Network Working Group                                           G. Meyer
Request for Comments: 1968                                Spider Systems
Category: Standards Track                                      June 1996


              The PPP Encryption Control Protocol (ECP)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  The Point-to-Point Protocol (PPP) [1] provides a standard method for
  transporting multi-protocol datagrams over point-to-point links.  PPP
  also defines an extensible Link Control Protocol.

  This document defines a method for negotiating data encryption over
  PPP links.

Conventions

  The following language conventions are used in the items of
  specification in this document:

  o  MUST -- the item is an absolute requirement of the specification.
     MUST is only used where it is actually required for interopera-
     tion, not to try to impose a particular method on implementors
     where not required for interoperability.

  o  SHOULD -- the item should be followed for all but exceptional cir-
     cumstances.

  o  MAY or optional -- the item is truly optional and may be followed
     or ignored according to the needs of the implementor.

     The words "should" and "may" are also used, in lower case, in
     their more ordinary senses.









Meyer                       Standards Track                     [Page 1]

RFC 1968                     PPP Encryption                    June 1996


Table of Contents

     1. Introduction ...........................................  2
     2. Encryption Control Protocol (ECP) ......................  2
         2.1 Sending Encrypted Datagrams .......................  3
     3. Additional Packets .....................................  4
         3.1 Reset-Request and Reset-Ack .......................  5
     4. ECP Configuration Options ..............................  6
         4.1 Proprietary Encryption OUI ........................  7
         4.2 Publicly Available Encryption Types ...............  8
         4.3 Negotiating an Encryption Algorithm ...............  9
     5. Security Considerations ................................ 10

1. Introduction

  In order to establish communications over a PPP link, each end of the
  link must first send LCP packets to configure and test the data link
  during Link Establishment phase.  After the link has been
  established, optional facilities may be negotiated as needed.

  One such facility is data encryption.  A wide variety of encryption
  methods may be negotiated, although typically only one method is used
  in each direction of the link.

  A different encryption algorithm may be negotiated in each direction,
  for speed, cost, memory or other considerations.

2. Encryption Control Protocol (ECP)

  The Encryption Control Protocol (ECP) is responsible for configuring
  and enabling data encryption algorithms on both ends of the point-
  to-point link.

  ECP uses the same packet exchange mechanism as the Link Control
  Protocol (LCP).  ECP packets may not be exchanged until PPP has
  reached the Network-Layer Protocol phase.  ECP packets received
  before this phase is reached should be silently discarded.

  The Encryption Control Protocol is exactly the same as LCP [1] with
  the following exceptions:

     Frame Modifications

        The packet may utilise any modifications to the basic frame
        format which have been negotiated during the Link Establishment
        phase.





Meyer                       Standards Track                     [Page 2]

RFC 1968                     PPP Encryption                    June 1996


     Data Link Layer Protocol Field

        Exactly one ECP packet is encapsulated in the PPP Information
        field, where the PPP Protocol field indicates type hex 8053
        (Encryption Control Protocol).

        When individual link data encryption is used in a multiple link
        connection to a single destination [2], the PPP Protocol field
        indicates type hex 8055 (Individual link Encryption Control
        Protocol).

     Code field

        ECP uses (decimal) codes 1 through 7 (Configure-Request,
        Configure-Ack, Configure-Nak, Configure-Reject, Terminate-
        Request, Terminate-Ack and Code-Reject); And may also use code
        14 (Reset-Request) and code 15 (Reset-Ack).  Other codes should
        be treated as unrecognised and should result in Code-Rejects.

     Negotiation

        ECP packets may not be exchanged until PPP has reached the
        Network-Layer Protocol phase.  An implementation should be
        prepared to wait for Authentication and Link Quality
        Determination to finish before timing out waiting for a
        Configure-Ack or other response.

        An implementation MUST NOT transmit data until ECP negotiation
        has completed successfully.  If ECP negotiation is not
        successful the link SHOULD be brought down.

     Configuration Option Types

        ECP has a distinct set of Configuration Options.

2.1 Sending Encrypted Datagrams

  Before any encrypted packets may be communicated, PPP must reach the
  Network-Layer Protocol phase, and the Encryption Control Protocol
  must reach the Opened state.

  An encrypted packet is encapsulated in the PPP Information field,
  where the PPP Protocol field indicates type hex 0053 (Encrypted
  datagram).

  When using multiple PPP links to a single destination [2], there are
  two methods of employing data encryption:




Meyer                       Standards Track                     [Page 3]

RFC 1968                     PPP Encryption                    June 1996


  o  The first method is to encrypt the data prior to sending it out
     through the multiple links.

     The PPP Protocol field MUST indicate type hex 0053.

  o  The second is to treat each link as a separate connection, that
     may or may not have encryption enabled.

     On links which have negotiated encryption, the PPP Protocol field
     MUST be type hex 0055 (Individual link encrypted datagram).

  Only one encryption algorithm in each direction is in use at a time,
  and that is negotiated prior to sending the first encrypted frame.
  The PPP Protocol field of the encrypted datagram indicates that the
  frame is encrypted, but not the algorithm with which it was
  encrypted.

  The maximum length of an encrypted packet transmitted over a PPP link
  is the same as the maximum length of the Information field of a PPP
  encapsulated packet.  If the encryption algorithm is likely to
  increase the size of the message beyond that, multilink should also
  be negotiated to allow fragmentation of the frames (even if only
  using a single link).

  If the encryption algorithm carries history between frames, the
  encryption algorithm must supply a way of determining if it is
  passing data reliably, or it must require the use of a reliable
  transport such as LAPB [3].

  Compression may also be negotiated using the Compression Control
  Protocol [5].  To ensure interoperability, plain text MUST be:

  o  First compressed.

  o  Then encrypted.

  This order has been chosen since it should result in smaller output
  and more secure encryption.

3. Additional Packets

  The Packet format and basic facilities are already defined for LCP
  [1].

  Up-to-date values of the ECP Code field are specified in the most
  recent "Assigned Numbers" RFC [4].  This specification concerns the
  following values:




Meyer                       Standards Track                     [Page 4]

RFC 1968                     PPP Encryption                    June 1996


        14      Reset-Request
        15      Reset-Ack

3.1 Reset-Request and Reset-Ack

  Description

     ECP includes Reset-Request and Reset-Ack Codes in order to provide
     a mechanism for indicating a decryption failure in one direction
     of a decrypted link without affecting traffic in the other
     direction.  Some encryption algorithms may not require this
     mechanism.

     Individual algorithms need to specify a mechanism for determining
     how to detect a decryption failure.  On initial detection of a
     decryption failure, an ECP implementation SHOULD transmit an ECP
     packet with the Code field set to 14 (Reset-Request).  The Data
     field may be filled with any desired data.

     Once a Reset-Request has been sent, any encrypted packets received
     are discarded.  Further Reset-Requests MAY be sent with the same
     Identifier, until a valid Reset-Ack is received.

     When the link is busy, one decryption error is usually followed by
     several more before the Reset-Ack can be received.  It is
     undesirable to transmit Reset-Requests more frequently than the
     round-trip-time of the link, since this will result in redundant
     Reset-Requests and Reset-Acks being transmitted and processed.
     The receiver MAY elect to limit transmission of Reset-Requests (to
     say one per second) while a Reset-Ack is outstanding.

     Upon reception of a Reset-Request, the transmitting encrypter is
     reset to an initial state.  An ECP packet MUST be transmitted with
     the Code field set to 15 (Reset-Ack), the Identifier field copied
     from the Reset-Request packet, and the Data field filled with any
     desired data.

     On receipt of a Reset-Ack, the receiving decrypter is reset to an
     initial state.  Since there may be several Reset-Acks in the pipe,
     the decrypter MUST be reset for each Reset-Ack which matches the
     currently expected identifier.

     A summary of the Reset-Request and Reset-Ack packet formats is
     shown below.  The fields are transmitted from left to right.







Meyer                       Standards Track                     [Page 5]

RFC 1968                     PPP Encryption                    June 1996


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |     Code      |  Identifier   |            Length             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    Data ...
      +-+-+-+-+


  Code

     14 for Reset-Request;

     15 for Reset-Ack.

  Identifier

     On transmission, the Identifier field MUST be changed whenever the
     content of the Data field changes, and whenever a valid reply has
     been received for a previous request.  For retransmissions, the
     Identifier SHOULD remain unchanged.

     On reception, the Identifier field of the Reset-Request is copied
     into the Identifier field of the Reset-Ack packet.

  Data

     The Data field is zero or more octets and contains uninterpreted
     data for use by the sender.  The data may consist of any binary
     value and may be of any length from zero to the peer's established
     MRU minus four.

4. ECP Configuration Options

  ECP Configuration Options allow negotiation of encryption algorithms
  and their parameters.  ECP uses the same Configuration Option format
  defined for LCP [1], with a separate set of Options.

  Configuration Options, in this protocol, indicate algorithms that the
  receiver is willing or able to use to decrypt data sent by the
  sender.  Systems may offer to accept several algorithms, and
  negotiate a single one that will be used.

  Up-to-date values of the ECP Option Type field are specified in the
  most recent "Assigned Numbers" RFC [4].  Current values are assigned
  as follows:





Meyer                       Standards Track                     [Page 6]

RFC 1968                     PPP Encryption                    June 1996


        ECP Option      Encryption type

        0               OUI
        1               DESE


  All compliant ECP implementations SHOULD implement ECP option 1 - the
  PPP DES Encryption Protocol (DESE) [6].

  Vendors who want to use proprietary encryption MAY use the OUI
  mechanism to negotiate these without recourse to requesting an
  assigned option number from the Internet Assigned Numbers Authority.
  All other encryption options are registered by IANA.  At the time of
  writing only DESE (option 1) is registered.  Other registered options
  may be found by referring to future versions of the Assigned Numbers
  RFC.

4.1 Proprietary Encryption OUI

  Description

     This Configuration Option provides a way to negotiate the use of a
     proprietary encryption protocol.

     Vendor's encryption protocols are distinguished from each other by
     means of an Organisationally Unique Identifier (OUI), namely the
     first three octets of a Vendor's Ethernet address assigned by IEEE
     802.

     Since the first matching encryption will be used, it is
     recommended that any known OUI encryption options be transmitted
     first, before the common options are used.

     Before accepting this option, the implementation must verify that
     the OUI identifies a proprietary algorithm that the implementation
     can decrypt, and that any vendor specific negotiation values are
     fully understood.

     A summary of the Proprietary Encryption OUI Configuration Option
     format is shown below.  The fields are transmitted from left to
     right.










Meyer                       Standards Track                     [Page 7]

RFC 1968                     PPP Encryption                    June 1996


      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |    Length     |       OUI ...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
           OUI       |    Subtype    |  Values...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-


  Type

      0

  Length

     >= 6

  IEEE OUI

     The IEEE OUI is the most significant three octets of an Ethernet
     Physical Address, assigned to the vendor by IEEE 802.  This
     identifies the option as being proprietary to the indicated
     vendor.  The bits within the octet are in canonical order, and the
     most significant octet is transmitted first.

  Subtype

     This field is specific to each OUI, and indicates an encryption
     type for that OUI.  There is no standardisation for this field.
     Each OUI implements its own values.

  Values

     This field is zero or more octets, and contains additional data as
     determined by the vendor's encryption protocol.

4.2 Publicly Available Encryption Types

  Description

     These Configuration Options provide a way to negotiate the use of
     a publicly defined encryption algorithm.

     These protocols should be made available to interested parties,
     but may have certain licencing or export restrictions associated
     with them.  For additional information, refer to the encryption
     protocol documents that define each of the encryption types.




Meyer                       Standards Track                     [Page 8]

RFC 1968                     PPP Encryption                    June 1996


     A summary of the Encryption Type Configuration Option format is
     shown below.  The fields are transmitted from left to right.

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |     Type      |    Length     |  Values...
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-


   Type

      1 to 254, indicating the encryption protocol option
      being negotiated.  DESE [6] is option type 1.  Refer to the
      latest Assigned Numbers RFC for other encryption protocols.

   Length

      >= 2

  Values

     This field is zero or more octets, and contains additional data as
     determined by the encryption protocol.

4.3 Negotiating an Encryption Algorithm

  ECP uses LCP option negotiation techniques to negotiate encryption
  algorithms.  In contrast with most other LCP or NCP negotiation of
  multiple options, ECP negotiation is expected to converge on a single
  mutually agreeable option (encryption algorithm) - or none.
  Encryption SHOULD be negotiated in both directions, but the
  algorithms MAY be different.

  An implementation willing to decrypt using a particular encryption
  algorithm (or one of a set of algorithms) offers the algorithm(s) as
  an option (or options) in an ECP Configure-Request - call this end
  the Decrypter; call the peer the Encrypter.

  A Decrypter supporting more than one encryption algorithm may send a
  Configure-Request containing either:

  o  an ordered list of options, with the most-preferred encryption
     algorithm coming first.

  o  Or may just offer its preferred (not already Rejected) option.





Meyer                       Standards Track                     [Page 9]

RFC 1968                     PPP Encryption                    June 1996


  An Encrypter wishing to accept the first option (of several) MAY
  Configure-Ack ALL Options to indicate complete acceptance of the
  first-listed, preferred, algorithm.

  Otherwise, if the Encrypter does not recognise - or is unwilling to
  support - an option it MUST send a Configure-Reject for that option.
  Where more than one option is offered, the Encrypter SHOULD
  Configure-Reject all but a single preferred option.

  If the Encrypter Configure-Rejects all offered ECP options - and the
  Decrypter has no further (non-rejected) options it can offer in a
  Configure-Request - the Encrypter SHOULD take the link down.

  If the Encrypter recognises an option, but it is not acceptable due
  to values in the request (or optional parameters not in the request),
  it MUST send a Configure-Nak with the option modified appropriately.
  The Configure-Nak MUST contain only those options that will be
  acceptable.  The Decrypter SHOULD send a new Configure-Request with
  only the single preferred option, adjusted as specified in the
  Configure-Nak.

5. Security Considerations

  Negotiation of encryption using PPP is designed to provide protection
  against eavesdropping on that link.  The strength of the protection
  is dependent on the encryption algorithm used and the care with which
  any 'secret' used by the encryption algorithm is protected.

  It must be recognised that complete security can only be obtained
  through end-to-end security between hosts.

References

  [1]  Simpson, W., Editor; "The Point-to-Point Protocol (PPP)", STD
       51, RFC 1661, Daydreamer, July 1994.

  [2]  Sklower, K., Lloyd, B., McGregor, G. and and D. Carr, "The PPP
       Multilink Protocol (MP)", RFC 1717, University of California,
       Berkeley, November 1994.

  [3]  Rand, D., "PPP Reliable Transmission", RFC 1663, Novell, July
       1994.

  [4]  Reynolds, J., and Postel, J.; "ASSIGNED NUMBERS", STD 2,
       RFC 1700, USC/Information Sciences Institute, October 1994.

  [5]  Rand, D., "The PPP Compression Control Protocol (CCP)", RFC
       1962, Novell, June 1996.



Meyer                       Standards Track                    [Page 10]

RFC 1968                     PPP Encryption                    June 1996


  [6]  Sklower, K., and G. Meyer, "The PPP DES Encryption Protocol
       (DESE)", RFC 1969, University of California, Berkeley, June
       1996.

Acknowledgements

  The style and approach of this proposal owes much to the work on the
  Compression CP [5].

Chair's Address

  The working group can be contacted via the current chair:

  Karl Fox
  Ascend Communications
  3518 Riverside Drive, Suite 101
  Columbus, Ohio 43221

  EMail: [email protected]

Author's Address

  Gerry Meyer
  Spider Systems
  Stanwell Street
  Edinburgh EH6 5NG
  Scotland, UK

  Phone: (UK) 131 554 9424
  Fax:   (UK) 131 554 0649
  EMail: [email protected]




















Meyer                       Standards Track                    [Page 11]