Network Working Group                                            D. Rand
Request for Comments: 1978                                        Novell
Category: Informational                                      August 1996


                  PPP Predictor Compression Protocol

Status of This Memo

  This memo provides information for the Internet community.  This memo
  does not specify an Internet standard of any kind.  Distribution of
  this memo is unlimited.

Abstract

  The Point-to-Point Protocol (PPP) [1] provides a standard method of
  encapsulating multiple protocol datagrams over point-to-point links.

  The PPP Compression Control Protocol [2] provides a method for
  transporting multi-protocol datagrams over PPP encapsulated links.

  This document describes the use of the Predictor data compression
  algorithm for compressing PPP encapsulated packets.

Table of Contents

    1.     Introduction ......................................    1
    2.     Licensing .........................................    2
    3.     Predictor Packets .................................    2
       3.1       Predictor theory ............................    2
       3.2       Encapsulation for Predictor type 1 ..........    7
       3.3       Encapsulation for Predictor type 2 ..........    8
    4.     Configuration Option Format .......................    9
    SECURITY CONSIDERATIONS ..................................    9
    REFERENCES ...............................................    9
    ACKNOWLEDGEMENTS .........................................    9
    CHAIR'S ADDRESS ..........................................    9
    AUTHOR'S ADDRESS .........................................    9

1.  Introduction

  Predictor is a high speed compression algorithm, available without
  license fees.  The compression ratio obtained using predictor is not
  as good as other compression algorithms, but it remains one of the
  fastest algorithms available.

  Note that although care has been taken to ensure that the following
  code does not infringe any patents, there is no assurance that it is



Rand                         Informational                      [Page 1]

RFC 1978                   Predictor Protocol                August 1996


  not covered by a patent.

2.  Licensing

  There are no license fees or costs associated with using the
  Predictor algorithm.

  Use the following code at your own risk.

3.  Predictor Packets

  Before any Predictor packets may be communicated, PPP must reach the
  Network-Layer Protocol phase, and the Compression Control Protocol
  must reach the Opened state.

  Exactly one Predictor datagram is encapsulated in the PPP Information
  field, where the PPP Protocol field indicates type hex 00FD
  (compressed datagram).

  The maximum length of the Predictor datagram transmitted over a PPP
  link is the same as the maximum length of the Information field of a
  PPP encapsulated packet.

  Prior to compression, the uncompressed data begins with the PPP
  Protocol number.  This value MAY be compressed when Protocol-Field-
  Compression is negotiated.

  PPP Link Control Protocol packets MUST NOT be send within compressed
  data.

3.1.  Predictor theory

  Predictor works by filling a guess table with values, based on the
  hash of the previous characters seen. Since we are either emitting
  the source data, or depending on the guess table, we add a flag bit
  for every byte of input, telling the decompressor if it should
  retrieve the byte from the compressed data stream, or the guess
  table. Blocking the input into groups of 8 characters means that we
  don't have to bit-insert the compressed output - a flag byte preceeds
  every 8 bytes of compressed data. Each bit of the flag byte
  corresponds to one byte of reconstructed data.

Take the source file:

000000    4141 4141 4141 410a  4141 4141 4141 410a    AAAAAAA.AAAAAAA.
000010    4141 4141 4141 410a  4141 4141 4141 410a    AAAAAAA.AAAAAAA.
000020    4142 4142 4142 410a  4241 4241 4241 420a    ABABABA.BABABAB.
000030    7878 7878 7878 780a                         xxxxxxx.



Rand                         Informational                      [Page 2]

RFC 1978                   Predictor Protocol                August 1996


Compressing the above data yields the following:

000000    6041 4141 4141 0a60  4141 4141 410a 6f41    `AAAAA.`AAAAA.oA
000010    0a6f 410a 4142 4142  4142 0a60 4241 4241    .oA.ABABAB.`BABA
000020    420a 6078 7878 7878  0a                     B.`xxxxx.

Reading the above data says:

flag = 0x60 - 2 bytes in this block were guessed correctly, 5 and 6.
    Reconstructed data is:    0 1 2 3 4 5 6 7
       File:                  A A A A A
       Guess table:                     A A
flag = 0x60 - 2 bytes in this block were guessed correctly, 5 and 6.
    Reconstructed data is:    0 1 2 3 4 5 6 7
       File:                  A A A A A
       Guess table:                     A A
flag = 0x6f - 6 bytes in this block were guessed correctly, 0-3, 5 and 6.
    Reconstructed data is:    0 1 2 3 4 5 6 7
       File:                          A
       Guess table:           A A A A   A A
flag = 0x6f - 6 bytes in this block were guessed correctly, 0-3, 5 and 6.
    Reconstructed data is:    0 1 2 3 4 5 6 7
       File:                          A
       Guess table:           A A A A   A A
flag = 0x41 - 2 bytes in this block were guessed correctly, 0 and 6.
    Reconstructed data is:    0 1 2 3 4 5 6 7
       File:                    B A B A B
       Guess table:           A           A
flag = 0x60 - 2 bytes in this block were guessed correctly, 5 and 6.
    Reconstructed data is:    0 1 2 3 4 5 6 7
       File:                  B A B A B
       Guess table:                     A B
flag = 0x60 - 2 bytes in this block were guessed correctly, 5 and 6
    Reconstructed data is:    0 1 2 3 4 5 6 7
       File:                  x x x x x
       Guess table:                     x x

  And now, on to the source - note that it has been modified to work
  with a split block. If your data stream can't be split within a block
  (e.g., compressing packets), then the code dealing with "final", and
  the memcpy are not required.  You can detect this situation (or
  errors, for that matter) by observing that the flag byte indicates
  that more data is required from the compressed data stream, but you
  are out of data (len in decompress is <= 0). It *is* ok if len == 0,
  and flags indicate guess table usage.

  #include <stdio.h>
  #ifdef __STDC__



Rand                         Informational                      [Page 3]

RFC 1978                   Predictor Protocol                August 1996


  #include <stdlib.h>
  #endif
  #include <string.h>
  /*
   * pred.c -- Test program for Dave Rand's rendition of the
   * predictor algorithm
   * Updated by: [email protected] (Ian Donaldson)
   * Updated by: Carsten Bormann <[email protected]>
   * Original  : Dave Rand <[email protected]>/<[email protected]>
   */

  /* The following hash code is the heart of the algorithm:
   * It builds a sliding hash sum of the previous 3-and-a-bit
   * characters which will be used to index the guess table.
   * A better hash function would result in additional compression,
   * at the expense of time.
   */
  #define HASH(x) Hash = (Hash << 4) ^ (x)

  static unsigned short int Hash;
  static unsigned char GuessTable[65536];

  static int
  compress(source, dest, len)
  unsigned char *source, *dest;
  int len;
  {
      int i, bitmask;
      unsigned char *flagdest, flags, *orgdest;

      orgdest = dest;
      while (len) {
          flagdest = dest++; flags = 0; /* All guess wrong initially */
          for (bitmask=1, i=0; i < 8 && len; i++, bitmask <<= 1) {
              if (GuessTable[Hash] == *source) {
                  flags |= bitmask; /* Guess was right - don't output */
              } else {
                  GuessTable[Hash] = *source;
                  *dest++ = *source; /* Guess wrong, output char */
              }
              HASH(*source++);len--;
          }
          *flagdest = flags;
      }
      return(dest - orgdest);
  }

  static int



Rand                         Informational                      [Page 4]

RFC 1978                   Predictor Protocol                August 1996


  decompress(source, dest, lenp, final)
  unsigned char *source, *dest;
  int *lenp, final;
  {
      int i, bitmask;
      unsigned char flags, *orgdest;
      int len = *lenp;
      orgdest = dest;
      while (len >= 9) {
          flags = *source++;
          for (i=0, bitmask = 1; i < 8; i++, bitmask <<= 1) {
              if (flags & bitmask) {
                  *dest = GuessTable[Hash];       /* Guess correct */
              } else {
                  GuessTable[Hash] = *source;     /* Guess wrong */
                  *dest = *source++;          /* Read from source */
                  len--;
              }
              HASH(*dest++);
          }
          len--;
      }
      while (final && len) {
          flags = *source++;
          len--;
          for (i=0, bitmask = 1; i < 8; i++, bitmask <<= 1) {
              if (flags & bitmask) {
                  *dest = GuessTable[Hash];       /* Guess correct */
              } else {
                  if (!len)
                      break;  /* we seem to be really done -- cabo */
                  GuessTable[Hash] = *source;     /* Guess wrong */
                  *dest = *source++;          /* Read from source */
                  len--;
              }
              HASH(*dest++);
          }
      }
      *lenp = len;
      return(dest - orgdest);
  }

  #define SIZ1 8192

  static void
  compress_file(f) FILE *f; {
      char bufp[SIZ1];
      char bufc[SIZ1/8*9+9];



Rand                         Informational                      [Page 5]

RFC 1978                   Predictor Protocol                August 1996


      int len1, len2;
      while ((len1 = fread(bufp, 1, SIZ1, f)) > 0) {
          len2 = compress((unsigned char *)bufp,
          (unsigned char *)bufc, len1);
          (void) fwrite(bufc, 1, len2, stdout);
      }
  }

  static void
  decompress_file(f) FILE *f; {
      char bufp[SIZ1+9];
      char bufc[SIZ1*9+9];
      int len1, len2, len3;

      len1 = 0;
      while ((len3 = fread(bufp+len1, 1, SIZ1, f)) > 0) {
          len1 += len3;
          len3 = len1;
          len2 = decompress((unsigned char *)bufp,
          (unsigned char *)bufc, &len1, 0);
          (void) fwrite(bufc, 1, len2, stdout);
          (void) memcpy(bufp, bufp+len3-len1, len1);
      }
      len2 = decompress((unsigned char *)bufp,
      (unsigned char *)bufc, &len1, 1);
      (void) fwrite(bufc, 1, len2, stdout);
  }

  int
  main(ac, av)
      int ac;
      char** av;
  {
      char **p = av+1;
      int dflag = 0;

      for (; --ac > 0; p++) {
          if (!strcmp(*p, "-d"))
              dflag = 1;
          else if (!strcmp(*p, "-"))
              (dflag?decompress_file:compress_file)(stdin);
          else {
              FILE *f = fopen(*p, "r");
              if (!f) {
                  perror(*p);
                  exit(1);
              }
              (dflag?decompress_file:compress_file)(f);



Rand                         Informational                      [Page 6]

RFC 1978                   Predictor Protocol                August 1996


              (void) fclose(f);
          }
      }
      return(0);
  }

3.2.  Encapsulation for Predictor type 1

  The correct encapsulation for type 1 compression is the protocol
  type, 1 bit indicating if the data is compressed or not, 15 bits of
  the uncompressed data length in octets, compressed data, and
  uncompressed CRC-16 of the two octets of unsigned length in network
  byte order, followed by the original, uncompressed data packet.

   0                   1
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | CCP Protocol Identifier       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |*| Uncompressed length (octets)|   * is compressed flag
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   1 means data is compressed
  | Compressed data...            |   0 means data is not compressed
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | CRC - 16                      |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  The CCP Protocol Identifier that starts the packet is always 0xfd.
  If PPP Protocol field compression has not be negotiated, it MUST be a
  16-bit field.

  The Compressed data is the Protocol Identifier and the Info fields of
  the original PPP packet described in [1], but not the Address,
  Control, FCS, or Flag.  The CCP Protocol field MAY be compressed as
  described in [1], regardless of whether the Protocol field of the CCP
  Protocol Identifier is compressed or whether PPP Protocol field
  compression has been negotiated.

  It is not required that any of the fields land on an even word
  boundary - the compressed data may be of any length.  If during the
  decode procedure, the CRC-16 does not match the decoded frame, it
  means that the compress or decompress process has become
  desyncronized.  This will happen as a result of a frame being lost in
  transit if LAPB is not used.  In this case, a new configure-request
  must be sent, and the CCP will drop out of the open state.  Upon
  receipt of the configure-ack, the predictor tables are cleared to
  zero, and compression can be resumed without data loss.





Rand                         Informational                      [Page 7]

RFC 1978                   Predictor Protocol                August 1996


3.3.  Encapsulation for Predictor type 2

  The correct encapsulation for type 2 compression is the protocol
  type, followed by the data stream.  Within the data stream is the
  current frame length (uncompressed), compressed data, and
  uncompressed CRC-16 of the two octets of unsigned length in network
  byte order, followed by the original, uncompressed data.  The data
  stream may be broken at any convenient place for encapsulation
  purposes.  With type 2 encapsulation, LAPB is almost essential for
  correct delivery.

   0                   1
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | CCP Protocol Identifier       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |*| Uncompressed length (octets)|   * is compressed flag
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+   1 means data is compressed
  | Compressed data...            |   0 means data is not compressed
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  | CRC-16                        |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |*| Uncompressed length (octets)|   * is compressed flag
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           ...

  The CCP Protocol Identifier that starts the packet is always 0xfd.
  If PPP Protocol field compression has not be negotiated, it MUST be a
  16-bit field.

  The Compressed data is the Protocol Identifier and the Info fields of
  the original PPP packet described in [1], but not the Address,
  Control, FCS, or Flag.  The CCP Protocol field MAY be compressed as
  described in [1], regardless of whether the Protocol field of the CCP
  Protocol Identifier is compressed or whether PPP Protocol field
  compression

  It is not required that any field land on an even word boundary - the
  compressed data may be of any length.  If during the decode
  procedure, the CRC-16 does not match the decoded frame, it means that
  the compress or decompress process has become desyncronized.  This
  will happen as a result of a frame being lost in transit if LAPB is
  not used.  In this case, a new configure-request must be sent, and
  the CCP will drop out of the open state.  Upon receipt of the
  configure-ack, the predictor tables are cleared to zero, and
  compression can be resumed without data loss.





Rand                         Informational                      [Page 8]

RFC 1978                   Predictor Protocol                August 1996


4.  Configuration Option Format

  There are no options for Predictor type one or two.

Security Considerations

  Security issues are not discussed in this memo.

References

     [1]   Simpson, W., "The Point-to-Point Protocol", STD 51, RFC
           1661, July 1994.

     [2]   Rand, D., "The PPP Compression Control Protocol (CCP)",
           RFC 1962, June 1996.

     [3]   Rand, D., "PPP Reliable Transmission", RFC 1663,
           July 1994.

Acknowledgments

  The predictor algorithm was originally implemented by Timo Raita, at
  the ACM SIG Conference, New Orleans, 1987.

  Bill Simpson helped with the document formatting.

Chair's Address

  The working group can be contacted via the current chair:

  Karl Fox
  Ascend Communications
  3518 Riverside Drive, Suite 101
  Columbus, Ohio 43221

  EMail: [email protected]

Author's Address

  Questions about this memo can also be directed to:

  Dave Rand
  Novell, Inc.
  2180 Fortune Drive
  San Jose, CA  95131

  +1 408 321-1259
  EMail: [email protected]



Rand                         Informational                      [Page 9]