses were in 172.31.0.0/16.













Berkowitz                    Informational                     [Page 21]

RFC 2072                Router Renumbering Guide            January 1997


  Assume a RIPv1 system of three routers:

                    10.1.0.1/16        10.2.0.1/16
                         |                  |
                         |                  |
               +-------------------------------------+
               |               Router 1              |
               +-------------------------------------+
                                   | 172.31.1.1/24
                                   |
                                   |
                                   | 172.31.1.2/24
               +-------------------------------------+
               |               Router 2              |<------OUTSIDE
               +-------------------------------------+
                                   | 172.31.2.1/24
                                   |
                                   |
                                   | 172.31.2.2/24
               +-------------------------------------+
               |               Router 3              |
               +-------------------------------------+
                         |                  |
                         |                  |
                    10.3.0.1/16        10.4.0.1/16

  Router 1 can reach its two locally connected subnets, 10.1.0.0/16 and
  10.2.0.0/16.  It will aggregate them into a single announcement of
  10.0.0.0/8 when it advertises out the 172.31.1.1 interface.

  In like manner, Router 3 can reach its two locally connected subnets,
  0.3.0.0/16 and 10.4.0.0/16.  It will aggregate them into a single
  announcement of 10.0.0.0/8 when it advertises out the 172.31.2.2
  interface.

  When Router 2 receives a packet from its "outside" interface
  destined, say, to 10.1.1.56/16, where does it send it?  Router 2 has
  received two advertisements of 10.0.0.0 on different interfaces,
  without any detail of subnets inside 10.0.0.0.  Router 2 has an
  ambiguous routing table in terms of the next hop to a subnet of
  10.0.0.0.  We call this problem, when parts of the same classful
  network are separated by different networks, discontigous subnets.

  Two problems occur in this configuration.  Router 2 does not know
  where to send outside packets destined for a subnet of 10.0.0.0.
  Connectivity, however, also will break between Routers 1 and 3,
  because Router 2 does not know the next hop for any subnet of
  10.0.0.0.



Berkowitz                    Informational                     [Page 22]

RFC 2072                Router Renumbering Guide            January 1997


  There are several workarounds to this problem.  Obviously, one would
  be to change to a routing mechanism that does advertise subnets.  An
  alternative would be to establish an IP-over-IP tunnel through Router
  2, and give this a subnet in 10.0.0.0.  This additional subnet would
  be visible only in Routers 1 and 3.  It would solve the connectivity
  problem between Routers 1 and 3, but Router 2 would still not be able
  to forward outside packets.  This might be a perfectly acceptable
  solution if Router 2 is simply being used to connect two parts of
  10.0.0.0.

  Another way to deal with the discontiguous network problem is to
  assign secondary addresses in 10.0.0.0 to the R1-R2 and R2-R3
  interfaces, which would allow the 10.0.0.0 subnets to be advertised
  to R2.  This would work as long as there is no problem in advertising
  the 10.0.0.0 subnets into the R2 routing system.  There would be a
  problem, for example, if the 10.0.0.0 address were in the private
  address space but the R2 primary addresses were registered, and R2
  advertised the 10.0.0.0 addresses to the outside.

  This problem can be handled if R2 has filtering mechanisms that can
  selectively block 10.0.0.0 advertisements to the outside world.  The
  configuration, however, will become more and more complicated.

6.1.1.3  Router-Host Interactions

  The situation may not be as bleak if hosts do not understand prefix
  addressing but routers do.  Methods exist for hiding a VLSM structure
  from end hosts that do not understand it.  These do involve protocol
  mechanisms as workarounds, but the fundamental problem is hosts'
  understanding of arbitrary prefix lengths.

  A key mechanism is proxy ARP [Carpenter].  The basic mechanism of
  using proxy ARP in prefix-based renumbering is to have the hosts
  issue an ARP whenever they want to communicate with a destination.
  If the destination is actually on the same subnet, it will respond
  directly to the ARP.  If the destination is not, the router will
  respond as if it were the destination, and the originating host will
  send the datagram to the router.  Once the datagram is in the router,
  the VLSM-aware router can forward it.

  Many end hosts, however, will only issue an ARP if they conclude the
  destination is on their own subnet.  All other traffic is sent to a
  hard-coded default router address.  In such cases, workarounds may be
  needed to force the host to ARP for all destinations.

  One workaround involves a deliberate misconfiguration of hosts.
  Hosts that only understand default routers also are apt only to
  understand classful addressing.  If the host is told its major (i.e.,



Berkowitz                    Informational                     [Page 23]

RFC 2072                Router Renumbering Guide            January 1997


  classful) network is not subnetted, even though the address plan
  actually is subnetted, this will often persuade it to ARP to all
  destinations.

  This also works for hosts that do not understand subnetting at all.
  An example will serve for both levels of host understanding.  Assume
  the enterprise uses 172.31.0.0/16 as its major address, which is in
  the Class B format.  This is actually subnetted with eight bits of
  subnetting -- 172.31.0.0/24.  Individual hosts unaware of VLSM,
  however, either infer Class B from the address value, or are told
  that the subnet mask in effect is 255.255.0.0.

  Yet another approach that helps hosts find routers is to run passive
  RIP on the hosts, so that they hear routing updates.  They assume any
  host that issues routing updates must be a router, so traffic for
  non- local destinations can be forwarded there.  While RIPv1 does not
  support arbitrary prefixes, the router(s) issuing the routing updates
  may have additional capabilities that let them correctly forward such
  traffic.  The priority, therefore, is to get the non-local routers to
  a router that understands the overall routing structure, and passive
  RIP may be a viable way to do this.

  It may be appropriate to cut over on a site-by-site basis [Lear].  In
  such an approach, some sites have VLSM-aware hosts but others do not.
  As long as the routing structure supports VLSM, workarounds can be
  applied where needed.

6.1.2  MAC Address Interactions

  While it is uncommon now for a router to acquire any of its interface
  addresses as a DHCP client, this may become more common. When a
  router so acquires addresses, care must be taken that the MAC address
  presented to the DHCP server is in fact unique.

  Modern routers usually support protocol architectures besides IP.
  Some of these architectures, notably DECnet, Banyan VINES, Xerox
  Network Services, and IPX, may modify MAC addresses of routers such
  that a given MAC address appears on more than one interface.  While
  this is normally not a problem, it could cause difficulties when the
  MAC address is assumed to be unique.

  Other situations occur when the same MAC address can appear on more
  than one interface.  There are high-availability IBM options which
  establish primary and backup instances of the same MAC address on
  different physical interfaces of 37x5 communications controllers.






Berkowitz                    Informational                     [Page 24]

RFC 2072                Router Renumbering Guide            January 1997


  Some end hosts running protocol stacks other than IP, notably DECnet,
  may change their MAC address from the globally assigned built-in
  address.

6.2  Dynamic

  Dynamic protocol mechanisms that to some extent depend on IP
  addresses may be affected by router renumbering.  These include
  mechanisms that assign or resolve addresses (e.g., DHCP, DNS),
  mechanisms that use IP addresses for identification (e.g., SNMP),
  security and authentication mechanisms, etc.  The listed mechanisms
  are apt to have configuration files that will be affected by
  renumbering.

  Another area of dynamic behavior that can be affected is caching.
  Application servers, directory functions such as DNS, etc., may cache
  IP addresses.  When the router is renumbered, these servers may point
  to old addresses.  Certain proxy server functions may reside on
  routers, and the router may need to be restarted to reset the cache.

  The endpoints of TCP tunnels terminating on routers may be internally
  identified by address/port pairs at each end.  If the address
  changes, even if the port remains the same, the tunnel is likely to
  need to be reestablished.

7.  Tools and Methods for Renumbering

  The function of a renumbering tool can be realized either as manual
  procedures as well as software. This section deals with functionality
  of hypothetical yet general renumbering tools rather than their
  implementation.

  General caveat:  tools should know whether the environment supports
  classless addressing.  If it does not, newly generated addresses
  should be checked to see they do not fall into the all-zeroes or
  all-ones subnet values.

7.1  Search Mechanisms

  Tools will be needed to search configuration files and other
  databases to identify addresses and names that will be affected by
  reorganization.  This search should be based on the address inventory
  described above.

  Especially when searching for names, common search tools using
  regular expressions (e.g., grep) may be very useful.  Some additional
  search tools may be needed. One would convert dotted decimal search
  arguments to binary and only then makes the comparison.



Berkowitz                    Informational                     [Page 25]

RFC 2072                Router Renumbering Guide            January 1997


  The comparison may need to be done under the constraint of a mask.
  Such a comparator would also be relevant as the second phase that
  looks for ipAddress and other relevant strings in MIBs.

7.2  Address Modification

  The general mechanism for address modification is substitution of an
  arbitrary number of bits in an address.  In the simplest cases, there
  is a one-to-one correspondence between old and new bit positions.

  Especially when address modification is manual, it should be
  remembered that the affected bits can be obscured by dotted decimal
  notation.  Work in, or at least consider, binary notation to assure
  accuracy.

  Several basic functions can be defined:

  zerobits(position,length):
     clear <length> bits starting at <position>
  orbits(position,length,newbits)
     OR the bit string <newbits> of <length> starting at <position>

  In these examples, the index [j] is used to identify entries in the
  address inventory database for existing addresses, while [k]
  identifies new addresses.

  Remember that these tools operate at a bit level, so the new address
  will have to be converted back into dotted decimal, MIB ASN.1, or
  other notation before it can be replaced into configuration files.

7.2.1  Prefix Change, No Change in Length

  If the entire new prefix has the same number of bits as the old
  external part, requiring no change to subnetting, the router part of
  renumbering may be fairly simple.  If the router configurations are
  available in machine-readable form, as text files or parsable SNMP
  data, it is a relatively simple task to define a tool to examine IP
  addresses in the configuration, identify those beginning with the old
  prefix, and substitute the new prefix bit-by-bit.

  for each address[j],
     zerobits(0,PrefixLength[j])
     orbits(0,PrefixLength[j],NewPrefix[j])

  Note that the host part is unaffected.  Both subnet specifications
  (e.g., for route advertisements) and specific host references will be
  changed correctly in this simple case.




Berkowitz                    Informational                     [Page 26]

RFC 2072                Router Renumbering Guide            January 1997


7.2.2  highOrderPart change

  Matters are slightly more complex when the change applies only to the
  externally-controlled part of the prefix, as might be the case when
  an organization changes ISPs and renumbers into the ISP's address
  space, without changing the internal subnet structure.

  The substitution process is much as the previous case, except only
  the high-order bits change:

  for each address,
     zerobits(0,highOrderPartLength[j])
     orbits(0,highOrderPartLength,newHighOrderPart[k])

7.2.3  lowOrderPart change

  Organizations might renumber only the lowOrderPart (i.e., the subnet
  field) of their address space.  This might be done to clean up an
  address space into contiguous blocks prior to introducing a routing
  system that aggregates addresses, such as OSPF.

  for each address[j],
     zerobits(highOrderPartLength[j],lowOrderPartLength[j])
     orbits(highOrderPartLength[j],
           lowOrderPartLength[j],newLowOrderPart[k])

7.2.4  lowOrderPart change, Change in lowOrderPart length

  When the length of the subnet field changes in all or part of the
  address space, things become significantly more complex. A fairly
  simple case arises when the host field is consistently too long, at
  least in the affected subnets.  This is common, for example, when
  address space is being recovered in an existing Class B network with
  8 bits of subnetting.  Certain /24 bit prefixes are being extended to
  /30 and reallocated to point-to-point real or virtual (e.g., DLCI)
  media.

  for each address [j]
   if address is affected by renumbering
    if newLowOrderPartLength[k] > oldLowOrderPartLength[j]
     then
      zerobits(highOrderPartLength[k],newLowOrderPartLength[k])
      orbits(highOrderPartLength[k],newLowOrderPart[k])
     end







Berkowitz                    Informational                     [Page 27]

RFC 2072                Router Renumbering Guide            January 1997


7.2.5  highOrderPart change, Change in highOrderPart length

  When the length of the high-order part changes, but it is desired to
  keep the existing subnet structure, constraints apply. The situation
  is fairly simple if the new high-order part is shorter than the
  existing high order part.

  If the new high-order part is longer than the old high order part,
  constraints are more complex.  The key is to see if any of the <k>
  most significant bits of the oldHighOrderPart, which overlap the <k>
  least significant bits of the newHighOrderPart, are nonzero.  If no
  bits are nonzero, it may be simply to overlay the new prefix bits.

7.3  Naming

  It is worthwhile to distinguish that a router's use of a DNS name
  does not necessarily mean that name is defined in a name server.
  Routers often contain static address to name mappings local to the
  router, so both the DNS zone files and the router configurations will
  need to be checked.

  What we first want to do is generate a list of name/address mappings,
  the mapping mechanism for each instance (e.g., static entry in
  configuration file, RR in our zone's DNS, RR in a zone file outside
  ours), the definition statement (or equivalent if the routers are
  configured with SNMP), and current IP address.  We then want to
  compare the addresses in this list to the list defined earlier of
  prefixes affected by renumbering.   The intersection of these lists
  define where we need to make changes.

  Note that the explicit definition statement, or at leasts its
  variables, should be kept.  In the real world, static IP address
  mappings in hosts may not have been maintained as systematically as
  are RR records in a DNS server.   It is entirely possible that
  different host mapping entries for the same name point to different
  addresses.

7.3.1  DNS Tools

  The DNS itself can both delay and and speed router renumbering.
  Caches in DNS servers both inside and outside the organization may
  have sufficient persistence that a "flag day" cutover is not
  practical if worldwide connectivity is to be kept.  DNS can help,
  however, make a period of old and new address coexistence work.

  If, for example, a given router interface may have a coexisting new
  and old address, it can be appropriate to introduce the new address
  as a CNAME alias for the new address.



Berkowitz                    Informational                     [Page 28]

RFC 2072                Router Renumbering Guide            January 1997


  DNS RR statements can end with a semicolon, indicating the rest of
  the line is a comment.  This can be used as the basis of tools to
  renumber DNS names for router addresses, by putting a comment (e.g.,
  ";newaddr") at the end of the CNAME statements for the new addresses.
  At an appropriate time, a script could generate a new zone file in
  which the new addresses become the primary definitions on A records,
  and the old addresses could become appropriately commented CNAME
  records.  At a later time, these commented CNAME entries could be
  removed.

  Care should be taken to assure that PTR reverse mapping entries are
  defined for new addresses, because some router vendor tools depend on
  reverse mapping.

7.3.2   Related name tools

  Especially on UNIX and othe that do routing, there may be static name
  definitions.  Such definitions are probably harder to keep maintained
  than entries in the DNS, simply because they are more widely
  distributed.

  Several tools are available to generate more maintainable entries.  A
  perl script called h2n converts host tables into zone data files that
  can be added to the DNS server.  It is available as
  ftp://ftp.uu.net/published/oreilly/nutshell/dnsbind/dns.tar.Z.
  Another tool, makezones, is part of the current BIND distribution,
  and can also be obtained from
  ftp://ftp.cus.cam.ac.uk/pub/software/programs/DNS/makezones

  See the DNS Resources Directory at http://www.dns.net/dnsrd.

8.  Router Identifiers

  Configuration commands in this category assign IP addresses to
  physical or virtual interfaces on a single router. They also include
  commands that assign IP-address-related information to the router
  "box" itself, and commands which involve the router's interaction
  with neighbors below the full routing level (e.g., default gateways,
  ARP).

  Routers may have other unique identifiers, such as DNS names used for
  the set of addresses on the "box," or SNMP systemID strings.

8.1. Global Router Identification

  Traditional IP routers do not have unique identifiers, but rather are
  treated as collections of IP addresses associated with their
  interfaces.  Some protocol mechanisms, notably OSPF and BGP, need an



Berkowitz                    Informational                     [Page 29]

RFC 2072                Router Renumbering Guide            January 1997


  address for the router itself, typically to establish tunnel
  endpoints between peer routers.  Other applications include
  "unnumbered interfaces" used to conserve address space for serial
  media, a practice discussed further below.

  In the illustration below, the 10.1.0.0/16 address space is used for
  global identifiers.  A TCP tunnel runs from 10.1.0.1 to 10.1.0.2, but
  its traffic is load-shared among the two real links, 172.31.1.0 and
  172.31.2.0.

                172.31.4.1/24      172.31.5.1/24
                      |                  |
                      |                  |
            +-------------------------------------+
            |               Router 1              |
            |                                     |
            |              10.1.0.1/16            |
            |                   #                 |
            +-------------------#-----------------+
               | 172.31.1.1/24  #          | 172.31.2.1/24
               |                #          |
               |                #          |
               |                #          |
               |                #          |
               |                #          |
               |                #          |
               | 172.31.1.2/24  #          | 172.31.2.2/24
            +-------------------#-----------------+
            |               Router 2              |
            |                                     |
            |              10.1.0.2/16            |
            |                                     |
            +-------------------------------------+
                      |                  |
                      |                  |
                172.31.5.1/24       172.31.6.1/24


  A common practice to provide router identifiers is using the "highest
  IP address" on the router as an identifier for the "box."  Many
  implementations have a default mechanism to establish the router ID,
  which may be the highest configured address, or the highest active
  address.








Berkowitz                    Informational                     [Page 30]

RFC 2072                Router Renumbering Guide            January 1997


  Typical applications of a global router ID may not require it be a
  "real" IP address that is advertised through the routing domain, but
  is simply a 32-bit identifier local to each router.  When this is the
  case, this identifier can come from the RFC 1918 private address
  space rather than the enterprise's registered address space.

  Allowing default selection  of the router ID can be unstable and is
  not recommended.  Most implementations have a means of declaring a
  pseudo-IP address for the router itself as opposed to any of its
  ports.

  Changes to this pseudo-address may have implications for DNS.  Even
  if this is not a real address, A and PTR resource records may have
  been set up for it, so diagnostics can display names rather than
  addresses.

  Another potential DNS implication is that a CNAME may have been
  established for the entire set of interface addresses on a router.
  This allows testing, telnet, etc., to the router via any reachable
  path.

8.2  Interface Address

  Interface addresses are perhaps the most basic place to begin router
  renumbering.  Interface configuration will require an IP address, and
  usually a subnet mask or prefix length.  Some implementations may not
  have a subnet mask in the existing configuration, because they use a
  "default mask" based on a classful assumption about the address.  Be
  aware of possible needs for explicit specification of a subnet mask
  or other prefix length specification when none previously was
  specified.  This will be especially common on older host-based
  routers.

  Multiple IP addresses, in different subnets, can be assigned to the
  same interface.  This is often a valuable technique in renumbering,
  because the router interface can be configured to respond to both the
  new and old addresses.

  Caution is necessary, however, in using multiple subnet addresses on
  the same interface.  OSPF and IS-IS implementations may not advertise
  the additional addresses, or may constrain their advertisement so all
  must be in the same area.









Berkowitz                    Informational                     [Page 31]

RFC 2072                Router Renumbering Guide            January 1997


  When this method is used to make the interface respond to new and old
  addresses, and the renumbering process is complete, care must be
  taken in removing the old addresses.  Some router implementations
  have special meaning to the order of address declarations on an
  interface.  It is highly likely that routers, or at least the
  interface, must be restarted after an address is removed.

8.3  Unnumbered Interfaces

  As mentioned previously, several conventions have been used to avoid
  wasting subnet space on serial links.  One mechanism is to implement
  proprietary "half-router" schemes, in which the unnumbered link
  between router pairs is treated as an "internal bus" creating a
  "virtual router," such that the scope of the unnumbered interface is
  limited to the pair of routers.

  |             +------------+                +------------+       |
  |             |            |                |            |       |
  |          e0 |            |s0           s0 |            |       |
  |-------------|     R1     |................|     R2     |-------|
  | 192.168.1.1 | 10.1.0.1/16|                | 10.1.0.2/16|       |
  |      /24    |            |                |            |       |
  |             +------------+                +------------+

  In the above example, software in routers R1 and R2 automatically
  forward every packet received on serial interface S0 to Ethernet
  interface E0.  They forward every packet on e0 to their local S0.
  Neither S0 has an IP address.  R1 has the router ID 10.1.0.1/16 and
  R2 has 10.1.0.2/16.

  It is thus impossible to send a specific ping to the S0 interfaces,
  making it difficult to test whether a connectivity problem is due to
  S0 or E0.  Some management is possible as long as at least one IP
  address on the router (e.g., E0) is reachable, since this will permit
  SNMP connectivity to the router.  Once the router is reachable with
  SNMP, the unnumbered interface can be queried through the MIB
  ifTable.

  Another approach is to use the global router identifier as a pseudo-
  address for every unnumbered interface on a router.  In the above
  example, R1 would use 10.1.0.1 as its identifier.  This provides an
  address to be used for such functions as the IP Route Recording
  option, and for providing a next-hop-address for routes.








Berkowitz                    Informational                     [Page 32]

RFC 2072                Router Renumbering Guide            January 1997


  The second approach is cleaner, but still can create operational
  difficulties.  If there are multiple unnumbered interfaces on a
  router, which one (if any) should/will respond to a ping?  Other
  network management mechanisms do not work cleanly with unnumbered
  interface.

  As part of a renumbering effort, the need for unnumbered interfaces
  should be examined.  If the renumbering process moves the domain to
  classless addressing, then serial links can be given addresses with a
  /30 prefix, which will waste a minimum of address space.

  For dedicated or virtual dedicated point-to-point links within an
  organization, another alternative to unnumbered operation is using
  RFC1918 private address space.  Inter-router links rarely need to be
  accessed from the Internet unless explicitly used for exterior
  routing.  External traceroutes will also fail reverse DNS lookup.

  If unnumbered interfaces are kept, and the router-ID convention is
  used, it will probably be more stable to rely on an explicitly
  configured router ID rather than a default from a numbered interface
  address.

  The situation becomes even more awkward if it is desired to use
  unnumbered interfaces over NBMA services such as Frame Relay.  OSPF,
  for example, uses the IP address of numbered interfaces as a unique
  identifier for that interface.  Since unnumbered interfaces do not
  have their own unique address, OSPF has not obvious way to identify
  these interfaces.  A physical index (e.g., ifTable) could be used,
  but would have to be extended to have an entry for each logical entry
  (i.e., VC) multiplexed onto the physical interface.

8.4  Address Resolution

  While mapping of IP addresses to LAN MAC addresses is usually done
  automatically by the router software, there will be cases where
  special mappings may be needed.  For example, the MAC address used by
  router interfaces may be locally administered (i.e., set manually),
  rather than relying on the burnt-in hardware address.  It may be part
  of a proprietary  method that dynamically assigns MAC addresses to
  interfaces.  In such cases, an IP address may be part of the MAC
  address configuration statements and will need to be changed.










Berkowitz                    Informational                     [Page 33]

RFC 2072                Router Renumbering Guide            January 1997


  Manual mapping to medium addresses will usually be needed for NBMA
  and switched media.  When renumbering IP addresses, statements that
  map the IP address to frame relay DLCIs, X.121 addresses, SMDS and
  ATM addresses, telephone numbers, etc., will need to be changed to
  the new address.  Local requirements may require a period of parallel
  operation, where the old and new IP addresses map to the same medium
  address.

8.5  Broadcast Handling

  RFC1812 specifies that router interfaces MUST NOT forward limited
  broadcasts (i.e., to the all-ones destination address,
  255.255.255.255).  It is common, however, to have circumstances where
  a LAN segment is populated only by clients that communicate with key
  servers (e.g., DNS or DHCP) by sending limited broadcasts.  Router
  interfaces can cope with this situation by translating the limited
  broadcast address to a directed broadcast address or a specific host
  address, which is legitimate to forward.

  When limited address translation is done for serverless segments, and
  the new target address is renumbered, the translation rule must be
  reconfigured on every interface to a serverless segment.  Be sure to
  recognize that a given segment might have a server from the
  perspective of one service (e.g., DHCP), but could be serverless for
  other services (e.g., NFS or DNS).

8.6  Dynamic Addressing Support

  Routers can participate in dynamic addressing with RARP, DHCP, BOOTP,
  or PPP.   In a renumbering effort, several kinds of changes may made
  to be made on routers participating in dynamic addressing.

  If the router acts as a server for dynamic address assignment, the
  addresses it assigns will need to be renumbered.   These might be
  specific addresses associated with MAC addresses or dialup ports, or
  could be a pool of addresses.  Pools of addresses may be seen in pure
  IP environments, or in multiprotocol situations such as Apple MacIP.

  If the router does not assign addresses, it may be responsible for
  forwarding address assignment requests to the appropriate server(s).
  If this is the case, there may be hard-coded references to the IP
  addresses of these servers, which may need to be changed as part of
  renumbering.








Berkowitz                    Informational                     [Page 34]

RFC 2072                Router Renumbering Guide            January 1997


9. Filtering and Access Control

  Routers may implement mechanisms to filter packets based on criteria
  other than next hop destination.  Such mechanisms often are
  implemented differently for unicast packets (the most common case) or
  for multicast packets (including routing updates).  Filtering rules
  may contain source and/or destination IP addresses that will need to
  change as part of a renumbering effort.

  Filtering can be done to implement security policies or to control
  traffic.  In either case, extreme care must be taken in changing the
  rules, to avoid leakage of sensitive information.  denial of access
  to legitimate users, or network congestion.

  Routers may implement logging of filtering events, typically denial
  of access.  If logging is implemented, logging servers to which log
  events are sent preferably should be identified by DNS name.  If the
  logging server is referenced by IP address, its address may need to
  change during renumbering.   Care should be taken that critical
  auditing data is not lost during the address change.

9.1  Static Access Control Mechanisms

  Router filters typically contain some number of include/exclude rules
  that define which packets to include in forwarding and which to
  exclude.  These rules typically contain an address argument and some
  indication of the prefix length.  This length indication could be a
  count, a subnet mask, or some other mask.

  When renumbering, the address argument clearly has to change.  It can
  be more subtle if the prefix length changes, because the length
  specification in the rule must change as well. Needs for such changes
  may be hard to recognize, because they apply to ranges of addresses
  that might be at a level of aggregation above the explicit
  renumbering operation.

  RFC 1812 requires that address-based filtering allow arbitrary prefix
  lengths, but some hosts and routers might only allow classful
  prefixes.












Berkowitz                    Informational                     [Page 35]

RFC 2072                Router Renumbering Guide            January 1997


9.2  Special Firewall Considerations

  Routers are critical components of firewall systems.
  Architecturally, two router functions are described in firewall
  models, the external screening router between the outside and the
  "demilitarized zone (DMZ)," and the internal screening router between
  the inside and the "perimeter network."  Between these two networks
  is the bastion host, in which reside various non-routing isolation
  and authentication functions, beyond the scope of this document.

  One relevant aspect of the bastion host, however, is that it may do
  address translation or higher-layer mappings between differnt address
  spaces.  If the "outside" address space (i.e., visible to the
  Internet) changes, this will mean that the outside screening router
  will need configuration changes.  Since the outside screening router
  may be under the control of the ISP rather than the entrerprise,
  administrative coordination will be needed.

                         DMZ  +--------+    Peri-
                          |---| Public |    meter
          +-----------+   |   |  Hosts |      |   +-----------+
From       | External  |   |   +--------+      |---| Internal  |
Internet...| Screening |---|   +--------+      |   | Screening |
          | Router    |   |---| Bastion|------|   | Router    |....To
          +-----------+   |   |  Host  |      |   +-----------+ Internal
                          |   +--------+      |   +-----------+  Network
                          |   +--------+      |---| Dialup    |
                          |---|  Split |      |   | Access    |
                          |   |  DNS   |      |   | Server    |
                          |   +--------+      |   +-----------+

  External screening routers typically have inbound access lists that
  block unauthorized traffic from the Internet, and outbound access
  lists that permit access only to DMZ servers and the bastion host.
  The inbound filters commonly block the Private Address Space, as well
  as address space from the enterprise's internal network.  If the
  internal network address changes, the inbound filters clearly will
  need to change.

  If DMZ host addresses change, the corresponding outbound filters from
  the external screening host also will need to change.  Internal
  screening routers permit access from the internal network to selected
  servers on the perimeter network, as well as to the bastion host
  itself.  If the enterprise uses private address space internally,
  renumbering may not affect this router.






Berkowitz                    Informational                     [Page 36]

RFC 2072                Router Renumbering Guide            January 1997


  Another component of a firewall system is the "split DNS" server,
  which provides address mapping in relation to the globally visible
  parts of the

9.3  Dynamic Access Control Mechanisms

  Certain access control services, such as RADIUS and TACACS+, may
  insert dynamically assigned access rules into router configurations.
  For example, a RADIUS database "contains a list of requirements which
  must be met to allow access for the user.  This always includes
  verification of the password, but can also specify the client(s) or
  port(s) to which the user is allowed access. [Rigney]."

  Configuration information dynamically communicated to the router may
  be in the form of filtering rules.  Effectively, this authentication
  database becomes an extension of the router configuration database.
  Both these databases may need to change as part of a renumbering
  effort.

  Another dynamic configuration issue arises when "stateful packet
  screening" on bastion hosts or routers is used to provide security
  for UDP-based services, or simply for IP.  In such services, when an
  authorized packet leaves the local environment to go into an
  untrusted address space, a temporary filtering rule is established on
  the interface on which the response to this packet is expected.  The
  rule typically has a lifetime of a single packet response.  If these
  rules are defined in a database outside of the router, the rule
  database again is an extension of router configuration that must be
  part of the renumbering effort.

10.  Interior Routing

  This section deals with routing inside an enterprise, which generally
  follows, ignoring default routes, the rules:

     1.  Does a single potential route exist to a destination?
         If so, use it.
     2.  Is there more than one potential path to a destination?
         If so, use the path with the lowest end-to-end metric.
     3.  Are there multiple paths with equal lowest cost to the
         destination?  If so, consider load balancing.

  Most enterprises do not directly participate in global Internet
  routing mechanisms, the details of which are of concern to their
  service providers.  The next section deals with those more complex
  exterior mechanisms.





Berkowitz                    Informational                     [Page 37]

RFC 2072                Router Renumbering Guide            January 1997


10.1  Static Routes

  During renumbering, the destination and/or next hop address of static
  routes may need to change.  It may be necessary to restart routers or
  explicitly clear a routing table entry to force the changed static
  route to take effect.

10.2  RIP (Version 1 unless otherwise specified)

  The Routing Information Protocol (RIP) has long been with us, as one
  of the first interior routing protocols.  It still does that job in
  small networks, and also has been used for assorted functions that
  are not strictly part of interior routing.  In this discussion, we
  will first deal with pure interior routing applications.

  In a renumbering effort that involves classless addressing, RIPv1 may
  not be able to cope with the new addressing scheme.  Officially, this
  protocol is Historic and should be avoided in new routing plans.
  Where legacy support requirements dictate it be retained, it is
  worthwhile to try to limit RIPv1 in "stub" parts of the network.
  Vendor-specific mechanisms may be available to interface RIPv1 to a
  classless environment.

  As part of planning renumbering, strong consideration should be given
  to moving to RIPv2, OSPF, or other classless routing protocols as the
  primary means of interior routing.  Doing so, however, may not remove
  the need to run RIP in certain parts of the enterprise.

  RIP is widely implemented on hosts, where it may be used as a method
  of router discovery, or for load-balancing and fault tolerance when
  multiple routers are on a subnet.  In these applications, RIP need
  not be the only routing protocol in the domain; RIP may be present
  only on stub subnets.  Destination information from more capable
  routing protocols may be translated into RIP updates.  While it is
  generally reasonable to minimize or remove RIP as part of a
  renumbering effort, be careful not to disable the ability of hosts to
  locate routers.

  RIP is also used as a quasi-exterior routing mechanism between some
  customers and their ISPs, as a means simpler than BGP for the
  customer to announce routes to the provider.

10.3  OSPF

  OSPF has several sensitivities to renumbering beyond those of simpler
  routing protocols.  If router IDs are assigned to be part of the
  registered address space, they may need to be changed as part of the
  renumbering effort.  It may be appropriate to use RFC 1918 private



Berkowitz                    Informational                     [Page 38]

RFC 2072                Router Renumbering Guide            January 1997


  address space for router IDs, as long as these can be looked up in a
  DNS server within the domain.

  Summarization rules are likely to be affected by renumbering,
  especially if area boundaries change.

  Special addressing techniques, such as unnumbered interfaces and
  physical interfaces with IP addresses in multiple subnets, may not be
  transparent to OSPF.  Care should be exercised in their use, and
  their use definitely should be limited to intra-area scope.

  If part of the renumbering motivation is the introduction of NBMA
  services, there can be numerous impacts on OSPF.  Generally, the best
  way to minimize impact is to use separate subnets for each VC.  By
  doing so, different OSPF costs can be assigned to different VCs,
  designated router configuration is not needed, etc.

10.4  IS-IS

  IP prefixes are usually associated with IS-IS area definitions.  If
  IP prefixes change, there may be a corresponding change in area
  definitions.

10.5  IGRP and Enhanced IGRP

  When a change from IGRP to enhanced IGRP is part of a renumbering
  effort, the need to disable IGRP automatic route summarization needs
  to be considered.  This is likely if classless addressing is being
  implemented.

  Also be aware of the nuances of automatic redistribution between IGRP
  and EIGRP.  The "autonomous system number," which need not be a true
  AS number but simply identifies a set of cooperating routers, must be
  the same on the IGRP and EIGRP processes for automatic redistribution
  to occur.

11.  Exterior Routing

  Exterior routes may be defined statically.  If dynamic routing is
  involved, such routes are learned primarily from BGP.  RIP is not
  infrequently used to allow ISPs to learn dynamically of new customer
  routes, although there are security concerns in such an approach.
  IGRP and EIGRP can be used to advertise external routes.








Berkowitz                    Informational                     [Page 39]

RFC 2072                Router Renumbering Guide            January 1997


  Renumbering that affects BGP-speaking routers can be complex, because
  it can require changes not only in the BGP routers of the local
  Autonomous System, but also require changes in routers of other AS
  and in routing registries.  This will require careful administrative
  coordination.

  If for no other reason than documentation, consider use of a routing
  policy notation [RIPE-181++] [RPSL] to describe exterior routing
  policies

11.1  Routing Registries/Routing Databases

  Organizations who participate in exterior routing usually will have
  routing information not only in their routers, but in databases
  operated by registries or higher-level service providers (e.g., the
  Routing Arbiter).

  If an ISP whose previous address space came from a different provider
  either renumbers into a different provider's address space, or gains
  a recognized block of its own, there may be administrative
  requirements to return the previously allocated addresses.  These
  include changes in IN-ADDR.ARPA delegation, SWIP databases, etc., and
  need to be coordinated with the specific registries and providers
  involved.   Not all registries and providers have the same policies.

  If the enterprise is a registered Autonomous System and renumbers
  into a different address space, route objects with old prefixes in
  routing registries need to be deleted and route objects with new
  prefixes need to be added.

11.2  BGP--Own Organization

  IP addressing information can be hard-coded in several aspects of a
  BGP speaker.  These include:

     1.  Router ID
     2.  Peer router IP addresses
     3.  Advertised prefix lists
     4.  Route filtering rules

  Some tools exist [RtConfig] for generating policy configuration part
  of BGP router configuration statements from the policies specified in
  RIPE-181 or RPSL.








Berkowitz                    Informational                     [Page 40]

RFC 2072                Router Renumbering Guide            January 1997


11.3  BGP--Other AS

  Other autonomous systems, including nonadjacent ones, can contain
  direct or indirect (e.g., aggregated) references to the above routing
  information.  Tools exist that can do preliminary checking of
  connectivity to given external destinations [RADB].

12.  Network Management

  This section is intended to deal with those parts of network
  management that are intimately associated with routers, rather than a
  general discussion of renumbering and network management.

  Methods used for managing routers include telnets to virtual console
  ports, SNMP, and TFTP.  Network management scripts may contain hard-
  coded references to IP addresses supporting these services.  In
  general, try to convert script references to IP addresses to DNS
  names.

  A critical and complex problem will be converting SNMP databases,
  which are usually organized by IP address.

12.1  Configuration Management

  Names and addresses of servers that participate in configuration
  management may need to change, as well as the contents of the
  configurations they provide. TFTP servers are commonly used here, as
  may be SNMP managers.

12.2  Name Resolution/Directory Services

  During renumbering, it will probably be useful to assign DNS names to
  interfaces, virtual interfaces, and router IDs of routers.  Remember
  that it is perfectly acceptable to identify internal interfaces with
  RFC1597/RFC1918 private addresses, as long as firewalling or other
  filtering prevent these addresses to be propagated outside the
  enterprise.

  If dynamic addressing is used, dynamic DNS should be considered.
  Since this is under development, it may  be appropriate to consider
  proprietary means to learn what addresses have been assigned
  dynamically, so they can be pinged or otherwise managed.

  Also remember that some name resolution may be done by static tables
  that are part of router configurations.  Changing the DNS entries,
  and even restarting the routers, will not change these.





Berkowitz                    Informational                     [Page 41]

RFC 2072                Router Renumbering Guide            January 1997


12.3  Fault Management

  Abnormal condition indications can be sent to several places that may
  have hard-coded IP addresses, such as SNMP trap servers, syslogd
  servers, etc.

  It should be remembered that large bursts of transient errors may be
  caused as part of address cutover in renumbering.  Be aware that
  these bursts might overrun the capacity of logging files, and
  conceivably cause loss of auditing information.  Consider enlarging
  files or otherwise protecting them during cutover.

12.4  Performance Management

  Performance information can be recorded in routers themselves, and
  retrieved by network management scripts.  Other performance
  information may be sent to syslogd, or be kept in SNMP data bases.

  Load-generating scripts used for performance testing may contain
  hard-coded IP addresses.  Look carefully for scripts that contain
  executable code for generating ranges of test addresses.  Such
  scripts may, at first examination, not appear to contain explicit IP
  addresses.  They may, for example, contain a "seed" address used with
  an incrementing loop.

12.5  Accounting Management

  Accounting records may be sent periodically to syslogd or as SNMP
  traps.  Alternatively, the SNMP manager or other management
  applications may periodically poll accounting information in routers,
  and thus contain hard-coded IP addresses.

12.6  Security Management

  Security management includes logging, authentication, filtering, and
  access control.  Routers can have hard-coded references to servers
  for any of these functions.

  In addition, routers commonly will contain filters containing
  security-related rules.  These rules are apt to need explicit
  recoding, since they tend to operate on a bit level.

  Some authentication servers and filtering mechanisms may dynamically
  update router filters.







Berkowitz                    Informational                     [Page 42]

RFC 2072                Router Renumbering Guide            January 1997


12.7  Time Service

  Hard-coded references to NTP servers should be changed to DNS when
  possible, and renumbered otherwise.

13.  IP and Protocol Encapsulation

  IP packets can be routed to provide connectivity for non-IP
  protocols, or for IP traffic with addresses not consistent with the
  active routing environment.  Such encapsulating functions usually
  have a tunneling model, where an end-to-end connection between two
  "passenger" protocol addresses is mapped to a pair of endpoint IP
  addresses.   Generic Route Encapsulation is a representative means of
  such tunneling [RFC1701, RFC1702].

13.1  Present

  Renumbering of the primary IP environment often does not mean that
  passenger protocol addresses need to change.  In fact, such protocol
  encapsulation for IP traffic may be a very viable method for handling
  legacy systems that cannot easily be renumbered.  For this legacy
  case, the legacy IP addresses can be tunneled over the renumbered
  routing environment.

  Also note that IP may be a passenger protocol over non-IP systems
  using IPX, AppleTalk, etc.

13.2  Future

  Tunneling mechanisms are fundamental for the planned transition of
  IPv4 to IPv6.  As part of an IPv4 renumbering effort, it may be
  worthwhile to reserve some address space for future IPv6 tunnels.

  While there are clear and immediate needs for IPv4 renumbering, there
  may be cases where IPv4 renumbering can be deferred for some months
  or years.  If the effort is deferred, it may be prudent at that time
  to consider if available IPv6 implementations or tunneling mechanisms
  form viable alternatives to IPv4 renumbering.  It might be
  appropriate to renumber certain parts of the existing IPv4 space
  directly into the IPv6 space.  Tools for this purpose are
  experimental at the time this document was written.










Berkowitz                    Informational                     [Page 43]

RFC 2072                Router Renumbering Guide            January 1997


14.  Security Considerations

  Routers are critical parts of firewalls, and are otherwise used for
  security enforcement.  Configuration errors made during renumbering
  can expose systems to malicious intruders, or deny service to
  authorized users.  The most critical area of concern is that filters
  are configured properly for old and new address, but other numbers
  also can impact security, such as pointers to authentication,
  logging, and DNS servers.

  During a renumbering operation, it may be appropriate to introduce
  authentication mechanisms for routing updates.

15.  Planning and Implementing the Renumbering

  Much of the effort in renumbering will be on platforms other than
  routers.  Nevertheless, routers are a key part of any renumbering
  effort.

  Step 1--Inventory of affected addresses and names.

  Step 2--Design any needed topological changes.  If temporary address
       space, network address translators, etc., are needed, obtain
       them.

  Step 3--Install and test changes to make the network more
       renumbering-friendly.  These include making maximum use of
       default routes  and summarization, while minimizing address-
       based references to servers.

  Step 4--Plan the actual renumbering.  Should it be phased or total?
       Can it be done in a series of stub network renumberings,
       possibly with secondary addresses on core routers?  Is NAT
       appropriate?  If so, how is it to be used?

       What is your plan of retreat if major problems develop?
       Make a distinction between problems in the routing system
       and unforeseen problems in hosts affected by renumbering.

  Step 5--Take final backups.











Berkowitz                    Informational                     [Page 44]

RFC 2072                Router Renumbering Guide            January 1997


  Step 6--Cut over addresses and names, or begin coexistence.

       Make needed DNS and firewall changes.
       Restart routers and servers as appropriate.
       Clear caches as appropriate.
       Remember static name definitions in routers may not be affected
         by DNS changes.
       Coordinate changes with affected external organizations (e.g.,
         ISPs, business partners, routing registries)

  Step 6--Document what isn't already documented.  Make notes to help
       the person who next needs to renumber.  Share experience with
       the PIER working group or other appropriate organizations.

15.1  Applying Changes

  Renumbering changes should be introduced with care into operational
  networks.   For changes to take effect, it is likely that at least
  interfaces and probably routers will have to be restarted.  The
  sequence in which changes are applied must be carefully thought out,
  to avoid loss of connectivity, routing loops, etc., while the
  renumbering is in process.

  See case studies presented to the PIER Working Group for examples of
  operational renumbering experience.  Organizations that have
  undergone renumbering have had to pay careful attention to informing
  users of possible outages, coordinating changes among multiple sites,
  etc.  It will be an  organization-specific decision whether router
  renumbering can be implemented incrementally or must be done in a
  major "flag day" conversion.

  Before making significant changes, TAKE BACKUPS FIRST of all router
  configuration files, DNS zone files, and other information that
  documents your present environment.

15.2  Configuration Control

  Operationally, an important part of renumbering and continued
  numbering maintenance is not to rely on local router interfaces,
  either command language interpreter, menu-based, or graphic, for the
  more sophisticated aspects of configuration, but to do primary
  configuration (and changes) on an appropriate workstation.  On a
  workstation or other general-purpose computer, configuration files
  can be edited, listed, processed with macro processors and other
  tools, etc.   Source code control tools can be used on the router
  configuration files.





Berkowitz                    Informational                     [Page 45]

RFC 2072                Router Renumbering Guide            January 1997


  Once the configuration file is defined for a router, mechanisms for
  loading it vary with the specific router implementation.  In general,
  these will include a file transfer using FTP or TFTP into a
  configuration file on the router, SNMP SET commands, or logging in to
  the  router as a remote console and using a terminal emulator to
  upload the new configuration under the router's interactive
  configuration mode.  Original acquisition of legacy configuration
  files is the inverse of this process.

15.3  Avoiding Instability

  Routing processes tend towards instability when they suddenly need to
  handle very large numbers of updates, as might occur if a "flag day"
  cutover is not carefully planned.  A general guideline is to make
  changes in only one part of a routing hierarchy at a time.

  Routing system design should be hierarchical in all but the smallest
  domains.  While OSPF and IS-IS have explicit area-based hierarchical
  models, hierarchical principles can be used with most implementations
  of modern routing protocols.  Hierarchy can be imposed on a protocol
  such as RIPv2 or EIGRP by judicious use of route aggregation, routing
  advertisement filtering, etc.

  Respecting a hierarchical model during renumbering means such things
  as renumbering a "stub" part of the routing domain and letting that
  part stabilize before changing other parts.  Alternatively, it may be
  reasonable to add new numbers to the backbone, allowing it to
  converge, renumbering stubs, and then removing old numbers from the
  backbone.  Obviously, these guidelines are most practical when there
  is a distinct old and new address space without overlaps.  If a block
  of addresses must simply be reassigned, some loss of service must be
  expected.

16.  Acknowledgments

  Thanks to Jim Bound, Paul Ferguson, Geert Jan de Groot, Roger Fajman,
  Matt Holdrege, Dorian Kim,  Walt Lazear, Eliot Lear, Will Leland, and
  Bill Manning for advice and comments.













Berkowitz                    Informational                     [Page 46]

RFC 2072                Router Renumbering Guide            January 1997


17.  References

 [RFC2071] Ferguson, P., and H. Berkowitz, "Network Renumbering
 Overview: Why would I want it and what is it anyway?", RFC 2071,
 January 1997.

 [Cansever] Cansever, D., "NHRP Protocol Applicability Statement",
 Work in Progress.

 [Katz] Luciani, J., Katz, D., Piscitello, D., and Cole, B., "NBMA Next
 Hop Resolution Protocol (NHRP)", Work in Progress.

 [Hubbard] Hubbard, K., Kosters, M., Conrad, D., Karrenberg, D., and J.
 Postel, "INTERNET REGISTRY IP ALLOCATION GUIDELINES", BCP 12, RFC
 2050, November 1996.

 [RFC1631] Egevang,, K., and P. Francis, "The IP Network Address
 Translator (NAT)", RFC 1631, May 1994.

 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., de Groot, G-J.,
 and E. Lear, "Address Allocation for Private Internets", RFC 1918,
 February 1996.

 [RFC1900] Carpenter, B., and Y. Rekhter, "Renumbering Needs Work", RFC
 1900, February 1996.

 [RPS] Alaettinoglu, C., Bates, T., Gerich, E., Terpstra, M., and C.
 Villamizer, "Routing Policy Specification Language", Work in Progress.

 [RFC1812] Baker, F., "Requirements for IP Version 4 Routers", RFC
 1812, June 1995.

 [Rigney] Rigney, C., Rubens, A., Simpson, W., and S. Willens, "Remote
 Authentication Dial In User Service (RADIUS)", RFC 2058, January 1997.

 [Carpenter]  Message to PIER Mailing List, see PIER Archives

 [Lear]  Message to PIER Mailing List, see PIER Archives

 [deGroot]   Message to PIER Mailing List, see PIER Archives

 [Wobus] "DHCP FAQ Memo",
 http://web.syr.edu/~jmwobus/comfaqs/dhcp.faq.html








Berkowitz                    Informational                     [Page 47]

RFC 2072                Router Renumbering Guide            January 1997


18.  Author's Address

  Howard C. Berkowitz
  PSC International
  1600 Spring Hill Road, Suite 310
  Vienna VA 22182

  Phone: +1 703 998 5819
  EMail: [email protected]










































Berkowitz                    Informational                     [Page 48]