Network Working Group                                            L. Berc
Request for Comments: 2035                 Digital Equipment Corporation
Category: Standards Track                                      W. Fenner
                                                             Xerox PARC
                                                           R. Frederick
                                                             Xerox PARC
                                                             S. McCanne
                                           Lawrence Berkeley Laboratory
                                                           October 1996


             RTP Payload Format for JPEG-compressed Video

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  This memo describes the RTP payload format for JPEG video streams.
  The packet format is optimized for real-time video streams where
  codec parameters change rarely from frame to frame.

  This document is a product of the Audio-Video Transport working group
  within the Internet Engineering Task Force.  Comments are solicited
  and should be addressed to the working group's mailing list at rem-
  [email protected] and/or the author(s).

1.  Introduction

  The Joint Photographic Experts Group (JPEG) standard [1,2,3] defines
  a family of compression algorithms for continuous-tone, still images.
  This still image compression standard can be applied to video by
  compressing each frame of video as an independent still image and
  transmitting them in series.  Video coded in this fashion is often
  called Motion-JPEG.

  We first give an overview of JPEG and then describe the specific
  subset of JPEG that is supported in RTP and the mechanism by which
  JPEG frames are carried as RTP payloads.

  The JPEG standard defines four modes of operation: the sequential DCT
  mode, the progressive DCT mode, the lossless mode, and the
  hierarchical mode.  Depending on the mode, the image is represented



Berc, et. al.               Standards Track                     [Page 1]

RFC 2035           RTP Payload Format for JPEG Video        October 1996


  in one or more passes.  Each pass (called a frame in the JPEG
  standard) is further broken down into one or more scans.  Within each
  scan, there are one to four components,which represent the three
  components of a color signal (e.g., "red, green, and blue", or a
  luminance signal and two chromanince signals).  These components can
  be encoded as separate scans or interleaved into a single scan.

  Each frame and scan is preceded with a header containing optional
  definitions for compression parameters like quantization tables and
  Huffman coding tables.  The headers and optional parameters are
  identified with "markers" and comprise a marker segment; each scan
  appears as an entropy-coded bit stream within two marker segments.
  Markers are aligned to byte boundaries and (in general) cannot appear
  in the entropy-coded segment, allowing scan boundaries to be
  determined without parsing the bit stream.

  Compressed data is represented in one of three formats: the
  interchange format, the abbreviated format, or the table-
  specification format.  The interchange format contains definitions
  for all the table used in the by the entropy-coded segments, while
  the abbreviated format might omit some assuming they were defined
  out-of-band or by a "previous" image.

  The JPEG standard does not define the meaning or format of the
  components that comprise the image.  Attributes like the color space
  and pixel aspect ratio must be specified out-of-band with respect to
  the JPEG bit stream.  The JPEG File Interchange Format (JFIF) [4] is
  a defacto standard that provides this extra information using an
  application marker segment (APP0).  Note that a JFIF file is simply a
  JPEG interchange format image along with the APP0 segment.  In the
  case of video, additional parameters must be defined out-of-band
  (e.g., frame rate, interlaced vs. non-interlaced, etc.).

  While the JPEG standard provides a rich set of algorithms for
  flexible compression, cost-effective hardware implementations of the
  full standard have not appeared.  Instead, most hardware JPEG video
  codecs implement only a subset of the sequential DCT mode of
  operation.  Typically, marker segments are interpreted in software
  (which "re-programs" the hardware) and the hardware is presented with
  a single, interleaved entropy-coded scan represented in the YUV color
  space.

2.  JPEG Over RTP

  To maximize interoperability among hardware-based codecs, we assume
  the sequential DCT operating mode [1,Annex F] and restrict the set of
  predefined RTP/JPEG "type codes" (defined below) to single-scan,
  interleaved images.  While this is more restrictive than even



Berc, et. al.               Standards Track                     [Page 2]

RFC 2035           RTP Payload Format for JPEG Video        October 1996


  baseline JPEG, many hardware implementation fall short of the
  baseline specification (e.g., most hardware cannot decode non-
  interleaved scans).

  In practice, most of the table-specification data rarely changes from
  frame to frame within a single video stream.  Therefore, RTP/JPEG
  data is represented in abbreviated format, with all of the tables
  omitted from the bit stream.  Each image begins immediately with the
  (single) entropy-coded scan.  The information that would otherwise be
  in both the frame and scan headers is represented entirely within a
  64-bit RTP/JPEG header (defined below) that lies between the RTP
  header and the JPEG scan and is present in every packet.

  While parameters like Huffman tables and color space are likely to
  remain fixed for the lifetime of the video stream, other parameters
  should be allowed to vary, notably the quantization tables and image
  size (e.g., to implement rate-adaptive transmission or allow a user
  to adjust the "quality level" or resolution manually).  Thus explicit
  fields in the RTP/JPEG header are allocated to represent this
  information.  Since only a small set of quantization tables are
  typically used, we encode the entire set of quantization tables in a
  small integer field.  The image width and height are encoded
  explicitly.

  Because JPEG frames are typically larger than the underlying
  network's maximum packet size, frames must often be fragmented into
  several packets.  One approach is to allow the network layer below
  RTP (e.g., IP) to perform the fragmentation.  However, this precludes
  rate-controlling the resulting packet stream or partial delivery in
  the presence of loss.  For example, IP will not deliver a fragmented
  datagram to the application if one or more fragments is lost, or IP
  might fragment an 8000 byte frame into a burst of 8 back-to-back
  packets.  Instead, RTP/JPEG defines a simple fragmentation and
  reassembly scheme at the RTP level.

3.  RTP/JPEG Packet Format

  The RTP timestamp is in units of 90000Hz.  The same timestamp must
  appear across all fragments of a single frame.  The RTP marker bit is
  set in the last packet of a frame.











Berc, et. al.               Standards Track                     [Page 3]

RFC 2035           RTP Payload Format for JPEG Video        October 1996


3.1.  JPEG header

  A special header is added to each packet that immediately follows the
  RTP header:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | Type specific |              Fragment Offset                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |      Type     |       Q       |     Width     |     Height    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

3.1.1.  Type specific: 8 bits

  Interpretation depends on the value of the type field.

3.1.2.  Fragment Offset: 24 bits

  The Fragment Offset is the data offset in bytes of the current packet
  in the JPEG scan.

3.1.3.  Type: 8 bits

  The type field specifies the information that would otherwise be
  present in a JPEG abbreviated table-specification as well as the
  additional JFIF-style parameters not defined by JPEG.  Types 0-127
  are reserved as fixed, well-known mappings to be defined by this
  document and future revisions of this document.  Types 128-255 are
  free to be dynamically defined by a session setup protocol (which is
  beyond the scope of this document).

3.1.4.  Q: 8 bits

  The Q field defines the quantization tables for this frame using an
  algorithm that determined by the Type field (see below).

3.1.5.  Width: 8 bits

  This field encodes the width of the image in 8-pixel multiples (e.g.,
  a width of 40 denotes an image 320 pixels wide).

3.1.6.  Height: 8 bits

  This field encodes the height of the image in 8-pixel multiples
  (e.g., a height of 30 denotes an image 240 pixels tall).





Berc, et. al.               Standards Track                     [Page 4]

RFC 2035           RTP Payload Format for JPEG Video        October 1996


3.1.7.  Data

  The data following the RTP/JPEG header is an entropy-coded segment
  consisting of a single scan.  The scan header is not present and is
  inferred from the RTP/JPEG header.  The scan is terminated either
  implicitly (i.e., the point at which the image is fully parsed), or
  explicitly with an EOI marker.  The scan may be padded to arbitrary
  length with undefined bytes.  (Existing hardware codecs generate
  extra lines at the bottom of a video frame and removal of these lines
  would require a Huffman-decoding pass over the data.)

  As defined by JPEG, restart markers are the only type of marker that
  may appear embedded in the entropy-coded segment.  The "type code"
  determines whether a restart interval is defined, and therefore
  whether restart markers may be present. It also determines if the
  restart intervals will be aligned with RTP packets, allowing for
  partial decode of frames, thus increasing resiliance to packet drop.
  If restart markers are present, the 6-byte DRI segment (define
  restart interval marker [1, Sec. B.2.4.4] precedes the scan).

  JPEG markers appear explicitly on byte aligned boundaries beginning
  with an 0xFF.  A "stuffed" 0x00 byte follows any 0xFF byte generated
  by the entropy coder [1, Sec. B.1.1.5].

4.  Discussion

4.1.  The Type Field

  The Type field defines the abbreviated table-specification and
  additional JFIF-style parameters not defined by JPEG, since they are
  not present in the body of the transmitted JPEG data.  The Type field
  must remain constant for the duration of a session.

  Six type codes are currently defined.  They correspond to an
  abbreviated table-specification indicating the "Baseline DCT
  sequential" mode, 8-bit samples, square pixels, three components in
  the YUV color space, standard Huffman tables as defined in [1, Annex
  K.3], and a single interleaved scan with a scan component selector
  indicating components 0, 1, and 2 in that order.  The Y, U, and V
  color planes correspond to component numbers 0, 1, and 2,
  respectively.  Component 0 (i.e., the luminance plane) uses Huffman
  table number 0 and quantization table number 0 (defined below) and
  components 1 and 2 (i.e., the chrominance planes) use Huffman table
  number 1 and quantization table number 1 (defined below).

  Additionally, video is non-interlaced and unscaled (i.e., the aspect
  ratio is determined by the image width and height).  The frame rate
  is variable and explicit via the RTP timestamp.



Berc, et. al.               Standards Track                     [Page 5]

RFC 2035           RTP Payload Format for JPEG Video        October 1996


  Six RTP/JPEG types are currently defined that assume all of the
  above.  The odd types have different JPEG sampling factors from the
  even ones:

                       horizontal   vertical
          types   comp  samp. fact. samp. fact.
         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
         |  0/2/4  |  0  |     2     |   1   |
         |  0/2/4  |  1  |     1     |   1   |
         |  0/2/4  |  2  |     1     |   1   |
         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
         |  1/3/5  |  0  |     2     |   2   |
         |  1/3/5  |  1  |     1     |   1   |
         |  1/3/5  |  2  |     1     |   1   |
         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  These sampling factors indicate that the chromanince components of
  type 0/2/4 video is downsampled horizontally by 2 (often called
  4:2:2) while the chrominance components of type 1/3/5 video are
  downsampled both horizontally and vertically by 2 (often called
  4:2:0).

  The three pairs of types (0/1), (2/3) and (4/5) differ from each
  other as follows:

  0/1 : No restart markers are present in the entropy data.
        No restriction is placed on the fragmentation of the stream
        into RTP packets.
        The type specific field is unused and must be zero.

  2/3 : Restart markers are present in the entropy data.
        The entropy data is preceded by a DRI marker segment, defining
        the restart interval.
        No restriction is placed on the fragmentation of the stream
        into RTP packets.
        The type specific field is unused and must be zero.















Berc, et. al.               Standards Track                     [Page 6]

RFC 2035           RTP Payload Format for JPEG Video        October 1996


  4/5 : Restart markers are present in the entropy data.
        The entropy data is preceded by a DRI marker segment, defining
        the restart interval.
        Restart intervals are be sent as separate (possibly multiple)
        RTP packets.
        The type specific field (TSPEC) is used as follows:
            A restart interval count (RCOUNT) is defined, which
            starts at zero, and is incremented for each restart
            interval in the frame.

            The first packet of a restart interval gets TSPEC = RCOUNT.
            Subsequent packets of the restart interval get TSPEC = 254,
            except the final packet, which gets TSPEC = 255.

  Additional types in the range 128-255 may be defined by external
  means, such as a session protocol.

  Appendix B contains C source code for transforming the RTP/JPEG
  header parameters into the JPEG frame and scan headers that are
  absent from the data payload.

4.2.  The Q Field

  The quantization tables used in the decoding process are
  algorithmically derived from the Q field.  The algorithm used depends
  on the type field but only one algorithm is currently defined for the
  two types.

  Both type 0 and type 1 JPEG assume two quantizations tables.  These
  tables are chosen as follows.  For 1 <= Q <= 99, the Independent JPEG
  Group's formula [5] is used to produce a scale factor S as:

       S = 5000 / Q          for  1 <= Q <= 50
         = 200 - 2 * Q       for 51 <= Q <= 99

  This value is then used to scale Tables K.1 and K.2 from [1]
  (saturating each value to 8-bits) to give quantization table numbers
  0 and 1, respectively.  C source code is provided in Appendix A to
  compute these tables.

  For Q >= 100, a dynamically defined quantization table is used, which
  might be specified by a session setup protocol.  (This session
  protocol is beyond the scope of this document).  It is expected that
  the standard quantization tables will handle most cases in practice,
  and dynamic tables will be used rarely.  Q = 0 is reserved.






Berc, et. al.               Standards Track                     [Page 7]

RFC 2035           RTP Payload Format for JPEG Video        October 1996


4.3.  Fragmentation and Reassembly

  Since JPEG frames are large, they must often be fragmented.  Frames
  should be fragmented into packets in a manner avoiding fragmentation
  at a lower level.  When using restart markers, frames should be
  fragmented such that each packet starts with a restart interval (see
  below).

  Each packet that makes up a single frame has the same timestamp.  The
  fragment offset field is set to the byte offset of this packet within
  the original frame.  The RTP marker bit is set on the last packet in
  a frame.

  An entire frame can be identified as a sequence of packets beginning
  with a packet having a zero fragment offset and ending with a packet
  having the RTP marker bit set.  Missing packets can be detected
  either with RTP sequence numbers or with the fragment offset and
  lengths of each packet.  Reassembly could be carried out without the
  offset field (i.e., using only the RTP marker bit and sequence
  numbers), but an efficient single-copy implementation would not
  otherwise be possible in the presence of misordered packets.
  Moreover, if the last packet of the previous frame (containing the
  marker bit) were dropped, then a receiver could not detect that the
  current frame is entirely intact.

4.4.  Restart Markers

  Restart markers indicate a point in the JPEG stream at which the
  Huffman codec and DC predictors  are reset, allowing partial decoding
  starting at that point.  The use of restart markers allows for
  robustness in the face of packet loss.

  RTP/JPEG Types 4/5 allow for partial decode of frames, due to the
  alignment of restart intervals with RTP packets. The decoder knows it
  has a whole restart interval when it gets sequence of packets with
  contiguous RTP sequence numbers, starting with TSPEC<254 (RCOUNT) and
  either ending with TSPEC==255, or TSPEC<255 and next packet's
  TSPEC<254 (or end of frame).

  It can then decompress the RST interval, and paint it. The X and Y
  tile offsets of the first MCU in the interval are given by:

  tile_offset = RCOUNT * restart_interval * 2
  x_offset    = tile_offset % frame_width_in_tiles
  y_offset    = tile_offset / frame_width_in_tiles

  The MCUs in a restart interval may span multiple tile rows.




Berc, et. al.               Standards Track                     [Page 8]

RFC 2035           RTP Payload Format for JPEG Video        October 1996


  Decoders can, however, treat types 4/5 as types 2/3, simply
  reassembling the entire frame and then decoding.

5.  Security Considerations

  Security issues are not discussed in this memo.

6.  Authors' Addresses

  Lance M. Berc
  Systems Research Center
  Digital Equipment Corporation
  130 Lytton Ave
  Palo Alto CA 94301

  Phone: +1 415 853 2100
  EMail: [email protected]


  William C. Fenner
  Xerox PARC
  3333 Coyote Hill Road
  Palo Alto, CA 94304

  Phone: +1 415 812 4816
  EMail: [email protected]


  Ron Frederick
  Xerox PARC
  3333 Coyote Hill Road
  Palo Alto, CA 94304

  Phone: +1 415 812 4459
  EMail: [email protected]


  Steven McCanne
  Lawrence Berkeley Laboratory
  M/S 46A-1123
  One Cyclotron Road
  Berkeley, CA 94720

  Phone: +1 510 486 7520
  EMail: [email protected]






Berc, et. al.               Standards Track                     [Page 9]

RFC 2035           RTP Payload Format for JPEG Video        October 1996


7.  References

[1]  ISO DIS 10918-1. Digital Compression and Coding of Continuous-tone
    Still Images (JPEG), CCITT Recommendation T.81.

[2]  William B. Pennebaker, Joan L. Mitchell, JPEG: Still Image Data
    Compression Standard, Van Nostrand Reinhold, 1993.

[3]  Gregory K. Wallace, The JPEG Sill Picture Compression Standard,
    Communications of the ACM, April 1991, Vol 34, No. 1, pp. 31-44.

[4]  The JPEG File Interchange Format.  Maintained by C-Cube Microsys-
    tems, Inc., and available in
    ftp://ftp.uu.net/graphics/jpeg/jfif.ps.gz.

[5]  Tom Lane et. al., The Independent JPEG Group software JPEG codec.
    Source code available in
    ftp://ftp.uu.net/graphics/jpeg/jpegsrc.v5.tar.gz.

































Berc, et. al.               Standards Track                    [Page 10]

RFC 2035           RTP Payload Format for JPEG Video        October 1996


Appendix A

  The following code can be used to create a quantization table from a
  Q factor:

/*
* Table K.1 from JPEG spec.
*/
static const int jpeg_luma_quantizer[64] = {
       16, 11, 10, 16, 24, 40, 51, 61,
       12, 12, 14, 19, 26, 58, 60, 55,
       14, 13, 16, 24, 40, 57, 69, 56,
       14, 17, 22, 29, 51, 87, 80, 62,
       18, 22, 37, 56, 68, 109, 103, 77,
       24, 35, 55, 64, 81, 104, 113, 92,
       49, 64, 78, 87, 103, 121, 120, 101,
       72, 92, 95, 98, 112, 100, 103, 99
};

/*
* Table K.2 from JPEG spec.
*/
static const int jpeg_chroma_quantizer[64] = {
       17, 18, 24, 47, 99, 99, 99, 99,
       18, 21, 26, 66, 99, 99, 99, 99,
       24, 26, 56, 99, 99, 99, 99, 99,
       47, 66, 99, 99, 99, 99, 99, 99,
       99, 99, 99, 99, 99, 99, 99, 99,
       99, 99, 99, 99, 99, 99, 99, 99,
       99, 99, 99, 99, 99, 99, 99, 99,
       99, 99, 99, 99, 99, 99, 99, 99
};

/*
* Call MakeTables with the Q factor and two int[64] return arrays
*/
void
MakeTables(int q, u_char *lum_q, u_char *chr_q)
{
 int i;
 int factor = q;

 if (q < 1) factor = 1;
 if (q > 99) factor = 99;
 if (q < 50)
   q = 5000 / factor;
 else
   q = 200 - factor*2;



Berc, et. al.               Standards Track                    [Page 11]

RFC 2035           RTP Payload Format for JPEG Video        October 1996


 for (i=0; i < 64; i++) {
   int lq = ( jpeg_luma_quantizer[i] * q + 50) / 100;
   int cq = ( jpeg_chroma_quantizer[i] * q + 50) / 100;

   /* Limit the quantizers to 1 <= q <= 255 */
   if ( lq < 1) lq = 1;
   else if ( lq > 255) lq = 255;
   lum_q[i] = lq;

   if ( cq < 1) cq = 1;
   else if ( cq > 255) cq = 255;
   chr_q[i] = cq;
 }
}

Appendix B

  The following routines can be used to create the JPEG marker segments
  corresponding to the table-specification data that is absent from the
  RTP/JPEG body.

u_char lum_dc_codelens[] = {
       0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
};

u_char lum_dc_symbols[] = {
       0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
};

u_char lum_ac_codelens[] = {
       0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d,
};

u_char lum_ac_symbols[] = {
       0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
       0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
       0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
       0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
       0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
       0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
       0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
       0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
       0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
       0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
       0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
       0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
       0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
       0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,



Berc, et. al.               Standards Track                    [Page 12]

RFC 2035           RTP Payload Format for JPEG Video        October 1996


       0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
       0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
       0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
       0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
       0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
       0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
       0xf9, 0xfa,
};

u_char chm_dc_codelens[] = {
       0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
};

u_char chm_dc_symbols[] = {
       0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
};

u_char chm_ac_codelens[] = {
       0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77,
};

u_char chm_ac_symbols[] = {
       0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
       0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
       0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
       0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
       0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
       0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
       0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
       0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
       0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
       0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
       0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
       0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
       0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
       0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
       0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
       0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
       0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
       0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
       0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
       0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
       0xf9, 0xfa,
};

u_char *
MakeQuantHeader(u_char *p, u_char *qt, int tableNo)
{



Berc, et. al.               Standards Track                    [Page 13]

RFC 2035           RTP Payload Format for JPEG Video        October 1996


       *p++ = 0xff;
       *p++ = 0xdb;            /* DQT */
       *p++ = 0;               /* length msb */
       *p++ = 67;              /* length lsb */
       *p++ = tableNo;
       memcpy(p, qt, 64);
       return (p + 64);
}

u_char *
MakeHuffmanHeader(u_char *p, u_char *codelens, int ncodes, u_char *symbols,
                 int nsymbols, int tableNo, int tableClass)
{
       *p++ = 0xff;
       *p++ = 0xc4;            /* DHT */
       *p++ = 0;               /* length msb */
       *p++ = 3 + ncodes + nsymbols; /* length lsb */
       *p++ = tableClass << 4 | tableNo;
       memcpy(p, codelens, ncodes);
       p += ncodes;
       memcpy(p, symbols, nsymbols);
       p += nsymbols;
       return (p);
}

/*
* Given an RTP/JPEG type code, q factor, width, and height,
* generate a frame and scan headers that can be prepended
* to the RTP/JPEG data payload to produce a JPEG compressed
* image in interchange format (except for possible trailing
* garbage and absence of an EOI marker to terminate the scan).
*/
int MakeHeaders(u_char *p, int type, int q, int w, int h)
{
       u_char *start = p;
       u_char lqt[64];
       u_char cqt[64];

       /* convert from blocks to pixels */
       w <<= 3;
       h <<= 3;

       MakeTables(q, lqt, cqt);

       *p++ = 0xff;
       *p++ = 0xd8;            /* SOI */

       p = MakeQuantHeader(p, lqt, 0);



Berc, et. al.               Standards Track                    [Page 14]

RFC 2035           RTP Payload Format for JPEG Video        October 1996


       p = MakeQuantHeader(p, cqt, 1);

       p = MakeHuffmanHeader(p, lum_dc_codelens,
                             sizeof(lum_dc_codelens),
                             lum_dc_symbols,
                             sizeof(lum_dc_symbols), 0, 0);
       p = MakeHuffmanHeader(p, lum_ac_codelens,
                             sizeof(lum_ac_codelens),
                             lum_ac_symbols,
                             sizeof(lum_ac_symbols), 0, 1);
       p = MakeHuffmanHeader(p, chm_dc_codelens,
                             sizeof(chm_dc_codelens),
                             chm_dc_symbols,
                             sizeof(chm_dc_symbols), 1, 0);
       p = MakeHuffmanHeader(p, chm_ac_codelens,
                             sizeof(chm_ac_codelens),
                             chm_ac_symbols,
                             sizeof(chm_ac_symbols), 1, 1);

       *p++ = 0xff;
       *p++ = 0xc0;            /* SOF */
       *p++ = 0;               /* length msb */
       *p++ = 17;              /* length lsb */
       *p++ = 8;               /* 8-bit precision */
       *p++ = h >> 8;          /* height msb */
       *p++ = h;               /* height lsb */
       *p++ = w >> 8;          /* width msb */
       *p++ = w;               /* wudth lsb */
       *p++ = 3;               /* number of components */
       *p++ = 0;               /* comp 0 */
       if (type == 0)
               *p++ = 0x21;    /* hsamp = 2, vsamp = 1 */
       else
               *p++ = 0x22;    /* hsamp = 2, vsamp = 2 */
       *p++ = 0;               /* quant table 0 */
       *p++ = 1;               /* comp 1 */
       *p++ = 0x11;            /* hsamp = 1, vsamp = 1 */
       *p++ = 1;               /* quant table 1 */
       *p++ = 2;               /* comp 2 */
       *p++ = 0x11;            /* hsamp = 1, vsamp = 1 */
       *p++ = 1;               /* quant table 1 */

       *p++ = 0xff;
       *p++ = 0xda;            /* SOS */
       *p++ = 0;               /* length msb */
       *p++ = 12;              /* length lsb */
       *p++ = 3;               /* 3 components */
       *p++ = 0;               /* comp 0 */



Berc, et. al.               Standards Track                    [Page 15]

RFC 2035           RTP Payload Format for JPEG Video        October 1996


       *p++ = 0;               /* huffman table 0 */
       *p++ = 1;               /* comp 1 */
       *p++ = 0x11;            /* huffman table 1 */
       *p++ = 2;               /* comp 2 */
       *p++ = 0x11;            /* huffman table 1 */
       *p++ = 0;               /* first DCT coeff */
       *p++ = 63;              /* last DCT coeff */
       *p++ = 0;               /* sucessive approx. */

       return (p - start);
};








































Berc, et. al.               Standards Track                    [Page 16]