Network Working Group                                          C. Rigney
Request for Comments: 2058                                    Livingston
Category: Standards Track                                      A. Rubens
                                                                  Merit
                                                             W. Simpson
                                                             Daydreamer
                                                             S. Willens
                                                             Livingston
                                                           January 1997


         Remote Authentication Dial In User Service (RADIUS)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  This document describes a protocol for carrying authentication,
  authorization, and configuration information between a Network Access
  Server which desires to authenticate its links and a shared
  Authentication Server.

Table of Contents

  1.     Introduction ..........................................    3
     1.1       Specification of Requirements ...................    4
     1.2       Terminology .....................................    4
  2.     Operation .............................................    5
     2.1       Challenge/Response ..............................    6
     2.2       Interoperation with PAP and CHAP ................    7
     2.3       Why UDP? ........................................    8
  3.     Packet Format .........................................    9
  4.     Packet Types ..........................................   12
     4.1       Access-Request ..................................   12
     4.2       Access-Accept ...................................   14
     4.3       Access-Reject ...................................   15
     4.4       Access-Challenge ................................   16
  5.     Attributes ............................................   17
     5.1       User-Name .......................................   20
     5.2       User-Password ...................................   21
     5.3       CHAP-Password ...................................   22
     5.4       NAS-IP-Address ..................................   23



Rigney, et. al.              Informational                      [Page 1]

RFC 2058                         RADIUS                     January 1997


     5.5       NAS-Port ........................................   24
     5.6       Service-Type ....................................   25
     5.7       Framed-Protocol .................................   27
     5.8       Framed-IP-Address ...............................   28
     5.9       Framed-IP-Netmask ...............................   29
     5.10      Framed-Routing ..................................   29
     5.11      Filter-Id .......................................   30
     5.12      Framed-MTU ......................................   31
     5.13      Framed-Compression ..............................   32
     5.14      Login-IP-Host ...................................   33
     5.15      Login-Service ...................................   33
     5.16      Login-TCP-Port ..................................   34
     5.17      (unassigned) ....................................   35
     5.18      Reply-Message ...................................   35
     5.19      Callback-Number .................................   36
     5.20      Callback-Id .....................................   37
     5.21      (unassigned) ....................................   37
     5.22      Framed-Route ....................................   38
     5.23      Framed-IPX-Network ..............................   39
     5.24      State ...........................................   39
     5.25      Class ...........................................   40
     5.26      Vendor-Specific .................................   41
     5.27      Session-Timeout .................................   43
     5.28      Idle-Timeout ....................................   44
     5.29      Termination-Action ..............................   44
     5.30      Called-Station-Id ...............................   45
     5.31      Calling-Station-Id ..............................   46
     5.32      NAS-Identifier ..................................   47
     5.33      Proxy-State .....................................   48
     5.34      Login-LAT-Service ...............................   49
     5.35      Login-LAT-Node ..................................   50
     5.36      Login-LAT-Group .................................   51
     5.37      Framed-AppleTalk-Link ...........................   52
     5.38      Framed-AppleTalk-Network ........................   53
     5.39      Framed-AppleTalk-Zone ...........................   53
     5.40      CHAP-Challenge ..................................   54
     5.41      NAS-Port-Type ...................................   55
     5.42      Port-Limit ......................................   56
     5.43      Login-LAT-Port ..................................   57
     5.44      Table of Attributes .............................   58
  6.     Examples ..............................................   59
     6.1       User Telnet to Specified Host ...................   59
     6.2       Framed User Authenticating with CHAP ............   60
     6.3       User with Challenge-Response card ...............   61
  SECURITY CONSIDERATIONS ......................................   62
  REFERENCES ...................................................   63
  ACKNOWLEDGEMENTS .............................................   63
  CHAIR'S ADDRESS ..............................................   64



Rigney, et. al.              Informational                      [Page 2]

RFC 2058                         RADIUS                     January 1997


  AUTHORS' ADDRESSES ...........................................   64

1.  Introduction

  Managing dispersed serial line and modem pools for large numbers of
  users can create the need for significant administrative support.
  Since modem pools are by definition a link to the outside world, they
  require careful attention to security, authorization and accounting.
  This can be best achieved by managing a single "database" of users,
  which allows for authentication (verifying user name and password) as
  well as configuration information detailing the type of service to
  deliver to the user (for example, SLIP, PPP, telnet, rlogin).

  Key features of RADIUS are:

  Client/Server Model

     A Network Access Server (NAS) operates as a client of RADIUS.  The
     client is responsible for passing user information to designated
     RADIUS servers, and then acting on the response which is returned.

     RADIUS servers are responsible for receiving user connection
     requests, authenticating the user, and then returning all
     configuration information necessary for the client to deliver
     service to the user.

     A RADIUS server can act as a proxy client to other RADIUS servers
     or other kinds of authentication servers.

  Network Security

     Transactions between the client and RADIUS server are
     authenticated through the use of a shared secret, which is never
     sent over the network.  In addition, any user passwords are sent
     encrypted between the client and RADIUS server, to eliminate the
     possibility that someone snooping on an unsecure network could
     determine a user's password.

  Flexible Authentication Mechanisms

     The RADIUS server can support a variety of methods to authenticate
     a user.  When it is provided with the user name and original
     password given by the user, it can support PPP PAP or CHAP, UNIX
     login, and other authentication mechanisms.







Rigney, et. al.              Informational                      [Page 3]

RFC 2058                         RADIUS                     January 1997


  Extensible Protocol

     All transactions are comprised of variable length Attribute-
     Length-Value 3-tuples.  New attribute values can be added without
     disturbing existing implementations of the protocol.

1.1.  Specification of Requirements

  In this document, several words are used to signify the requirements
  of the specification.  These words are often capitalized.

  MUST      This word, or the adjective "required", means that the
            definition is an absolute requirement of the specification.

  MUST NOT  This phrase means that the definition is an absolute
            prohibition of the specification.

  SHOULD    This word, or the adjective "recommended", means that there
            may exist valid reasons in particular circumstances to
            ignore this item, but the full implications must be
            understood and carefully weighed before choosing a
            different course.

  MAY       This word, or the adjective "optional", means that this
            item is one of an allowed set of alternatives.  An
            implementation which does not include this option MUST be
            prepared to interoperate with another implementation which
            does include the option.

1.2.  Terminology

  This document frequently uses the following terms:

  service   The NAS provides a service to the dial-in user, such as PPP
            or Telnet.

  session   Each service provided by the NAS to a dial-in user
            constitutes a session, with the beginning of the session
            defined as the point where service is first provided and
            the end of the session defined as the point where service
            is ended.  A user may have multiple sessions in parallel or
            series if the NAS supports that.

  silently discard
            This means the implementation discards the packet without
            further processing.  The implementation SHOULD provide the
            capability of logging the error, including the contents of
            the silently discarded packet, and SHOULD record the event



Rigney, et. al.              Informational                      [Page 4]

RFC 2058                         RADIUS                     January 1997


            in a statistics counter.

2.  Operation

  When a client is configured to use RADIUS, any user of the client
  presents authentication information to the client.  This might be
  with a customizable login prompt, where the user is expected to enter
  their username and password.  Alternatively, the user might use a
  link framing protocol such as the Point-to-Point Protocol (PPP),
  which has authentication packets which carry this information.

  Once the client has obtained such information, it may choose to
  authenticate using RADIUS.  To do so, the client creates an "Access-
  Request" containing such Attributes as the user's name, the user's
  password, the ID of the client and the Port ID which the user is
  accessing.  When a password is present, it is hidden using a method
  based on the RSA Message Digest Algorithm MD5 [1].

  The Access-Request is submitted to the RADIUS server via the network.
  If no response is returned within a length of time, the request is
  re-sent a number of times.  The client can also forward requests to
  an alternate server or servers in the event that the primary server
  is down or unreachable.  An alternate server can be used either after
  a number of tries to the primary server fail, or in a round-robin
  fashion.  Retry and fallback algorithms are the topic of current
  research and are not specified in detail in this document.

  Once the RADIUS server receives the request, it validates the sending
  client.  A request from a client for which the RADIUS server does not
  have a shared secret should be silently discarded.  If the client is
  valid, the RADIUS server consults a database of users to find the
  user whose name matches the request.  The user entry in the database
  contains a list of requirements which must be met to allow access for
  the user.  This always includes verification of the password, but can
  also specify the client(s) or port(s) to which the user is allowed
  access.

  The RADIUS server MAY make requests of other servers in order to
  satisfy the request, in which case it acts as a client.

  If any condition is not met, the RADIUS server sends an "Access-
  Reject" response indicating that this user request is invalid.  If
  desired, the server MAY include a text message in the Access-Reject
  which MAY be displayed by the client to the user.  No other
  Attributes are permitted in an Access-Reject.

  If all conditions are met and the RADIUS server wishes to issue a
  challenge to which the user must respond, the RADIUS server sends an



Rigney, et. al.              Informational                      [Page 5]

RFC 2058                         RADIUS                     January 1997


  "Access-Challenge" response.  It MAY include a text message to be
  displayed by the client to the user prompting for a response to the
  challenge, and MAY include a State attribute.  If the client receives
  an Access-Challenge and supports challenge/response it MAY display
  the text message, if any, to the user, and then prompt the user for a
  response.  The client then re-submits its original Access-Request
  with a new request ID, with the User-Password Attribute replaced by
  the response (encrypted), and including the State Attribute from the
  Access-Challenge, if any.  Only 0 or 1 instances of the State
  Attributes should be present in a request.  The server can respond to
  this new Access-Request with either an Access-Accept, an Access-
  Reject, or another Access-Challenge.

  If all conditions are met, the list of configuration values for the
  user are placed into an "Access-Accept" response.  These values
  include the type of service (for example: SLIP, PPP, Login User) and
  all necessary values to deliver the desired service.  For SLIP and
  PPP, this may include values such as IP address, subnet mask, MTU,
  desired compression, and desired packet filter identifiers.  For
  character mode users, this may include values such as desired
  protocol and host.

2.1.  Challenge/Response

  In challenge/response authentication, the user is given an
  unpredictable number and challenged to encrypt it and give back the
  result. Authorized users are equipped with special devices such as
  smart cards or software that facilitate calculation of the correct
  response with ease. Unauthorized users, lacking the appropriate
  device or software and lacking knowledge of the secret key necessary
  to emulate such a device or software, can only guess at the response.

  The Access-Challenge packet typically contains a Reply-Message
  including a challenge to be displayed to the user, such as a numeric
  value unlikely ever to be repeated. Typically this is obtained from
  an external server that knows what type of authenticator should be in
  the possession of the authorized user and can therefore choose a
  random or non-repeating pseudorandom number of an appropriate radix
  and length.

  The user then enters the challenge into his device (or software) and
  it calculates a response, which the user enters into the client which
  forwards it to the RADIUS server via a second Access-Request.  If the
  response matches the expected response the RADIUS server replies with
  an Access-Accept, otherwise an Access-Reject.

  Example: The NAS sends an Access-Request packet to the RADIUS Server
  with NAS-Identifier, NAS-Port, User-Name, User-Password (which may



Rigney, et. al.              Informational                      [Page 6]

RFC 2058                         RADIUS                     January 1997


  just be a fixed string like "challenge" or ignored).  The server
  sends back an Access-Challenge packet with State and a Reply-Message
  along the lines of "Challenge 12345678, enter your response at the
  prompt" which the NAS displays.  The NAS prompts for the response and
  sends a NEW Access-Request to the server (with a new ID) with NAS-
  Identifier, NAS-Port, User-Name, User-Password (the response just
  entered by the user, encrypted), and the same State Attribute that
  came with the Access-Challenge.  The server then sends back either an
  Access-Accept or Access-Reject based on whether the response matches
  what it should be, or it can even send another Access-Challenge.

2.2.  Interoperation with PAP and CHAP

  For PAP, the NAS takes the PAP ID and password and sends them in an
  Access-Request packet as the User-Name and User-Password. The NAS MAY
  include the Attributes Service-Type = Framed-User and Framed-Protocol
  = PPP as a hint to the RADIUS server that PPP service is expected.

  For CHAP, the NAS generates a random challenge (preferably 16 octets)
  and sends it to the user, who returns a CHAP response along with a
  CHAP ID and CHAP username.  The NAS then sends an Access-Request
  packet to the RADIUS server with the CHAP username as the User-Name
  and with the CHAP ID and CHAP response as the CHAP-Password
  (Attribute 3).  The random challenge can either be included in the
  CHAP-Challenge attribute or, if it is 16 octets long, it can be
  placed in the Request Authenticator field of the Access-Request
  packet.  The NAS MAY include the Attributes Service-Type = Framed-
  User and Framed-Protocol = PPP as a hint to the RADIUS server that
  PPP service is expected.

  The RADIUS server looks up a password based on the User-Name,
  encrypts the challenge using MD5 on the CHAP ID octet, that password,
  and the CHAP challenge (from the CHAP-Challenge attribute if present,
  otherwise from the Request Authenticator), and compares that result
  to the CHAP-Password.  If they match, the server sends back an
  Access-Accept, otherwise it sends back an Access-Reject.

  If the RADIUS server is unable to perform the requested
  authentication it should return an Access-Reject.  For example, CHAP
  requires that the user's password be available in cleartext to the
  server so that it can encrypt the CHAP challenge and compare that to
  the CHAP response.  If the password is not available in cleartext to
  the RADIUS server then the server MUST send an Access-Reject to the
  client.







Rigney, et. al.              Informational                      [Page 7]

RFC 2058                         RADIUS                     January 1997


2.3.  Why UDP?

  A frequently asked question is why RADIUS uses UDP instead of TCP as
  a transport protocol.  UDP was chosen for strictly technical reasons.

  There are a number of issues which must be understood.  RADIUS is a
  transaction based protocol which has several interesting
  characteristics:

  1.   If the request to a primary Authentication server fails, a
       secondary server must be queried.

       To meet this requirement, a copy of the request must be kept
       above the transport layer to allow for alternate transmission.
       This means that retransmission timers are still required.

  2.   The timing requirements of this particular protocol are
       significantly different than TCP provides.

       At one extreme, RADIUS does not require a "responsive" detection
       of lost data.  The user is willing to wait several seconds for
       the authentication to complete.  The generally aggressive TCP
       retransmission (based on average round trip time) is not
       required, nor is the acknowledgement overhead of TCP.

       At the other extreme, the user is not willing to wait several
       minutes for authentication.  Therefore the reliable delivery of
       TCP data two minutes later is not useful.  The faster use of an
       alternate server allows the user to gain access before giving
       up.

  3.   The stateless nature of this protocol simplifies the use of UDP.

       Clients and servers come and go.  Systems are rebooted, or are
       power cycled independently.  Generally this does not cause a
       problem and with creative timeouts and detection of lost TCP
       connections, code can be written to handle anomalous events.
       UDP however completely eliminates any of this special handling.
       Each client and server can open their UDP transport just once
       and leave it open through all types of failure events on the
       network.

  4.   UDP simplifies the server implementation.

       In the earliest implementations of RADIUS, the server was single
       threaded.  This means that a single request was received,
       processed, and returned.  This was found to be unmanageable in
       environments where the back-end security mechanism took real



Rigney, et. al.              Informational                      [Page 8]

RFC 2058                         RADIUS                     January 1997


       time (1 or more seconds).  The server request queue would fill
       and in environments where hundreds of people were being
       authenticated every minute, the request turn-around time
       increased to longer that users were willing to wait (this was
       especially severe when a specific lookup in a database or over
       DNS took 30 or more seconds).  The obvious solution was to make
       the server multi-threaded.  Achieving this was simple with UDP.
       Separate processes were spawned to serve each request and these
       processes could respond directly to the client NAS with a simple
       UDP packet to the original transport of the client.

  It's not all a panacea.  As noted, using UDP requires one thing which
  is built into TCP: with UDP we must artificially manage
  retransmission timers to the same server, although they don't require
  the same attention to timing provided by TCP.  This one penalty is a
  small price to pay for the advantages of UDP in this protocol.

  Without TCP we would still probably be using tin cans connected by
  string.  But for this particular protocol, UDP is a better choice.

3.  Packet Format

  Exactly one RADIUS packet is encapsulated in the UDP Data field [2],
  where the UDP Destination Port field indicates 1812 (decimal).

  When a reply is generated, the source and destination ports are
  reversed.

  A summary of the RADIUS data format is shown below.  The fields are
  transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                         Authenticator                         |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Attributes ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-








Rigney, et. al.              Informational                      [Page 9]

RFC 2058                         RADIUS                     January 1997


Code

  The Code field is one octet, and identifies the type of RADIUS
  packet.  When a packet is received with an invalid Code field, it is
  silently discarded.

     RADIUS Codes (decimal) are assigned as follows:

          1       Access-Request
          2       Access-Accept
          3       Access-Reject
          4       Accounting-Request
          5       Accounting-Response
         11       Access-Challenge
         12       Status-Server (experimental)
         13       Status-Client (experimental)
        255       Reserved

  Codes 4 and 5 will be covered in the RADIUS Accounting document [9],
  and are not further mentioned here.  Codes 12 and 13 are reserved for
  possible use, but are not further mentioned here.

Identifier

  The Identifier field is one octet, and aids in matching requests and
  replies.

Length

  The Length field is two octets.  It indicates the length of the
  packet including the Code, Identifier, Length, Authenticator and
  Attribute fields.  Octets outside the range of the Length field
  should be treated as padding and should be ignored on reception.  If
  the packet is shorter than the Length field indicates, it should be
  silently discarded.  The minimum length is 20 and maximum length is
  4096.

Authenticator

  The Authenticator field is sixteen (16) octets.  The most significant
  octet is transmitted first.  This value is used to authenticate the
  reply from the RADIUS server, and is used in the password hiding
  algorithm.








Rigney, et. al.              Informational                     [Page 10]

RFC 2058                         RADIUS                     January 1997


Request Authenticator

  In Access-Request Packets, the Authenticator value is a 16 octet
  random number, called the Request Authenticator.  The value SHOULD be
  unpredictable and unique over the lifetime of a secret (the password
  shared between the client and the RADIUS server), since repetition of
  a request value in conjunction with the same secret would permit an
  attacker to reply with a previously intercepted response.  Since it
  is expected that the same secret MAY be used to authenticate with
  servers in disparate geographic regions, the Request Authenticator
  field SHOULD exhibit global and temporal uniqueness.

  The Request Authenticator value in an Access-Request packet SHOULD
  also be unpredictable, lest an attacker trick a server into
  responding to a predicted future request, and then use the response
  to masquerade as that server to a future Access-Request.

  Although protocols such as RADIUS are incapable of protecting against
  theft of an authenticated session via realtime active wiretapping
  attacks, generation of unique unpredictable requests can protect
  against a wide range of active attacks against authentication.

  The NAS and RADIUS server share a secret.  That shared secret
  followed by the Request Authenticator is put through a one-way MD5
  hash to create a 16 octet digest value which is xored with the
  password entered by the user, and the xored result placed in the
  User-Password attribute in the Access-Request packet.  See the entry
  for User-Password in the section on Attributes for a more detailed
  description.

Response Authenticator

    The value of the Authenticator field in Access-Accept, Access-
    Reject, and Access-Challenge packets is called the Response
    Authenticator, and contains a one-way MD5 hash calculated over a
    stream of octets consisting of: the RADIUS packet, beginning with
    the Code field, including the Identifier, the Length, the Request
    Authenticator field from the Access-Request packet, and the
    response Attributes, followed by the shared secret.  That is,
    ResponseAuth = MD5(Code+ID+Length+RequestAuth+Attributes+Secret)
    where + denotes concatenation.

Administrative Note

  The secret (password shared between the client and the RADIUS server)
  SHOULD be at least as large and unguessable as a well-chosen
  password.  It is preferred that the secret be at least 16 octets.
  This is to ensure a sufficiently large range for the secret to



Rigney, et. al.              Informational                     [Page 11]

RFC 2058                         RADIUS                     January 1997


  provide protection against exhaustive search attacks.  A RADIUS
  server SHOULD use the source IP address of the RADIUS UDP packet to
  decide which shared secret to use, so that RADIUS requests can be
  proxied.

  When using a forwarding proxy, the proxy must be able to alter the
  packet as it passes through in each direction - when the proxy
  forwards the request, the proxy can add a Proxy-State Attribute, and
  when the proxy forwards a response, it removes the Proxy-State
  Attribute. Since Access-Accept and Access-Reject replies are
  authenticated on the entire packet contents, the stripping of the
  Proxy-State attribute would invalidate the signature in the packet -
  so the proxy has to re-sign it.

  Further details of RADIUS proxy implementation are outside the scope
  of this document.

Attributes

  Many Attributes may have multiple instances, in such a case the order
  of Attributes of the same Type SHOULD be preserved.  The order of
  Attributes of different Types is not required to be preserved.

  In the section below on "Attributes" where the text refers to which
  packets an attribute is allowed in, only packets with Codes 1, 2, 3
  and 11 and attributes defined in this document are covered in this
  document.  A summary table is provided at the end of the "Attributes"
  section.  To determine which Attributes are allowed in packets with
  codes 4 and 5 refer to the RADIUS Accounting document [9].

4.  Packet Types

  The RADIUS Packet type is determined by the Code field in the first
  octet of the Packet.

4.1.  Access-Request

  Description

    Access-Request packets are sent to a RADIUS server, and convey
    information used to determine whether a user is allowed access to a
    specific NAS, and any special services requested for that user.  An
    implementation wishing to authenticate a user MUST transmit a
    RADIUS packet with the Code field set to 1 (Access-Request).

    Upon receipt of an Access-Request from a valid client, an
    appropriate reply MUST be transmitted.




Rigney, et. al.              Informational                     [Page 12]

RFC 2058                         RADIUS                     January 1997


    An Access-Request MUST contain a User-Name attribute.  It SHOULD
    contain either a NAS-IP-Address attribute or NAS-Identifier
    attribute (or both, although that is not recommended).  It MUST
    contain either a User-Password attribute or CHAP-Password
    attribute.  It SHOULD contain a NAS-Port or NAS-Port-Type attribute
    or both unless the type of access being requested does not involve
    a port or the NAS does not distinguish among its ports.

    An Access-Request MAY contain additional attributes as a hint to
    the server, but the server is not required to honor the hint.

    When a User-Password is present, it is hidden using a method based
    on the RSA Message Digest Algorithm MD5 [1].

  A summary of the Access-Request packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                     Request Authenticator                     |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Attributes ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-


  Code

     1 for Access-Request.

  Identifier

     The Identifier field MUST be changed whenever the content of the
     Attributes field changes, and whenever a valid reply has been
     received for a previous request.  For retransmissions, the
     Identifier MUST remain unchanged.

  Request Authenticator

     The Request Authenticator value MUST be changed each time a new
     Identifier is used.





Rigney, et. al.              Informational                     [Page 13]

RFC 2058                         RADIUS                     January 1997


  Attributes

     The Attribute field is variable in length, and contains the list
     of Attributes that are required for the type of service, as well
     as any desired optional Attributes.

4.2.  Access-Accept

  Description

    Access-Accept packets are sent by the RADIUS server, and provide
    specific configuration information necessary to begin delivery of
    service to the user.  If all Attribute values received in an
    Access-Request are acceptable then the RADIUS implementation MUST
    transmit a packet with the Code field set to 2 (Access-Accept).  On
    reception of an Access-Accept, the Identifier field is matched with
    a pending Access-Request.  Additionally, the Response Authenticator
    field MUST contain the correct response for the pending Access-
    Request.  Invalid packets are silently discarded.

  A summary of the Access-Accept packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                     Response Authenticator                    |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Attributes ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-


  Code

     2 for Access-Accept.

  Identifier

     The Identifier field is a copy of the Identifier field of the
     Access-Request which caused this Access-Accept.






Rigney, et. al.              Informational                     [Page 14]

RFC 2058                         RADIUS                     January 1997


  Response Authenticator

     The Response Authenticator value is calculated from the Access-
     Request value, as described earlier.

  Attributes

     The Attribute field is variable in length, and contains a list of
     zero or more Attributes.

4.3.  Access-Reject

  Description

    If any value of the received Attributes is not acceptable, then the
    RADIUS server MUST transmit a packet with the Code field set to 3
    (Access-Reject).  It MAY include one or more Reply-Message
    Attributes with a text message which the NAS MAY display to the
    user.

  A summary of the Access-Reject packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                     Response Authenticator                    |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Attributes ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-


  Code

     3 for Access-Reject.

  Identifier

     The Identifier field is a copy of the Identifier field of the
     Access-Request which caused this Access-Reject.






Rigney, et. al.              Informational                     [Page 15]

RFC 2058                         RADIUS                     January 1997


  Response Authenticator

     The Response Authenticator value is calculated from the Access-
     Request value, as described earlier.

  Attributes

     The Attribute field is variable in length, and contains a list of
     zero or more Attributes.

4.4.  Access-Challenge

     Description

    If the RADIUS server desires to send the user a challenge requiring
    a response, then the RADIUS server MUST respond to the Access-
    Request by transmitting a packet with the Code field set to 11
    (Access-Challenge).

    The Attributes field MAY have one or more Reply-Message Attributes,
    and MAY have a single State Attribute, or none.  No other
    Attributes are permitted in an Access-Challenge.

    On receipt of an Access-Challenge, the Identifier field is matched
    with a pending Access-Request.  Additionally, the Response
    Authenticator field MUST contain the correct response for the
    pending Access-Request.  Invalid packets are silently discarded.

    If the NAS does not support challenge/response, it MUST treat an
    Access-Challenge as though it had received an Access-Reject
    instead.

    If the NAS supports challenge/response, receipt of a valid Access-
    Challenge indicates that a new Access-Request SHOULD be sent.  The
    NAS MAY display the text message, if any, to the user, and then
    prompt the user for a response.  It then sends its original
    Access-Request with a new request ID and Request Authenticator,
    with the User-Password Attribute replaced by the user's response
    (encrypted), and including the State Attribute from the Access-
    Challenge, if any.  Only 0 or 1 instances of the State Attribute
    can be present in an Access-Request.

    A NAS which supports PAP MAY forward the Reply-Message to the
    dialin client and accept a PAP response which it can use as though
    the user had entered the response.  If the NAS cannot do so, it
    should treat the Access-Challenge as though it had received an
    Access-Reject instead.




Rigney, et. al.              Informational                     [Page 16]

RFC 2058                         RADIUS                     January 1997


  A summary of the Access-Challenge packet format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                                                               |
  |                     Response Authenticator                    |
  |                                                               |
  |                                                               |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |  Attributes ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-

  Code

     11 for Access-Challenge.

  Identifier

     The Identifier field is a copy of the Identifier field of the
     Access-Request which caused this Access-Challenge.

  Response Authenticator

     The Response Authenticator value is calculated from the Access-
     Request value, as described earlier.

  Attributes

     The Attributes field is variable in length, and contains a list of
     zero or more Attributes.

5.  Attributes

  RADIUS Attributes carry the specific authentication, authorization,
  information and configuration details for the request and reply.

  Some Attributes MAY be included more than once.  The effect of this
  is Attribute specific, and is specified in each Attribute
  description.

  The end of the list of Attributes is indicated by the Length of the
  RADIUS packet.





Rigney, et. al.              Informational                     [Page 17]

RFC 2058                         RADIUS                     January 1997


  A summary of the Attribute format is shown below.  The fields are
  transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  Value ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     The Type field is one octet.  Up-to-date values of the RADIUS Type
     field are specified in the most recent "Assigned Numbers" RFC [3].
     Values 192-223 are reserved for experimental use, values 224-240
     are reserved for implementation-specific use, and values 241-255
     are reserved and should not be used.  This specification concerns
     the following values:

     A RADIUS server MAY ignore Attributes with an unknown Type.

     A RADIUS client MAY ignore Attributes with an unknown Type.

         1      User-Name
         2      User-Password
         3      CHAP-Password
         4      NAS-IP-Address
         5      NAS-Port
         6      Service-Type
         7      Framed-Protocol
         8      Framed-IP-Address
         9      Framed-IP-Netmask
        10      Framed-Routing
        11      Filter-Id
        12      Framed-MTU
        13      Framed-Compression
        14      Login-IP-Host
        15      Login-Service
        16      Login-TCP-Port
        17      (unassigned)
        18      Reply-Message
        19      Callback-Number
        20      Callback-Id
        21      (unassigned)
        22      Framed-Route
        23      Framed-IPX-Network
        24      State
        25      Class
        26      Vendor-Specific



Rigney, et. al.              Informational                     [Page 18]

RFC 2058                         RADIUS                     January 1997


        27      Session-Timeout
        28      Idle-Timeout
        29      Termination-Action
        30      Called-Station-Id
        31      Calling-Station-Id
        32      NAS-Identifier
        33      Proxy-State
        34      Login-LAT-Service
        35      Login-LAT-Node
        36      Login-LAT-Group
        37      Framed-AppleTalk-Link
        38      Framed-AppleTalk-Network
        39      Framed-AppleTalk-Zone
        40-59   (reserved for accounting)
        60      CHAP-Challenge
        61      NAS-Port-Type
        62      Port-Limit
        63      Login-LAT-Port

  Length

    The Length field is one octet, and indicates the length of this
    Attribute including the Type, Length and Value fields.  If an
    Attribute is received in an Access-Request but with an invalid
    Length, an Access-Reject SHOULD be transmitted.  If an Attribute is
    received in an Access-Accept, Access-Reject or Access-Challenge
    packet with an invalid length, the packet MUST either be treated as
    an Access-Reject or else silently discarded.

  Value

    The Value field is zero or more octets and contains information
    specific to the Attribute.  The format and length of the Value
    field is determined by the Type and Length fields.

    Note that a "string" in RADIUS does not require termination by an
    ASCII NUL because the Attribute already has a length field.

    The format of the value field is one of four data types.

     string    0-253 octets

     address   32 bit value, most significant octet first.

     integer   32 bit value, most significant octet first.






Rigney, et. al.              Informational                     [Page 19]

RFC 2058                         RADIUS                     January 1997


     time      32 bit value, most significant octet first -- seconds
               since 00:00:00 GMT, January 1, 1970.  The standard
               Attributes do not use this data type but it is presented
               here for possible use within Vendor-Specific attributes.

5.1.  User-Name

  Description

    This Attribute indicates the name of the user to be authenticated.
    It is only used in Access-Request packets.

  A summary of the User-Name Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

    1 for User-Name.

  Length

    >= 3

  String

    The String field is one or more octets.  The NAS may limit the
    maximum length of the User-Name but the ability to handle at least
    63 octets is recommended.

















Rigney, et. al.              Informational                     [Page 20]

RFC 2058                         RADIUS                     January 1997


    The format of the username MAY be one of several forms:

    monolithic Consisting only of alphanumeric characters.  This
               simple form might be used to locally manage a NAS.

    simple     Consisting only of printable ASCII characters.

    name@fqdn SMTP address.  The Fully Qualified Domain Name (with or
              without trailing dot) indicates the realm in which the
              name part applies.

    distinguished name
              A name in ASN.1 form used in Public Key authentication
              systems.

5.2.  User-Password

  Description

    This Attribute indicates the password of the user to be
    authenticated, or the user's input following an Access-Challenge.
    It is only used in Access-Request packets.

    On transmission, the password is hidden.  The password is first
    padded at the end with nulls to a multiple of 16 octets.  A one-way
    MD5 hash is calculated over a stream of octets consisting of the
    shared secret followed by the Request Authenticator.  This value is
    XORed with the first 16 octet segment of the password and placed in
    the first 16 octets of the String field of the User-Password
    Attribute.

    If the password is longer than 16 characters, a second one-way MD5
    hash is calculated over a stream of octets consisting of the shared
    secret followed by the result of the first xor.  That hash is XORed
    with the second 16 octet segment of the password and placed in the
    second 16 octets of the String field of the User-Password
    Attribute.

    If necessary, this operation is repeated, with each xor result
    being used along with the shared secret to generate the next hash
    to xor the next segment of the password, to no more than 128
    characters.

    The method is taken from the book "Network Security" by Kaufman,
    Perlman and Speciner [4] pages 109-110.  A more precise explanation
    of the method follows:





Rigney, et. al.              Informational                     [Page 21]

RFC 2058                         RADIUS                     January 1997


    Call the shared secret S and the pseudo-random 128-bit Request
    Authenticator RA.  Break the password into 16-octet chunks p1, p2,
    etc.  with the last one padded at the end with nulls to a 16-octet
    boundary.  Call the ciphertext blocks c(1), c(2), etc.  We'll need
    intermediate values b1, b2, etc.

        b1 = MD5(S + RA)       c(1) = p1 xor b1
        b2 = MD5(S + c(1))     c(2) = p2 xor b2
               .                       .
               .                       .
               .                       .
        bi = MD5(S + c(i-1))   c(i) = pi xor bi


    The String will contain c(1)+c(2)+...+c(i) where + denotes
    concatenation.

    On receipt, the process is reversed to yield the original password.

  A summary of the User-Password Attribute format is shown below.  The
  fields are transmitted from left to right.

      0                   1                   2
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
     |     Type      |    Length     |  String ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

     Type

        2 for User-Password.

     Length

        At least 18 and no larger than 130.

     String

        The String field is between 16 and 128 octets long, inclusive.

5.3.  CHAP-Password

  Description

    This Attribute indicates the response value provided by a PPP
    Challenge-Handshake Authentication Protocol (CHAP) user in response
    to the challenge.  It is only used in Access-Request packets.




Rigney, et. al.              Informational                     [Page 22]

RFC 2058                         RADIUS                     January 1997


    The CHAP challenge value is found in the CHAP-Challenge Attribute
    (60) if present in the packet, otherwise in the Request
    Authenticator field.

  A summary of the CHAP-Password Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  CHAP Ident   |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-


  Type

     3 for CHAP-Password.

  Length

     19

  CHAP Ident

     This field is one octet, and contains the CHAP Identifier from the
     user's CHAP Response.

  String

     The String field is 16 octets, and contains the CHAP Response from
     the user.


5.4.  NAS-IP-Address

  Description

    This Attribute indicates the identifying IP Address of the NAS
    which is requesting authentication of the user.  It is only used in
    Access-Request packets.  Either NAS-IP-Address or NAS-Identifier
    SHOULD be present in an Access-Request packet.










Rigney, et. al.              Informational                     [Page 23]

RFC 2058                         RADIUS                     January 1997


  A summary of the NAS-IP-Address Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |            Address
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           Address (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Type

     4 for NAS-IP-Address.

  Length

     6

  Address

     The Address field is four octets.

5.5.  NAS-Port

  Description

    This Attribute indicates the physical port number of the NAS which
    is authenticating the user.  It is only used in Access-Request
    packets.  Note that this is using "port" in its sense of a physical
    connection on the NAS, not in the sense of a TCP or UDP port
    number.  Either NAS-Port or NAS-Port-Type (61) or both SHOULD be
    present in an Access-Request packet, if the NAS differentiates
    among its ports.
















Rigney, et. al.              Informational                     [Page 24]

RFC 2058                         RADIUS                     January 1997


  A summary of the NAS-Port Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     5 for NAS-Port.

  Length

     6

  Value

     The Value field is four octets.  Despite the size of the field,
     values range from 0 to 65535.


5.6.  Service-Type

  Description

    This Attribute indicates the type of service the user has
    requested, or the type of service to be provided.  It MAY be used
    in both Access-Request and Access-Accept packets.  A NAS is not
    required to implement all of these service types, and MUST treat
    unknown or unsupported Service-Types as though an Access-Reject had
    been received instead.

  A summary of the Service-Type Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+





Rigney, et. al.              Informational                     [Page 25]

RFC 2058                         RADIUS                     January 1997


  Type

     6 for Service-Type.

  Length

     6

  Value

     The Value field is four octets.

      1      Login
      2      Framed
      3      Callback Login
      4      Callback Framed
      5      Outbound
      6      Administrative
      7      NAS Prompt
      8      Authenticate Only
      9      Callback NAS Prompt

     The service types are defined as follows when used in an Access-
     Accept.  When used in an Access-Request, they should be considered
     to be a hint to the RADIUS server that the NAS has reason to
     believe the user would prefer the kind of service indicated, but
     the server is not required to honor the hint.

     Login               The user should be connected to a host.

     Framed              A Framed Protocol should be started for the
                         User, such as PPP or SLIP.

     Callback Login      The user should be disconnected and called
                         back, then connected to a host.

     Callback Framed     The user should be disconnected and called
                         back, then a Framed Protocol should be started
                         for the User, such as PPP or SLIP.

     Outbound            The user should be granted access to outgoing
                         devices.

     Administrative      The user should be granted access to the
                         administrative interface to the NAS from which
                         privileged commands can be executed.





Rigney, et. al.              Informational                     [Page 26]

RFC 2058                         RADIUS                     January 1997


     NAS Prompt          The user should be provided a command prompt
                         on the NAS from which non-privileged commands
                         can be executed.

     Authenticate Only   Only Authentication is requested, and no
                         authorization information needs to be returned
                         in the Access-Accept (typically used by proxy
                         servers rather than the NAS itself).

     Callback NAS Prompt The user should be disconnected and called
                         back, then provided a command prompt on the
                         NAS from which non-privileged commands can be
                         executed.


5.7.  Framed-Protocol

  Description

     This Attribute indicates the framing to be used for framed access.
     It MAY be used in both Access-Request and Access-Accept packets.

  A summary of the Framed-Protocol Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Type

     7 for Framed-Protocol.

  Length

     6










Rigney, et. al.              Informational                     [Page 27]

RFC 2058                         RADIUS                     January 1997


  Value

     The Value field is four octets.

      1      PPP
      2      SLIP
      3      AppleTalk Remote Access Protocol (ARAP)
      4      Gandalf proprietary SingleLink/MultiLink protocol
      5      Xylogics proprietary IPX/SLIP

5.8.  Framed-IP-Address

  Description

     This Attribute indicates the address to be configured for the
     user.  It MAY be used in Access-Accept packets.  It MAY be used in
     an Access-Request packet as a hint by the NAS to the server that
     it would prefer that address, but the server is not required to
     honor the hint.

  A summary of the Framed-IP-Address Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |            Address
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           Address (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Type

     8 for Framed-IP-Address.

  Length

     6

  Address

     The Address field is four octets.  The value 0xFFFFFFFF indicates
     that the NAS should allow the user to select an address (e.g.
     Negotiated).  The value 0xFFFFFFFE indicates that the NAS should
     select an address for the user (e.g. Assigned from a pool of
     addresses kept by the NAS).  Other valid values indicate that the
     NAS should use that value as the user's IP address.



Rigney, et. al.              Informational                     [Page 28]

RFC 2058                         RADIUS                     January 1997


5.9.  Framed-IP-Netmask

  Description

     This Attribute indicates the IP netmask to be configured for the
     user when the user is a router to a network.  It MAY be used in
     Access-Accept packets.  It MAY be used in an Access-Request packet
     as a hint by the NAS to the server that it would prefer that
     netmask, but the server is not required to honor the hint.

  A summary of the Framed-IP-Netmask Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |            Address
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           Address (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Type

     9 for Framed-IP-Netmask.

  Length

     6

  Address

     The Address field is four octets specifying the IP netmask of the
     user.

5.10.  Framed-Routing

  Description

     This Attribute indicates the routing method for the user, when the
     user is a router to a network.  It is only used in Access-Accept
     packets.









Rigney, et. al.              Informational                     [Page 29]

RFC 2058                         RADIUS                     January 1997


  A summary of the Framed-Routing Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     10 for Framed-Routing.

  Length

     6

  Value

     The Value field is four octets.

      0      None
      1      Send routing packets
      2      Listen for routing packets
      3      Send and Listen

5.11.  Filter-Id

  Description

     This Attribute indicates the name of the filter list for this
     user.  Zero or more Filter-Id attributes MAY be sent in an
     Access-Accept packet.

     Identifying a filter list by name allows the filter to be used on
     different NASes without regard to filter-list implementation
     details.

  A summary of the Filter-Id Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-



Rigney, et. al.              Informational                     [Page 30]

RFC 2058                         RADIUS                     January 1997


  Type

     11 for Filter-Id.

  Length

     >= 3

  String

     The String field is one or more octets, and its contents are
     implementation dependent.  It is intended to be human readable and
     MUST NOT affect operation of the protocol.  It is recommended that
     the message contain displayable ASCII characters from the range 32
     through 126 decimal.

5.12.  Framed-MTU

  Description

     This Attribute indicates the Maximum Transmission Unit to be
     configured for the user, when it is not negotiated by some other
     means (such as PPP).  It is only used in Access-Accept packets.

  A summary of the Framed-MTU Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Type

     12 for Framed-MTU.

  Length

     6

  Value

     The Value field is four octets.  Despite the size of the field,
     values range from 64 to 65535.



Rigney, et. al.              Informational                     [Page 31]

RFC 2058                         RADIUS                     January 1997


5.13.  Framed-Compression

  Description

    This Attribute indicates a compression protocol to be used for the
    link.  It MAY be used in Access-Accept packets.  It MAY be used in
    an Access-Request packet as a hint to the server that the NAS would
    prefer to use that compression, but the server is not required to
    honor the hint.

    More than one compression protocol Attribute MAY be sent.  It is
    the responsibility of the NAS to apply the proper compression
    protocol to appropriate link traffic.

  A summary of the Framed-Compression Attribute format is shown below.
  The fields are transmitted from left to right.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |    Length     |             Value
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                Value (cont)         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


     Type

        13 for Framed-Compression.

     Length

        6

     Value

        The Value field is four octets.

         0      None
         1      VJ TCP/IP header compression [5]
         2      IPX header compression










Rigney, et. al.              Informational                     [Page 32]

RFC 2058                         RADIUS                     January 1997


5.14.  Login-IP-Host

  Description

     This Attribute indicates the system with which to connect the
     user, when the Login-Service Attribute is included.  It MAY be
     used in Access-Accept packets.  It MAY be used in an Access-
     Request packet as a hint to the server that the NAS would prefer
     to use that host, but the server is not required to honor the
     hint.

  A summary of the Login-IP-Host Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |            Address
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           Address (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Type

     14 for Login-IP-Host.

  Length

     6

  Address

     The Address field is four octets.  The value 0xFFFFFFFF indicates
     that the NAS SHOULD allow the user to select an address.  The
     value 0 indicates that the NAS SHOULD select a host to connect the
     user to.  Other values indicate the address the NAS SHOULD connect
     the user to.

5.15.  Login-Service

  Description

     This Attribute indicates the service which should be used to
     connect the user to the login host.  It is only used in Access-
     Accept packets.





Rigney, et. al.              Informational                     [Page 33]

RFC 2058                         RADIUS                     January 1997


  A summary of the Login-Service Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Type

     15 for Login-Service.

  Length

     6

  Value

     The Value field is four octets.

      0      Telnet
      1      Rlogin
      2      TCP Clear
      3      PortMaster (proprietary)
      4      LAT

5.16.  Login-TCP-Port

  Description

     This Attribute indicates the TCP port with which the user is to be
     connected, when the Login-Service Attribute is also present.  It
     is only used in Access-Accept packets.

  A summary of the Login-TCP-Port Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Rigney, et. al.              Informational                     [Page 34]

RFC 2058                         RADIUS                     January 1997


  Type

     16 for Login-TCP-Port.

  Length

     6

  Value

     The Value field is four octets.  Despite the size of the field,
     values range from 0 to 65535.

5.17.  (unassigned)

  Description

     ATTRIBUTE TYPE 17 HAS NOT BEEN ASSIGNED.

5.18.  Reply-Message

  Description

     This Attribute indicates text which MAY be displayed to the user.

     When used in an Access-Accept, it is the success message.

     When used in an Access-Reject, it is the failure message.  It MAY
     indicate a dialog message to prompt the user before another
     Access-Request attempt.

     When used in an Access-Challenge, it MAY indicate a dialog message
     to prompt the user for a response.

     Multiple Reply-Message's MAY be included and if any are displayed,
     they MUST be displayed in the same order as they appear in the
     packet.

  A summary of the Reply-Message Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-





Rigney, et. al.              Informational                     [Page 35]

RFC 2058                         RADIUS                     January 1997


  Type

     18 for Reply-Message.

  Length

     >= 3

  String

     The String field is one or more octets, and its contents are
     implementation dependent.  It is intended to be human readable,
     and MUST NOT affect operation of the protocol.  It is recommended
     that the message contain displayable ASCII characters from the
     range 10, 13, and 32 through 126 decimal.  Mechanisms for
     extension to other character sets are beyond the scope of this
     specification.

5.19.  Callback-Number

  Description

     This Attribute indicates a dialing string to be used for callback.
     It MAY be used in Access-Accept packets.  It MAY be used in an
     Access-Request packet as a hint to the server that a Callback
     service is desired, but the server is not required to honor the
     hint.

  A summary of the Callback-Number Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-


  Type

     19 for Callback-Number.

  Length

     >= 3






Rigney, et. al.              Informational                     [Page 36]

RFC 2058                         RADIUS                     January 1997


  String

     The String field is one or more octets.  The actual format of the
     information is site or application specific, and a robust
     implementation SHOULD support the field as undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.20.  Callback-Id

  Description

     This Attribute indicates the name of a place to be called, to be
     interpreted by the NAS.  It MAY be used in Access-Accept packets.

  A summary of the Callback-Id Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-


  Type

     20 for Callback-Id.

  Length

     >= 3

  String

     The String field is one or more octets.  The actual format of the
     information is site or application specific, and a robust
     implementation SHOULD support the field as undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.21.  (unassigned)

  Description

     ATTRIBUTE TYPE 21 HAS NOT BEEN ASSIGNED.



Rigney, et. al.              Informational                     [Page 37]

RFC 2058                         RADIUS                     January 1997


5.22.  Framed-Route

  Description

     This Attribute provides routing information to be configured for
     the user on the NAS.  It is used in the Access-Accept packet and
     can appear multiple times.

  A summary of the Framed-Route Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-


  Type

     22 for Framed-Route.

  Length

     >= 3

  String

     The String field is one or more octets, and its contents are
     implementation dependent.  It is intended to be human readable and
     MUST NOT affect operation of the protocol.  It is recommended that
     the message contain displayable ASCII characters from the range 32
     through 126 decimal.

     For IP routes, it SHOULD contain a destination prefix in dotted
     quad form optionally followed by a slash and a decimal length
     specifier stating how many high order bits of the prefix should
     be used.  That is followed by a space, a gateway address in
     dotted quad form, a space, and one or more metrics separated by
     spaces.  For example, "192.168.1.0/24 192.168.1.1 1 2 -1 3 400".
     The length specifier may be omitted in which case it should
     default to 8 bits for class A prefixes, 16 bits for class B
     prefixes, and 24 bits for class C prefixes.  For example,
     "192.168.1.0 192.168.1.1 1".

     Whenever the gateway address is specified as "0.0.0.0" the IP
     address of the user SHOULD be used as the gateway address.




Rigney, et. al.              Informational                     [Page 38]

RFC 2058                         RADIUS                     January 1997


5.23.  Framed-IPX-Network

  Description

     This Attribute indicates the IPX Network number to be configured
     for the user.  It is used in Access-Accept packets.

  A summary of the Framed-IPX-Network Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Type

     23 for Framed-IPX-Network.

  Length

     6

  Value

     The Value field is four octets.  The value 0xFFFFFFFE indicates
     that the NAS should select an IPX network for the user (e.g.
     assigned from a pool of one or more IPX networks kept by the NAS).
     Other values should be used as the IPX network for the link to the
     user.

5.24.  State

  Description

     This Attribute is available to be sent by the server to the client
     in an Access-Challenge and MUST be sent unmodified from the client
     to the server in the new Access-Request reply to that challenge,
     if any.

     This Attribute is available to be sent by the server to the client
     in an Access-Accept that also includes a Termination-Action
     Attribute with the value of RADIUS-Request.  If the NAS performs
     the Termination-Action by sending a new Access-Request upon



Rigney, et. al.              Informational                     [Page 39]

RFC 2058                         RADIUS                     January 1997


     termination of the current session, it MUST include the State
     attribute unchanged in that Access-Request.

     In either usage, no interpretation by the client should be made.
     A packet may have only one State Attribute.  Usage of the State
     Attribute is implementation dependent.

  A summary of the State Attribute format is shown below.  The fields
  are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-


  Type

     24 for State.

  Length

     >= 3

  String

     The String field is one or more octets.  The actual format of the
     information is site or application specific, and a robust
     implementation SHOULD support the field as undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.25.  Class

  Description

     This Attribute is available to be sent by the server to the client
     in an Access-Accept and should be sent unmodified by the client to
     the accounting server as part of the Accounting-Request packet if
     accounting is supported.  No interpretation by the client should
     be made.








Rigney, et. al.              Informational                     [Page 40]

RFC 2058                         RADIUS                     January 1997


  A summary of the Class Attribute format is shown below.  The fields
  are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     25 for Class.

  Length

     >= 3

  String

     The String field is one or more octets.  The actual format of the
     information is site or application specific, and a robust
     implementation SHOULD support the field as undistinguished octets.
     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.26.  Vendor-Specific

  Description

     This Attribute is available to allow vendors to support their own
     extended Attributes not suitable for general usage.  It MUST not
     affect the operation of the RADIUS protocol.

     Servers not equipped to interpret the vendor-specific information
     sent by a client MUST ignore it (although it may be reported).
     Clients which do not receive desired vendor-specific information
     SHOULD make an attempt to operate without it, although they may do
     so (and report they are doing so) in a degraded mode.













Rigney, et. al.              Informational                     [Page 41]

RFC 2058                         RADIUS                     January 1997


  A summary of the Vendor-Specific Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |  Length       |            Vendor-Id
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       Vendor-Id (cont)           |  String...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-


  Type

     26 for Vendor-Specific.

  Length

     >= 7

  Vendor-Id

     The high-order octet is 0 and the low-order 3 octets are the SMI
     Network Management Private Enterprise Code of the Vendor in
     network byte order, as defined in the Assigned Numbers RFC [2].

  String

     The String field is one or more octets.  The actual format of the
     information is site or application specific, and a robust
     implementation SHOULD support the field as undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

















Rigney, et. al.              Informational                     [Page 42]

RFC 2058                         RADIUS                     January 1997


     It SHOULD be encoded as a sequence of vendor type / vendor length
     / value fields, as follows.  The Attribute-Specific field is
     dependent on the vendor's definition of that attribute.  An
     example encoding of the Vendor-Specific attribute using this
     method follows:

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |  Length       |            Vendor-Id
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
          Vendor-Id (cont)           | Vendor type   | Vendor length |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |    Attribute-Specific...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

5.27.  Session-Timeout

  Description

     This Attribute sets the maximum number of seconds of service to be
     provided to the user before termination of the session or prompt.
     This Attribute is available to be sent by the server to the client
     in an Access-Accept or Access-Challenge.

  A summary of the Session-Timeout Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     27 for Session-Timeout.

  Length

     6








Rigney, et. al.              Informational                     [Page 43]

RFC 2058                         RADIUS                     January 1997


  Value

     The field is 4 octets, containing a 32-bit unsigned integer with
     the maximum number of seconds this user should be allowed to
     remain connected by the NAS.

5.28.  Idle-Timeout

  Description

     This Attribute sets the maximum number of consecutive seconds of
     idle connection allowed to the user before termination of the
     session or prompt.  This Attribute is available to be sent by the
     server to the client in an Access-Accept or Access-Challenge.

  A summary of the Idle-Timeout Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     28 for Idle-Timeout.

  Length

     6

  Value

     The field is 4 octets, containing a 32-bit unsigned integer with
     the maximum number of consecutive seconds of idle time this user
     should be permitted before being disconnected by the NAS.

5.29.  Termination-Action

  Description

     This Attribute indicates what action the NAS should take when the
     specified service is completed.  It is only used in Access-Accept
     packets.




Rigney, et. al.              Informational                     [Page 44]

RFC 2058                         RADIUS                     January 1997


  A summary of the Termination-Action Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Type

     29 for Termination-Action.

  Length

     6

  Value

     The Value field is four octets.

      0      Default
      1      RADIUS-Request


     If the Value is set to RADIUS-Request, upon termination of the
     specified service the NAS MAY send a new Access-Request to the
     RADIUS server, including the State attribute if any.

5.30.  Called-Station-Id

  Description

     This Attribute allows the NAS to send in the Access-Request
     packet the phone number that the user called, using  Dialed
     Number Identification (DNIS) or similar technology.  Note that
     this may be different from the phone number the call comes in
     on.  It is only used in Access-Request packets.










Rigney, et. al.              Informational                     [Page 45]

RFC 2058                         RADIUS                     January 1997


  A summary of the Called-Station-Id Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-


  Type

     30 for Called-Station-Id.

  Length

     >= 3

  String

     The String field is one or more octets, containing the phone
     number that the user's call came in on.

     The actual format of the information is site or application
     specific.  Printable ASCII is recommended, but a robust
     implementation SHOULD support the field as undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.31.  Calling-Station-Id

  Description

     This Attribute allows the NAS to send in the Access-Request
     packet the phone number that the call came from, using Automatic
     Number Identification (ANI) or similar technology.  It is only
     used in Access-Request packets.

  A summary of the Calling-Station-Id Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-




Rigney, et. al.              Informational                     [Page 46]

RFC 2058                         RADIUS                     January 1997


  Type

     31 for Calling-Station-Id.

  Length

     >= 3

  String

     The String field is one or more octets, containing the phone
     number that the user placed the call from.

     The actual format of the information is site or application
     specific.  Printable ASCII is recommended, but a robust
     implementation SHOULD support the field as undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.32.  NAS-Identifier

  Description

     This Attribute contains a string identifying the NAS originating
     the Access-Request.  It is only used in Access-Request packets.
     Either NAS-IP-Address or NAS-Identifier SHOULD be present in an
     Access-Request packet.

  A summary of the NAS-Identifier Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-


  Type

     32 for NAS-Identifier.

  Length

     >= 3





Rigney, et. al.              Informational                     [Page 47]

RFC 2058                         RADIUS                     January 1997


  String

     The String field is one or more octets, and should be unique to
     the NAS within the scope of the RADIUS server.  For example, a
     fully qualified domain name would be suitable as a NAS-Identifier.

     The actual format of the information is site or application
     specific, and a robust implementation SHOULD support the field as
     undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.33.  Proxy-State

  Description

     This Attribute is available to be sent by a proxy server to
     another server when forwarding an Access-Request and MUST be
     returned unmodified in the Access-Accept, Access-Reject or
     Access-Challenge.  This attribute should be removed by the proxy
     server before the response is forwarded to the NAS.

     Usage of the Proxy-State Attribute is implementation dependent.  A
     description of its function is outside the scope of this
     specification.

  A summary of the Proxy-State Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-


  Type

     33 for Proxy-State.

  Length

     >= 3







Rigney, et. al.              Informational                     [Page 48]

RFC 2058                         RADIUS                     January 1997


  String

     The String field is one or more octets.  The actual format of the
     information is site or application specific, and a robust
     implementation SHOULD support the field as undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.34.  Login-LAT-Service

  Description

     This Attribute indicates the system with which the user is to be
     connected by LAT.  It MAY be used in Access-Accept packets, but
     only when LAT is specified as the Login-Service.  It MAY be used
     in an Access-Request packet as a hint to the server, but the
     server is not required to honor the hint.

     Administrators use the service attribute when dealing with
     clustered systems, such as a VAX or Alpha cluster. In such an
     environment several different time sharing hosts share the same
     resources (disks, printers, etc.), and administrators often
     configure each to offer access (service) to each of the shared
     resources. In this case, each host in the cluster advertises its
     services through LAT broadcasts.

     Sophisticated users often know which service providers (machines)
     are faster and tend to use a node name when initiating a LAT
     connection.  Alternately, some administrators want particular
     users to use certain machines as a primitive form of load
     balancing (although LAT knows how to do load balancing itself).

  A summary of the Login-LAT-Service Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-


  Type

     34 for Login-LAT-Service.





Rigney, et. al.              Informational                     [Page 49]

RFC 2058                         RADIUS                     January 1997


  Length

     >= 3

  String

     The String field is one or more octets, and contains the identity
     of the LAT service to use.  The LAT Architecture allows this
     string to contain $ (dollar), - (hyphen), . (period), _
     (underscore), numerics, upper and lower case alphabetics, and the
     ISO Latin-1 character set extension [6].  All LAT string
     comparisons are case insensitive.

5.35.  Login-LAT-Node

  Description

     This Attribute indicates the Node with which the user is to be
     automatically connected by LAT.  It MAY be used in Access-Accept
     packets, but only when LAT is specified as the Login-Service.  It
     MAY be used in an Access-Request packet as a hint to the server,
     but the server is not required to honor the hint.

  A summary of the Login-LAT-Node Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-


  Type

     35 for Login-LAT-Node.

  Length

     >= 3











Rigney, et. al.              Informational                     [Page 50]

RFC 2058                         RADIUS                     January 1997


  String

     The String field is one or more octets, and contains the identity
     of the LAT Node to connect the user to.  The LAT Architecture
     allows this string to contain $ (dollar), - (hyphen), . (period),
     _ (underscore), numerics, upper and lower case alphabetics, and
     the ISO Latin-1 character set extension.  All LAT string
     comparisons are case insensitive.

5.36.  Login-LAT-Group

  Description

     This Attribute contains a string identifying the LAT group codes
     which this user is authorized to use.  It MAY be used in Access-
     Accept packets, but only when LAT is specified as the Login-
     Service.  It MAY be used in an Access-Request packet as a hint to
     the server, but the server is not required to honor the hint.

     LAT supports 256 different group codes, which LAT uses as a form
     of access rights.  LAT encodes the group codes as a 256 bit
     bitmap.

     Administrators can assign one or more of the group code bits at
     the LAT service provider; it will only accept LAT connections that
     have these group codes set in the bit map. The administrators
     assign a bitmap of authorized group codes to each user; LAT gets
     these from the operating system, and uses these in its requests to
     the service providers.

  A summary of the Login-LAT-Group Attribute format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-


  Type

     36 for Login-LAT-Group.

  Length

     34




Rigney, et. al.              Informational                     [Page 51]

RFC 2058                         RADIUS                     January 1997


  String

     The String field is a 32 octet bit map, most significant octet
     first.  A robust implementation SHOULD support the field as
     undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.37.  Framed-AppleTalk-Link

  Description

     This Attribute indicates the AppleTalk network number which should
     be used for the serial link to the user, which is another
     AppleTalk router.  It is only used in Access-Accept packets.  It
     is never used when the user is not another router.

  A summary of the Framed-AppleTalk-Link Attribute format is shown
  below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     37 for Framed-AppleTalk-Link.

  Length

     6

  Value

     The Value field is four octets.  Despite the size of the field,
     values range from 0 to 65535.  The special value of 0 indicates
     that this is an unnumbered serial link.  A value of 1-65535 means
     that the serial line between the NAS and the user should be
     assigned that value as an AppleTalk network number.







Rigney, et. al.              Informational                     [Page 52]

RFC 2058                         RADIUS                     January 1997


5.38.  Framed-AppleTalk-Network

  Description

     This Attribute indicates the AppleTalk Network number which the
     NAS should probe to allocate an AppleTalk node for the user.  It
     is only used in Access-Accept packets.  It is never used when the
     user is another router.  Multiple instances of this Attribute
     indicate that the NAS may probe using any of the network numbers
     specified.

  A summary of the Framed-AppleTalk-Network Attribute format is shown
  below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Type

     38 for Framed-AppleTalk-Network.

  Length

     6

  Value

     The Value field is four octets.  Despite the size of the field,
     values range from 0 to 65535.  The special value 0 indicates that
     the NAS should assign a network for the user, using its default
     cable range.  A value between 1 and 65535 (inclusive) indicates
     the AppleTalk Network the NAS should probe to find an address for
     the user.

5.39.  Framed-AppleTalk-Zone

  Description

     This Attribute indicates the AppleTalk Default Zone to be used for
     this user.  It is only used in Access-Accept packets.  Multiple
     instances of this attribute in the same packet are not allowed.




Rigney, et. al.              Informational                     [Page 53]

RFC 2058                         RADIUS                     January 1997


  A summary of the Framed-AppleTalk-Zone Attribute format is shown
  below.  The fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-


  Type

     39 for Framed-AppleTalk-Zone.

  Length

     >= 3

  String

     The name of the Default AppleTalk Zone to be used for this user.
     A robust implementation SHOULD support the field as
     undistinguished octets.

     The codification of the range of allowed usage of this field is
     outside the scope of this specification.

5.40.  CHAP-Challenge

  Description

     This Attribute contains the CHAP Challenge sent by the NAS to a
     PPP Challenge-Handshake Authentication Protocol (CHAP) user.  It
     is only used in Access-Request packets.

     If the CHAP challenge value is 16 octets long it MAY be placed in
     the Request Authenticator field instead of using this attribute.

  A summary of the CHAP-Challenge Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |    String...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-





Rigney, et. al.              Informational                     [Page 54]

RFC 2058                         RADIUS                     January 1997


  Type

     60 for CHAP-Challenge.

  Length

     >= 7

  String

     The String field contains the CHAP Challenge.

5.41.  NAS-Port-Type

  Description

     This Attribute indicates the type of the physical port of the NAS
     which is authenticating the user.  It can be used instead of or in
     addition to the NAS-Port (5) attribute.  It is only used in
     Access-Request packets.  Either NAS-Port (5) or NAS-Port-Type or
     both SHOULD be present in an Access-Request packet, if the NAS
     differentiates among its ports.

  A summary of the NAS-Port-Type Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Type

     61 for NAS-Port-Type.

  Length

     6

  Value

     The Value field is four octets.  "Virtual" refers to a connection
     to the NAS via some transport protocol, instead of through a
     physical port.  For example, if a user telnetted into a NAS to



Rigney, et. al.              Informational                     [Page 55]

RFC 2058                         RADIUS                     January 1997


     authenticate himself as an Outbound-User, the Access-Request might
     include NAS-Port-Type = Virtual as a hint to the RADIUS server
     that the user was not on a physical port.

     0       Async
     1       Sync
     2       ISDN Sync
     3       ISDN Async V.120
     4       ISDN Async V.110
     5       Virtual

5.42.  Port-Limit

  Description

     This Attribute sets the maximum number of ports to be provided to
     the user by the NAS.  This Attribute MAY be sent by the server to
     the client in an Access-Accept packet.  It is intended for use in
     conjunction with Multilink PPP [7] or similar uses.  It MAY also
     be sent by the NAS to the server as a hint that that many ports
     are desired for use, but the server is not required to honor the
     hint.

  A summary of the Port-Limit Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |             Value
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
             Value (cont)         |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


  Type

     62 for Port-Limit.

  Length

     6

  Value

     The field is 4 octets, containing a 32-bit unsigned integer with
     the maximum number of ports this user should be allowed to connect
     to on the NAS.



Rigney, et. al.              Informational                     [Page 56]

RFC 2058                         RADIUS                     January 1997


5.43.  Login-LAT-Port

  Description

     This Attribute indicates the Port with which the user is to be
     connected by LAT.  It MAY be used in Access-Accept packets, but
     only when LAT is specified as the Login-Service.  It MAY be used
     in an Access-Request packet as a hint to the server, but the
     server is not required to honor the hint.

  A summary of the Login-LAT-Port Attribute format is shown below.  The
  fields are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
  |     Type      |    Length     |  String ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

  Type

     63 for Login-LAT-Port.

  Length

     >= 3

  String

     The String field is one or more octets, and contains the identity
     of the LAT port to use.  The LAT Architecture allows this string
     to contain $ (dollar), - (hyphen), . (period), _ (underscore),
     numerics, upper and lower case alphabetics, and the ISO Latin-1
     character set extension.  All LAT string comparisons are case
     insensitive.
















Rigney, et. al.              Informational                     [Page 57]

RFC 2058                         RADIUS                     January 1997


5.44.  Table of Attributes

  The following table provides a guide to which attributes may be found
  in which kinds of packets, and in what quantity.

  Request   Accept   Reject   Challenge   #    Attribute
  1         0        0        0            1   User-Name
  0-1       0        0        0            2   User-Password [Note 1]
  0-1       0        0        0            3   CHAP-Password [Note 1]
  0-1       0        0        0            4   NAS-IP-Address
  0-1       0        0        0            5   NAS-Port
  0-1       0-1      0        0            6   Service-Type
  0-1       0-1      0        0            7   Framed-Protocol
  0-1       0-1      0        0            8   Framed-IP-Address
  0-1       0-1      0        0            9   Framed-IP-Netmask
  0         0-1      0        0           10   Framed-Routing
  0         0+       0        0           11   Filter-Id
  0         0-1      0        0           12   Framed-MTU
  0+        0+       0        0           13   Framed-Compression
  0+        0+       0        0           14   Login-IP-Host
  0         0-1      0        0           15   Login-Service
  0         0-1      0        0           16   Login-TCP-Port
  0         0+       0+       0+          18   Reply-Message
  0-1       0-1      0        0           19   Callback-Number
  0         0-1      0        0           20   Callback-Id
  0         0+       0        0           22   Framed-Route
  0         0-1      0        0           23   Framed-IPX-Network
  0-1       0-1      0        0-1         24   State
  0         0+       0        0           25   Class
  0+        0+       0        0+          26   Vendor-Specific
  0         0-1      0        0-1         27   Session-Timeout
  0         0-1      0        0-1         28   Idle-Timeout
  0         0-1      0        0           29   Termination-Action
  0-1       0        0        0           30   Called-Station-Id
  0-1       0        0        0           31   Calling-Station-Id
  0-1       0        0        0           32   NAS-Identifier
  0+        0+       0+       0+          33   Proxy-State
  0-1       0-1      0        0           34   Login-LAT-Service
  0-1       0-1      0        0           35   Login-LAT-Node
  0-1       0-1      0        0           36   Login-LAT-Group
  0         0-1      0        0           37   Framed-AppleTalk-Link
  0         0+       0        0           38   Framed-AppleTalk-Network
  0         0-1      0        0           39   Framed-AppleTalk-Zone
  0-1       0        0        0           60   CHAP-Challenge
  0-1       0        0        0           61   NAS-Port-Type
  0-1       0-1      0        0           62   Port-Limit
  0-1       0-1      0        0           63   Login-LAT-Port
  Request   Accept   Reject   Challenge   #    Attribute



Rigney, et. al.              Informational                     [Page 58]

RFC 2058                         RADIUS                     January 1997


  [Note 1] An Access-Request MUST contain either a User-Password or a
  CHAP-Password, and MUST NOT contain both.

  The following table defines the meaning of the above table entries.

0     This attribute MUST NOT be present in packet.
0+    Zero or more instances of this attribute MAY be present in packet.
0-1   Zero or one instance of this attribute MAY be present in packet.
1     Exactly one instance of this attribute MUST be present in packet.

6.  Examples

  A few examples are presented to illustrate the flow of packets and
  use of typical attributes.  These examples are not intended to be
  exhaustive, many others are possible.

6.1.  User Telnet to Specified Host

  The NAS at 192.168.1.16 sends an Access-Request UDP packet to the
  RADIUS Server for a user named nemo logging in on port 3.

     Code = 1        (Access-Request)
     ID = 0
     Request Authenticator = {16 octet random number}
     Attributes:
         User-Name = "nemo"
         User-Password = {16 octets of Password padded at end with nulls,
                     XORed with MD5(shared secret|Request Authenticator)}
         NAS-IP-Address = 192.168.1.16
         NAS-Port = 3


  The RADIUS server authenticates nemo, and sends an Access-Accept UDP
  packet to the NAS telling it to telnet nemo to host 192.168.1.3.

     Code = 2        (Access-Accept)
     ID = 0          (same as in Access-Request)
     Response Authenticator = {16-octet MD-5 checksum of the code (2),
                     id (0), the Request Authenticator from above, the
                     attributes in this reply, and the shared secret}
     Attributes:
         Service-Type = Login-User
         Login-Service = Telnet
         Login-Host = 192.168.1.3







Rigney, et. al.              Informational                     [Page 59]

RFC 2058                         RADIUS                     January 1997


6.2.  Framed User Authenticating with CHAP

  The NAS at 192.168.1.16 sends an Access-Request UDP packet to the
  RADIUS Server for a user named flopsy logging in on port 20 with PPP,
  authenticating using CHAP.  The NAS sends along the Service-Type and
  Framed-Protocol attributes as a hint to the RADIUS server that this
  user is looking for PPP, although the NAS is not required to do so.

     Code = 1        (Access-Request)
     ID = 1
     Request Authenticator = {16 octet random number also used as
                              CHAP challenge}
     Attributes:
         User-Name = "flopsy"
         CHAP-Password = {1 octet CHAP ID followed by 16 octet
                          CHAP response}
         NAS-IP-Address = 192.168.1.16
         NAS-Port = 20
         Service-Type = Framed-User
         Framed-Protocol = PPP

  The RADIUS server authenticates flopsy, and sends an Access-Accept
  UDP packet to the NAS telling it to start PPP service and assign an
  address for the user out of its dynamic address pool.

     Code = 2        (Access-Accept)
     ID = 1          (same as in Access-Request)
     Response Authenticator = {16-octet MD-5 checksum of the code (2),
                     id (1), the Request Authenticator from above, the
                     attributes in this reply, and the shared secret}
     Attributes:
         Service-Type = Framed-User
         Framed-Protocol = PPP
         Framed-IP-Address = 255.255.255.254
         Framed-Routing = None
         Framed-Compression = 1      (VJ TCP/IP Header Compression)
         Framed-MTU = 1500














Rigney, et. al.              Informational                     [Page 60]

RFC 2058                         RADIUS                     January 1997


6.3.  User with Challenge-Response card

  The NAS at 192.168.1.16 sends an Access-Request UDP packet to the
  RADIUS Server for a user named mopsy logging in on port 7.

Code = 1        (Access-Request)
ID = 2
Request Authenticator = {16 octet random number}
Attributes:
   User-Name = "mopsy"
   User-Password = {16 octets of Password padded at end with nulls,
               XORed with MD5(shared secret|Request Authenticator)}
   NAS-IP-Address = 192.168.1.16
   NAS-Port = 7

  The RADIUS server decides to challenge mopsy, sending back a
  challenge string and looking for a response.  The RADIUS server
  therefore and sends an Access-Challenge UDP packet to the NAS.

Code = 11       (Access-Challenge}
ID = 2          (same as in Access-Request)
Response Authenticator = {16-octet MD-5 checksum of the code (11),
               id (2), the Request Authenticator from above, the
               attributes in this reply, and the shared secret}
Attributes:
   Reply-Message = "Challenge 32769430.  Enter response at prompt."
   State =     {Magic Cookie to be returned along with user's response}

  The user enters his response, and the NAS send a new Access-Request
  with that response, and includes the State Attribute.

Code = 1        (Access-Request)
ID = 3          (Note that this changes)
Request Authenticator = {NEW 16 octet random number}
Attributes:
   User-Name = "mopsy"
   User-Password = {16 octets of Response padded at end with
               nulls, XORed with MD5 checksum of shared secret
               plus above Request Authenticator}
   NAS-IP-Address = 192.168.1.16
   NAS-Port = 7
   State =     {Magic Cookie from Access-Challenge packet, unchanged}









Rigney, et. al.              Informational                     [Page 61]

RFC 2058                         RADIUS                     January 1997


  The Response was incorrect, so the RADIUS server tells the NAS to
  reject the login attempt.

     Code = 3        (Access-Reject)
     ID = 3          (same as in Access-Request)
     Response Authenticator = {16-octet MD-5 checksum of the code (3),
                     id (3), the Request Authenticator from above, the
                     attributes in this reply if any, and the shared
                      secret}
     Attributes:
             (none, although a Reply-Message could be sent)

Security Considerations

  Security issues are the primary topic of this document.

  In practice, within or associated with each RADIUS server, there is a
  database which associates "user" names with authentication
  information ("secrets").  It is not anticipated that a particular
  named user would be authenticated by multiple methods.  This would
  make the user vulnerable to attacks which negotiate the least secure
  method from among a set.  Instead, for each named user there should
  be an indication of exactly one method used to authenticate that user
  name.  If a user needs to make use of different authentication
  methods under different circumstances, then distinct user names
  SHOULD be employed, each of which identifies exactly one
  authentication method.

  Passwords and other secrets should be stored at the respective ends
  such that access to them is as limited as possible.  Ideally, the
  secrets should only be accessible to the process requiring access in
  order to perform the authentication.

  The secrets should be distributed with a mechanism that limits the
  number of entities that handle (and thus gain knowledge of) the
  secret.  Ideally, no unauthorized person should ever gain knowledge
  of the secrets.  It is possible to achieve this with SNMP Security
  Protocols [8], but such a mechanism is outside the scope of this
  specification.

  Other distribution methods are currently undergoing research and
  experimentation.  The SNMP Security document [8] also has an
  excellent overview of threats to network protocols.








Rigney, et. al.              Informational                     [Page 62]

RFC 2058                         RADIUS                     January 1997


References

  [1]   Rivest, R., and S. Dusse, "The MD5 Message-Digest Algorithm",
        RFC 1321, MIT Laboratory for Computer Science, RSA Data
        Security Inc., April 1992.

  [2]   Postel, J., "User Datagram Protocol", STD 6, RFC 768,
        USC/Information Sciences Institute, August 1980.

  [3]   Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC
        1700, USC/Information Sciences Institute, October 1994.

  [4]   Kaufman, C., Perlman, R., and Speciner, M., "Network Security:
        Private Communications in a Public World", Prentice Hall, March
        1995, ISBN 0-13-061466-1.

  [5]   Jacobson, V., "Compressing TCP/IP headers for low-speed serial
        links", RFC 1144, Lawrence Berkeley Laboratory, February 1990.

  [6]   ISO 8859. International Standard -- Information Processing --
        8-bit Single-Byte Coded Graphic Character Sets -- Part 1: Latin
        Alphabet No. 1, ISO 8859-1:1987.
        <URL:http://www.iso.ch/cate/d16338.html>

  [7]   Sklower, K., Lloyd, B., McGregor, G., and Carr, D., "The PPP
        Multilink Protocol (MP)", RFC 1717, University of California
        Berkeley, Lloyd Internetworking, Newbridge Networks
        Corporation, November 1994.

  [8]   Galvin, J., McCloghrie, K., and J. Davin, "SNMP Security
        Protocols", RFC 1352, Trusted Information Systems, Inc., Hughes
        LAN Systems, Inc., MIT Laboratory for Computer Science, July
        1992.

  [9]   Rigney, C., "RADIUS Accounting", RFC 2059, January 1997.

Acknowledgments

  RADIUS was originally developed by Livingston Enterprises for their
  PortMaster series of Network Access Servers.











Rigney, et. al.              Informational                     [Page 63]

RFC 2058                         RADIUS                     January 1997


Chair's Address

  The working group can be contacted via the current chair:

  Carl Rigney
  Livingston Enterprises
  6920 Koll Center Parkway, Suite 220
  Pleasanton, California  94566

  Phone: +1 510 426 0770
  EMail: [email protected]

Authors' Addresses

  Questions about this memo can also be directed to:

  Carl Rigney
  Livingston Enterprises
  6920 Koll Center Parkway, Suite 220
  Pleasanton, California  94566

  Phone: +1 510 426 0770
  EMail: [email protected]


  Allan C. Rubens
  Merit Network, Inc.
  4251 Plymouth Road
  Ann Arbor, Michigan  48105-2785

  EMail: [email protected]


  William Allen Simpson
  Daydreamer
  Computer Systems Consulting Services
  1384 Fontaine
  Madison Heights, Michigan  48071

  EMail: [email protected]


  Steve Willens
  Livingston Enterprises
  6920 Koll Center Parkway, Suite 220
  Pleasanton, California  94566

  EMail: [email protected]



Rigney, et. al.              Informational                     [Page 64]