Network Working Group                                       K. Schneider
Request for Comments: 1967                                  ADTRAN, Inc.
Category: Informational                                        R. Friend
                                                        Stac Technology
                                                            August 1996


              PPP LZS-DCP Compression Protocol (LZS-DCP)

Status of This Memo

  This memo provides information for the Internet community.  This memo
  does not specify an Internet standard of any kind.  Distribution of
  this memo is unlimited.

Abstract

  The Point-to-Point Protocol (PPP) [1] provides a standard method for
  transporting multi-protocol datagrams over point-to-point links.

  The PPP Compression Control Protocol [2] provides a method to
  negotiate and utilize compression protocols over PPP encapsulated
  links.

  This document describes the use of the Stac LZS data compression
  algorithm for compressing PPP encapsulated packets, using a DCP
  header [6].  This protocol is an enhanced version of the non-DCP
  (Option 17) PPP Stac LZS compression protocol [5], and will be
  referred to as the LZS-DCP Compression Protocol.

Table of Contents

    1.     Introduction ..........................................    2
       1.1       Licensing .......................................    3
       1.2       Specification of Requirements ...................    3
       1.3       Terminology .....................................    3
    2.     LZS-DCP Packets .......................................    4
       2.1       Example LZS-DCP Packets .........................    5
       2.2       Padding .........................................    6
       2.3       Reliabliity and Squencing .......................    6
       2.4       Data Expansion ..................................    6
       2.5       Packet Format ...................................    7
          2.5.1  PPP Protocol ....................................    7
          2.5.2  DCP-Header ......................................    8
          2.5.3  History Number ..................................    9
          2.5.4  Sequence Number .................................    9
          2.5.5  Data ............................................   10
          2.5.6  Longitudinal Check Byte .........................   10



Schneider & Friend           Informational                      [Page 1]

RFC 1967                        LZS-DCP                      August 1996


          2.5.7  Compressed Data .................................   11
    3.     Sending Compressed Datagrams     .....................    11
       3.1       Transmitter Process .............................   11
       3.2       Receiver Process ................................   12
       3.3       History Maintenance .............................   13
       3.4       Anti-Expansion Mechanism ........................   14
       3.5       History Resynchronization Mechanism .............   14
    4.     Configuration Option Format ...........................   15
    SECURITY CONSIDERATIONS ......................................   16
    REFERENCES ...................................................   17
    CHAIR'S ADDRESS ..............................................   17
    AUTHORS' ADDRESSES ...........................................   18

1.  Introduction

  Starting with a sliding window compression history, similar to LZ1
  [3], Stac Electronics developed a compression algorithm identified as
  Stac LZS.  A PPP Compression Protocol for this compression algorithm
  was developed and published [5].  That protocol was taken as a basis
  for data compression work done in TIA for DSU/CSUs.  As a part of
  that standardization process, the concept of a portable Data
  Compression Protocol (DCP) was introduced [6].  The resulting
  (pending) TIA/EIA-655 standard uses this LZS-DCP protocol, which
  ncorporates DCP into a PPP compression protocol for Stac LZS.  A very
  similar protocol is currently out for ballot in the Frame Relay
  Forum.  (It is identical except for the size of the history number
  field.)

  This publication of the LZS-DCP compression protocol is in the
  interest of providing a common compression protocol for Stac-LZS, and
  to provide features that are not available with the LZS compression
  protocol [5].  Some of the differences between the LZS-DCP and LZS
  (compression type 17) protocols are as follows:

       1) LZS-DCP provides an option which allows packets containing
          uncompressible data to be transferred without requiring the
          compression history to be cleared, potentially allowing a
          higher compression ratio.  A bit is included in the DCP
          header to indicate whether the packet contains compressed or
          uncompressed data.

       2) LZS-DCP uses reset request and acknowledgment bits in the DCP
          header that is included on each packet rather than using
          CCP's reset request and acknowledge packets, which may result
          in fewer discarded data packets during the REQ/ACK handshake.

       3) LZS-DCP allows simultaneous use of both sequence numbers and
          the LCB for compression error detection.



Schneider & Friend           Informational                      [Page 2]

RFC 1967                        LZS-DCP                      August 1996


  The Stac LZS compression algorithm supports both single and multiple
  compression histories.  A single compression history will require the
  minimum amount of memory to implement, but may not provide as much
  compression as a multiple history implementation.

  Often, many streams of information are interleaved over the same
  physical link.  Each virtual connection will transmit data that is
  independent of other virtual connections.  Using multiple compression
  histories can improve the compression ratio of a communication link
  by associating separate compression histories with separate virtual
  links of communication.

1.1.  Licensing

  Source and object licenses are available on a non-discriminatory
  basis.  Hardware implementations are also available.  Contact Stac
  Electronics ([email protected]) for further information.

1.2.  Specification of Requirements

  In this document, several words are used to signify the requirements
  of the specification.  These words are often capitalized.

  MUST      This word, or the adjective "required", means that the
            definition is an absolute requirement of the specification.

  MUST NOT  This phrase means that the definition is an absolute
            prohibition of the specification.

  SHOULD    This word, or the adjective "recommended", means that there
            may exist valid reasons in particular circumstances to
            ignore this item, but the full implications MUST be
            understood and carefully weighed before choosing a
            different course.

  MAY       This word, or the adjective "optional", means that this
            item is one of an allowed set of alternatives.  An
            implementation which does not include this option MUST be
            prepared to interoperate with another implementation which
            does include the option.

1.3.  Terminology

  This document frequently uses the following terms:

  datagram  The unit of transmission in the network layer (such as IP).
            A datagram may be encapsulated in one or more packets
            passed to the data link layer.



Schneider & Friend           Informational                      [Page 3]

RFC 1967                        LZS-DCP                      August 1996


  frame     The unit of transmission at the data link layer.  A frame
            may include a header and/or a trailer, along with some
            number of units of data.

  packet    The basic unit of encapsulation, which is passed across the
            interface between the network layer and the data link
            layer.  A packet is usually mapped to a frame; the
            exceptions are when data link layer fragmentation is being
            performed, or when multiple packets are incorporated into a
            single frame.

  peer      The other end of the point-to-point link.

  silently discard

            This means the implementation discards the packet without
            further processing.  The implementation SHOULD provide the
            capability of logging the error, including the contents of
            the silently discarded packet, and SHOULD record the event
            in a statistics counter.

2.  LZS-DCP Packets

  Before any LZS-DCP packets are communicated, PPP MUST reach the
  Network-Layer Protocol phase, and the CCP Control Protocol MUST reach
  the Opened state.

  Exactly one LZS-DCP datagram is encapsulated in the PPP Information
  field, where the PPP Protocol field indicates type hex 00FD
  (compressed datagram) or type hex 00FB (Individual link compressed
  datagram).  Type hex 00FD is used when compression is negotiated over
  a single physical link or when compression is negotiated over a
  single bundle consisting of multiple physical links.  Type hex 00FB
  is used when compression is negotiated separately over individual
  physical links to the same destination.  For more information, please
  refer to PPP Compression Control Protocol.

  The maximum length of the LZS-DCP datagram transmitted over a PPP
  link is the same as the maximum length of the Information field of a
  PPP encapsulated packet.

  Prior to compression, the uncompressed data begins with the PPP
  Protocol ID Field.  Protocol-Field-Compression MAY be used on this
  value, if has been successfully negotiated for the link.

  The PPP Protocol ID Field is followed by the original Information
  field. The length of the uncompressed data field is limited only by
  the allowed size of the compressed data field and the higher protocol



Schneider & Friend           Informational                      [Page 4]

RFC 1967                        LZS-DCP                      August 1996


  layers.

  PPP Link Control Protocol packets MUST NOT be sent within LZS-DCP
  packets.  PPP Network Control Protocol packets MUST NOT be sent
  within LZS-DCP packets.

2.1.  Example LZS-DCP packets (shown using PPP in HDLC-like framing,
     using Address-and-Control-Field-Compression and Protocol-Field-
     Compression. - RFC 1662 )

  Compressed Packet:

       PPP |                                        | PPP
       PID | HDR   SEQ           DATA           LCB | FCS
     +-----+-----+-----+---................---+-----+-----+
     | F D | C 0 | n n |   Compressed Data    | y y | z z |
     +-----+-----+-----+---................---+-----+-----+
                       /                      \
                      /      Compression       \
                     /      Transformation      \
                    /                            \
                   /PPP                           \
                  / PID   PPP Information Field    \
                 +-----+----....................----+
                 | x x | upper layer protocol data  |
                 +-----+----....................----+


  Uncompressed Packet

       PPP |                                  | PPP
       PID | HDR   SEQ           DATA         | FCS
     +-----+-----+-----+---................---+-----+
     | F D | 8 0 | n n |   Un-compressed Data | z z |
     +-----+-----+-----+---................---+-----+
                       /                      \
                      /                        \
                     /                          \
                    /                            \
                   /PPP                           \
                  / PID   PPP Information Field    \
                 +-----+----....................----+
                 | x x | upper layer protocol data  |
                 +-----+----....................----+

     where:  C0 and 80 are representative LZS-DCP headers; nn, xx, yy,
             and zz are values determined by the packet's context.




Schneider & Friend           Informational                      [Page 5]

RFC 1967                        LZS-DCP                      August 1996


2.2.  Padding

     PPP padding is not allowed in a LZS-DCP packet.  However, on
     compressed packets, padding may be accomplished by extending the
     data field with zeros following the last compressed data octet
     (see Section 2.1.1).  This is referred to as LZS Padding.  The
     LCB, if present, MUST be the octet preceding the frame CRC.

2.3.  Reliability and Sequencing

     When no Compression History is kept, the algorithm does not depend
     on a reliable link, and does not require that packets be delivered
     in sequence.  However, per packet compression results in a lower
     compression ratio than it could be on a stream.

     Some reasons for clearing the history on a per packet basis
     include:

     -  The link has a high error rate.
     -  The resources of the transmitter or receiver limit the ability
        to maintain a compression history between packets.

     When one or more compression Histories are negotiated, the packet
     sequence MUST be preserved within specific History Numbers.  There
     is no sequence requirement between different History Numbers.

     When using one or more compression histories, the implementation
     MUST rely on either a lower layer reliable link protocol (RFC
     1663), use a technique to keep the compressor and decompressor
     histories in synchronization, or both.  The LZS-DCP protocol
     provides the Request-Req and Request-Ack bits in the DCP header
     for this purpose.  Since this synchronization is done on a per
     history basis, the history number fields are required to be the
     same size in both directions of the link.  Any data contained in
     the packet is processed after the signaling bits are processed.

     The transmitter MAY clear a Compression History at any time.

     The transmitter MUST clear a history after a receiving a Reset-
     Request for a given History Number.

2.4.  Data Expansion

     The maximum expansion of Stac LZS is 12.5%.

     A Maximum Receive Unit (MRU) MAY be negotiated that is 12.5%
     larger than the size of a normal packet.  Then, packets can always
     be sent compressed regardless of expansion.



Schneider & Friend           Informational                      [Page 6]

RFC 1967                        LZS-DCP                      August 1996


     The transmitter MAY send an uncompressed LZS-DCP packet at any
     time, although the typical use of uncompressed LZS-DCP packets is
     as an anti-expansion mechanism.

     When the expansion plus compression header exceeds the size of the
     peer's MRU for the link, the data MUST be sent as an uncompressed
     LZS-DCP packet.

     An uncompressed LZS-DCP packet is transmitted according to the
     format shown in Section 2.1, with the C/U bit set to 0
     (Uncompressed-Data).  If the Configuration Option Field 'Process
     Mode', is set to a value of 1 (Process-Uncompressed), uncompressed
     LZS-DCP packets are processed by both the compressor and the
     decompressor, updating the histories of each. If the Process Mode
     Field is set to a value of 0 (None), and the compressor has
     modified its history before sending the uncompressed packet, the
     compressor history MUST be clear.

2.5.  Packet Format

  A summary of the LZS-DCP packet format is shown below.  The fields
  are transmitted from left to right.

   0                   1                   2
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |          PPP Protocol         |   DCP-Header  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |       (History Number)        |  (Seq Num)    |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         Data ...
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     (LCB)     |
  +-+-+-+-+-+-+-+-+

2.5.1.  PPP Protocol

     The PPP Protocol field is described in the Point-to-Point Protocol
     Encapsulation [1].

     When the LZS-DCP compression protocol is successfully negotiated
     by the PPP Compression Control Protocol [2], the value is 00FD or
     00FB hex.  This value MAY be compressed when Protocol-Field-
     Compression is negotiated.







Schneider & Friend           Informational                      [Page 7]

RFC 1967                        LZS-DCP                      August 1996


2.5.2.  DCP-Header

     The DCP-Header is nominally one octet in length, but may be
     extended through the use of the extension bit.

     The format of the DCP-Header is as follows:

        0     1     2     3     4     5     6     7
     +-----+-----+-----+-----+-----+-----+-----+-----+
     |  E  | C/U | R-A | R-R | Res | Res | Res | C/D |
     +-----+-----+-----+-----+-----+-----+-----+-----+

     E - Extension Bit

        The E bit is the extension bit.  If set to 0, it indicates that
        another octet of the DCP-Header is present.  Currently, this
        bit is always set to 1, since the DCP-Header field is only one
        octet long.

     C/U - Compressed/Uncompressed Bit

        The C/U indicates whether the data field contains compressed or
        uncompressed data.  A value of 1 indicates compressed data
        (often referred to as a compressed packet), and a value of 0
        indicates uncompressed data (or an uncompressed packet).

     R-A - Reset-Ack

        The R-A bit is used to inform the decompressing peer that
        the history buffer specified by the history number in the
        packet was in the cleared state just before the data contained
        in the packet was processed by the compression transformation
        (see section 3., Sending Compressed Datagrams).  This bit MUST
        be set to a value of "1" to indicate a Reset-Ack, and to
        acknowledge a receive failure (R-R) (see section 3., Sending
        Compressed Datagrams).  This bit is specific to the history
        number of the packet containing it.

     R-R - Reset-Request

        The R-R bit is used to request that the compressing peer
        clear the history buffer specified by the history number in the
        packet.  This bit MUST be set to a value of "1" to indicate a
        Reset-Request, and to respond to a receive failure (R-R) (see
        section 3., Sending Compressed Datagrams).  This bit is
        specific to the history number of the packet containing it.





Schneider & Friend           Informational                      [Page 8]

RFC 1967                        LZS-DCP                      August 1996


     Res - Reserved

        These bits are reserved and MUST be set to 0

     C/D - Control/Data

        This bit is used by DCP to provide in-band negotiation in
        applications where out-of-band negotiation methods are not
        provided (i.e. Frame Relay).  Since CCP provides an out of band
        negotiating mechanism, this feature is not used in this
        application.  All packets MUST set this bit to a value of 0,
        which signifies that the packet is a data packet.  (Packets
        containing only Reset- Requests are classified as data
        packets.)

2.5.3.  History Number

     The number of the compression history which was used, ranging from
     1 to the negotiated value in the History Count field.

     If the negotiated History Count is less than 2, this field is
     removed.  If the negotiated History Count is 2 or more, but less
     than 256, this field is 1 octet.  If 256 or more histories are
     negotiated, this field is 2 octets, most significant octet first.

     If multiple histories are used in one direction on a link, the
     history number field MUST be present on all packets in both
     directions, and sized according to the largest number of histories
     in either direction.

     If multiple histories are used, this field MUST be present in
     uncompressed as well as compressed packets.

2.5.4.  Sequence Number

     The sequence number field is one octet in length.  When the check
     mode field is set to the "Sequence Number" or "Sequence Number +
     LCB" options, the sequence number field MUST be present in all
     data compression packets that contain a data field.

     The value of the sequence number field (the sequence number of the
     packet) MUST begin with "1" and increment modulo 256 on successive
     packets that contain data fields.  This number is relative to the
     history number used.

     On receipt of a packet with the R-A bit set to "0", if the
     sequence number of the packet is any number other than (N+1) mod
     256, where N is the sequence number of the last packet received



Schneider & Friend           Informational                      [Page 9]

RFC 1967                        LZS-DCP                      August 1996


     for the same history, or an initial value of "0", a receive
     failure for that history has occurred.  The receive failure MUST
     be handled according to the synchronization procedure in section
     3.5.

     The sequence number MUST NOT be reset by the transmitter when a
     packet containing a Reset-Ack is sent. The decompressor MUST
     resynchronize its sequence number reference for the indicated
     history when a packet containing a Reset-Ack is received.

2.5.5.  Data

     The data field MUST contain a single datagram in either compressed
     or uncompressed form, depending on the state of the C/U bit in the
     Header.  This length of this field is always be an integer number
     of octets.  This field is required in all packets that do not have
     the R-R bit set to "1".

     If the C/U bit is set to "0", the data field contains the
     uncompressed form of the datagram.

     If the C/U bit is set to "1", the form of the data field is one
     block of compressed data as defined in 3.2 of X3.241-1994, with
     the following exceptions:  1) the end marker may be followed with
     additional octets containing only zeros;  2) if the final octet in
     the block of compressed data has a value of "0", then it MAY be
     removed from the data field.

     There is only one end marker per block of compressed data.

2.5.6.  Longitudinal Check Byte

     The LCB field is one octet in length, and if present MUST be the
     last octet in the data compression packet.  When the check-mode
     field is set to "LCB" or "Sequence Number + LCB", this field MUST
     be present in all packets where the data field contains compressed
     data.  This field MUST NOT be present in data compression packets
     where the data field contains uncompressed data.  This field
     contains the result of the LCB calculation, in accordance with the
     following paragraph.

     The LCB octet is the Exclusive-OR of FF(hex) and each octet of the
     uncompressed datagram (prior to the compression transformation).
     On receipt, the receiver computes the Exclusive-OR of FF(hex) and
     each octet of the decompressed packet.  If this value does not
     match the received LCB, then a receive failure for that history
     has occurred.  The receive failure is handled according to the
     history synchronization procedure in section 3.5.



Schneider & Friend           Informational                     [Page 10]

RFC 1967                        LZS-DCP                      August 1996


2.5.7.  Compressed Data

  The Stac LZS compression algorithm is Defined in ANSI X3.241-1994
  [7]. The format of the compressed data is repeated here for
  informational purposes ONLY.

  <Compressed Stream> := [<Compressed String>] <End Marker>
  <Compressed String> := 0 <Raw Byte> | 1 <Compressed Bytes>

  <Raw Byte> := <b><b><b><b><b><b><b><b>          (8-bit byte)
  <Compressed Bytes> := <Offset> <Length>

  <Offset> := 1 <b><b><b><b><b><b><b> |           (7-bit offset)
              0 <b><b><b><b><b><b><b><b><b><b><b> (11-bit offset)
  <End Marker> := 110000000
  <b> := 1 | 0

  <Length> :=
  00        = 2     1111 0110      = 14
  01        = 3     1111 0111      = 15
  10        = 4     1111 1000      = 16
  1100      = 5     1111 1001      = 17
  1101      = 6     1111 1010      = 18
  1110      = 7     1111 1011      = 19
  1111 0000 = 8     1111 1100      = 20
  1111 0001 = 9     1111 1101      = 21
  1111 0010 = 10    1111 1110      = 22
  1111 0011 = 11    1111 1111 0000 = 23
  1111 0100 = 12    1111 1111 0001 = 24
  1111 0101 = 13     ...

3.  Sending Compressed Datagrams

  The reliable and efficient transport of datagrams on the data link
  depends on the following processes.

3.1.  Transmitter Process

     The compression operation results in either compressed or
     uncompressed data.  When a network datagram is received, it is
     assigned to a particular history buffer and processed according to
     ANSI X3.241-1994 to form compressed data or used as is to form
     uncompressed data.  Prior to the compression operation, if a
     Reset-Request is outstanding for the history buffer to be used,
     the buffer is cleared.  In performing the compression operation,
     if the process mode field is set to the value None ("0"), the
     history MUST only be updated if the result is compressed data.  If
     process mode field is set to the value Process-Uncompressed ("1"),



Schneider & Friend           Informational                     [Page 11]

RFC 1967                        LZS-DCP                      August 1996


     the history MUST be updated when either compressed data or
     uncompressed data is produced.  Uncompressed data MAY be sent at
     any time.  Uncompressed data MUST be sent if compression causes
     enough expansion to cause the data compression datagram size to
     exceed the Information field's MRU.

     If the Process Mode field is set to the value None ("0") and the
     compressor has modified the history buffer before sending an
     uncompressed datagram, the history buffer MUST be cleared before
     the next datagram is processed.

     The output of the compression operation is placed in the
     information field of the datagram.  The C/U bit is set according
     to whether the data field contains compressed or uncompressed
     data.  If the sequence number field is present according the value
     of the check mode field, the sequence number counter for the
     applicable history number MUST be incremented and its value placed
     in the sequence number field.  If the data field contains
     compressed data, and Check Mode field is set accordingly, the LCB
     field is present and its value is computed as specified in section
     2.2.6.

     Upon reception of a packet containing a Reset-Request, the
     transmitting compressor MUST be cleared to an initial state, which
     includes clearing the history buffer.  If the data field of the
     packet containing the Reset-Request contains data, it is delivered
     to the local receiver as a normal data packet.  In addition to the
     reset of the compressor, a packet MUST be transmitted with Reset-
     Ack bit set to 1.  The data field of this packet MUST be filled
     with data.  If no data is ready for transmission, the transmitter
     MUST wait until data is ready before sending the Reset-Ack.

     If the history buffer is in the clear state (the history buffer
     contains no data bytes) prior to performing the compression
     operation, the resulting compressed or uncompressed packet MUST be
     sent with the R-A bit set to "1".

3.2.  Receiver Process

     When a data compression datagram is received from the peer, the
     R-R and R-A bits MUST be checked.  If the R-R bit is set, the
     local compression engine MUST be signaled that a Reset-Request has
     been received for the history specified by the history number
     field.  If the R-A bit is set, any outstanding receive failure for
     the specified history MUST be cleared.  If no receive failure is
     outstanding, and the sequence number field is present, its value
     checked. If a receive failure has occurred, it MUST be handled
     according to the history resynchronization mechanism described



Schneider & Friend           Informational                     [Page 12]

RFC 1967                        LZS-DCP                      August 1996


     below, and the remainder of the datagram is discarded.  If no
     receive failure is detected, the data is assigned to the indicated
     decompression history buffer and processed according to process
     mode field and C/U bit.

     If the C/U bit is set to "1", a single octet containing the value
     0x00 MUST be appended to the data field and the resulting
     compressed data block MUST be decompressed according to ANSI
     X3.241-1994.  If the LCB field is present on the received
     datagram, an LCB for the uncompressed data MUST be computed and
     checked against the received LCB according to section 2.1.  If a
     receive failure has occurred, it MUST be handled according to the
     History Resynchronization Mechanism described below.

     If the C/U bit is set to "0" and the process mode field is set to
     the value Process-Uncompressed ("1"), the specified decompression
     history buffer MUST be updated with the received uncompressed
     data.

     If the C/U bit is set to "0" and process mode field is set to the
     value None ("0"), the specified decompression history buffer MUST
     NOT be modified.

     If the R-A bit is set to "1", the receiving decompressor MAY be
     reset to an initial state.  (However, due to the characteristics
     of the Stac LZS algorithm, a decompressor reset is not required).
     After reset, any compressed or uncompressed data contained in the
     packet is processed.

     On the occurrence of a receive failure, an implementation MUST
     transmit a packet with the R-R bit set to "1" (a Reset-Request)
     and with the history number matching the history that had the
     failure.  The data field may be present if data is waiting to be
     transported for that history, or the R-R bit may be set in a
     packet transmitted without sequence number, data, or LCB fields.
     Once a receive failure has occurred, the data in any subsequent
     packets received for that history MUST be discarded until a packet
     containing a Reset-Ack is received.  It is the responsibility of
     the receiver to ensure the reliability of the reset request-
     acknowledge mechanism.  This may require the transmission of an
     additional Reset-Request before a Reset-Ack will be received.

3.3.  History Maintenance

     The History Count field determines the number of history buffers
     to be maintained for the compression protocol.  For example, each
     history buffer could represent a separate logical connection
     between the data compression peers.  When maintaining a history,



Schneider & Friend           Informational                     [Page 13]

RFC 1967                        LZS-DCP                      August 1996


     the peers MUST use link error detection and signaling to ensure
     that both the compressor and decompressor copies of each history
     buffer are always identical.

     Setting the History Count field to the value "0" indicates that
     the compression is to be on a connectionless basis.  In this case,
     a single history buffer is used and MUST be cleared at the
     beginning of every datagram.  The compressing entity MUST set the
     R-A bit on all outgoing datagrams.

     When the History Count field is set to the value "1", a single
     history buffer is maintained by each of the data compression
     peers. (A single logical connection.)

     When the History Count field is set to a value greater than "1",
     separate history buffers, error detection states, and signaling
     states are maintained by the decompressing entity for each
     history.  The compressing peer may transmit data on any number of
     separate histories, up to the value of the History Count field.

3.4.  Anti-Expansion Mechanism

     When one or more histories are negotiated and the Process Mode
     field is set to None ("0"), there are 2 options on how to handle
     packets that expand:

        1) Send the expanded data and keep the history, thus allowing
           loss of current bandwidth but preserving future bandwidth on
           the link.
        2) Send the uncompressed data and clear the history, thus
           conserving current bandwidth, but allowing possible loss of
           future bandwidth on the link.

     When 1 or more histories are negotiated and the Process Mode field
     is set to Process-Uncompressed ("1"), there is an additional
     option:

        3) Send the uncompressed data and do not clear the compression
           history; the decompressor will update its history, thus
           conserving the current bandwidth and future bandwidth on the
           link.

3.5.  History Resynchronization Mechanism

     The DCP-Header includes R-R (Reset-Request) and R-A (Reset-Ack)
     bits in order to provide a mechanism for indicating a receiver
     failure in one direction of a compressed link without affecting
     traffic in the other direction.  A receive failure is determined



Schneider & Friend           Informational                     [Page 14]

RFC 1967                        LZS-DCP                      August 1996


     using the sequence number and/or LCB mechanism, according to the
     value of the check mode field.

     Reset-Requests and Reset-Acks are specific to the history number
     of the packet containing them.

     Reset-Request/Reset-Ack history synchronization signaling is
     provided to recover from a loss of synchronization between peers,
     especially in unreliable transport layers.  As with all
     compression algorithms, the decompressor can not recover from
     dropped, erroneous, or mis-ordered datagrams, and will propagate
     errors catastrophically until both peers are reset to an initial
     state.

     The LZS-DCP protocol provides a means to detect these error
     conditions: LCB for erroneous datagrams, and sequence number for
     dropped or mis-ordered datagrams.  There is a means for correcting
     a loss of synchronization: clear both the failing compression and
     decompression histories, and follow the transmitter and receiver
     processes in sections 3.1. and 3.2.

4.  Configuration Option Format

  The LZS-DCP Configuration Option negotiates the use of LZS-DCP on the
  link.  By default or ultimate disagreement, no compression is used.
  This Configuration Option is used in CCP, and can be used in other
  negotiation mechanisms [2].

  All implementations MUST support the default values.

  A summary of the LZS-DCP Configuration Option format is shown below.
  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |        History Count          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |   Check Mode  | Process Mode  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  Type

     23

  Length

     6



Schneider & Friend           Informational                     [Page 15]

RFC 1967                        LZS-DCP                      August 1996


  History Count

     The History Count field is two octets, most significant octet
     first, and specifies the maximum number of Compression Histories.

     The value 0 indicates that the implementation expects the peer to
     clear the Compression History at the beginning of every packet.
     If this value is selected, the transmitter MUST set the Reset-Ack
     bit of every packet that contains compressed data.

     The value 1 is the default value and is used to indicate that only
     one history is maintained.

     Other valid values range from 2 to 65535.  The peer is not
     required to send as many histories as the implementation indicates
     that it can accept.  However, it should be noted that resources
     are allocated in each peer to support the number of negotiated
     histories in this field.

Check Mode

     The Check Mode indicates support of LCB and/or Sequence checking.
     The use of check mode None (0) MUST NOT be used for history counts
     greater than zero.

        0    None
        1    LCB
        2    Sequence Number
        3    Sequence Number + LCB (default)

  Process Mode

     The Process Mode specifies how uncompressed packets are handled.
     A value of None (0) indicates that uncompressed packets are not
     processed by the decompressor.  A value of Process-Uncompressed

     (1) indicates that uncompressed packets are processed by the
     decompressor to update the history.

        0    None (default)
        1    Process-Uncompressed

Security Considerations

  Security issues are not discussed in this memo.






Schneider & Friend           Informational                     [Page 16]

RFC 1967                        LZS-DCP                      August 1996


Acknowledgments

  This document is based on, and uses much of the text of [5].

References

  [1]    Simpson, W., Editor, "The Point-to-Point Protocol (PPP)", STD
         51, RFC 1661, Daydreamer, July 1994.

  [2]    Rand, D., "The PPP Compression Control Protocol (CCP)", RFC
         1962, June 1996.

  [3]    Lempel, A., and J. Ziv, "A Universal Algorithm for Sequential
         Data Compression", IEEE Transactions On Information Theory,
         Vol. IT-23, No. 3, May 1977.

  [4]    Rand, D., "PPP Reliable Transmission", RFC 1663, Novell, July
         1994.

  [5]    Friend, R., and W. Simpson, "PPP Stac LZS Compression
         Protocol", RFC 1974, August 1996.

  [6]    Motorola Information Systems Group, "Data Compression Protocol
         (DCP) Proposal", TR-30.1 ad hoc contribution (email
         reflector), September 21, 1995.

  [7]    ANSI X3.241-1994, "American National Standard Data Compression
         Method, Adaptive Coding with Sliding Window of Information
         Interchange".

Chair's Address

  The working group can be contacted via the current chair:

  Karl Fox
  Ascend Communications
  3518 Riverside Drive, Suite 101
  Columbus, Ohio 43221

  EMail: [email protected]











Schneider & Friend           Informational                     [Page 17]

RFC 1967                        LZS-DCP                      August 1996


Authors' Addresses

  Questions about this memo can also be directed to:

  Kevin Schneider
  Adtran, Inc.
  901 Explorer Blvd.
  Huntsville, AL 25806

  Phone: (205) 971-8024
  EMail: [email protected]


  Robert Friend
  Stac Technology
  12636 High Bluff Drive
  San Diego, CA 92130-2093

  Phone: (619) 794-4542
  EMail: [email protected]































Schneider & Friend           Informational                     [Page 18]