Network Working Group                                           J. Touch
Request For Comments: 1936                                     B. Parham
Category: Informational                                              ISI
                                                             April 1996


            Implementing the Internet Checksum in Hardware

Status of This Memo

  This memo provides information for the Internet community.  This memo
  does not specify an Internet standard of any kind.  Distribution of
  this memo is unlimited.

Abstract

  This memo presents a techniques for efficiently implementing the
  Internet Checksum in hardware. It includes PLD code for programming a
  single, low cost part to perform checksumming at 1.26 Gbps.

Introduction

  The Internet Checksum is used in various Internet protocols to check
  for data corruption in headers (e.g., IP) [4] and packet bodies (e.g,
  UDP, TCP) [5][6]. Efficient software implementation of this checksum
  has been addressed in previous RFCs [1][2][3][7].

  Efficient software implementations of the Internet Checksum algorithm
  are often embedded in data copying operations ([1], Section 2). This
  copy operation is increasingly being performed by dedicated direct
  memory access (DMA) hardware. As a result, DMA hardware designs are
  beginning to incorporate dedicated hardware to compute the Internet
  Checksum during the data transfer.

  This note presents the architecture of an efficient, pipelined
  Internet Checksum mechanism, suitable for inclusion in DMA hardware
  [8]. This design can be implemented in a relatively inexpensive
  programmable logic device (PLD) (1995 cost of $40), and is capable of
  supporting 1.26 Gbps transfer rates, at 26 ns per 32-bit word.
  Appendix A provides the pseudocode for such a device. This design has
  been implemented in the PC-ATOMIC host interface hardware [8]. We
  believe this design is of general use to the Internet community.









Touch & Parham               Informational                      [Page 1]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


  The remainder of this document is organized as follows:

           Review of the Internet Checksum
           One's Complement vs. Two's Complement Addition
           Interfaces
           Summary
           Appendix A - PLD source code












































Touch & Parham               Informational                      [Page 2]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


A Review of the Internet Checksum

  The Internet Checksum is used for detecting corruption in a block of
  data [1]. It is initialized to zero, and computed as the complement
  of the ones-complement sum of the data, taken in 16-bit units. A
  subsequent checksum of the data and checksum together should generate
  a zero checksum if no errors are detected.

  The checksum allows [1]:

           - byte order "independence"
                   reordered output is equivalent to reordered input
           - 16-bit word-order independence
                   reordering 16-bit words preserves the output
           - incremental computation
           - deferred carries
           - parallel summation
                   a result of deferred carries, incremental
                   computation, and 16-bit word order independence

  This note describes an implementation that computes two partial
  checksums in parallel, over the odd and even 16-bit half-words of
  32-bit data. The result is a pair of partial checksums (odd and
  even), which can be combined, and the result inverted to generate the
  true Internet Checksum. This technique is related to the long-word
  parallel summation used in efficient software implementations [1].

           +------------------+     +------------------+
           |  high half-word  |     |  low half-word   |
           | ones-complement  |     | ones-complement  |
           | partial checksum |     | partial checksum |
           +------------------+     +------------------+
                               \   /
                                 * (ones-complement sum)
                                 |
                        +------------------+
                        | partial checksum |
                        +------------------+
                                 |
                                 * (ones-complement negative)
                                 |
                       +-------------------+
                       |       final       |
                       | Internet Checksum |
                       +-------------------+






Touch & Parham               Informational                      [Page 3]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


One's Complement vs. Two's Complement Addition

  The Internet Checksum is composed of a ones-complement lookahead
  adder and a bit-wise inverter. A ones-complement adder can be built
  either using twos-complement components, or natively.

  A twos-complement implementation of a ones-complement adder requires
  either two twos-complement adders, or two cycles per add. The sum is
  performed, then the high-bit carry-out is propagated to the carry-in,
  and a second sum is performed. (ones-complement addition is {+1s} and
  twos-complement is {+2s})

           a {+1s} b == (a {+2s} b) + carry(a {+2s} b)

           e.g.,
                   halfword16 a,b;
                   word32 c;
                   a {+1s} b == r
           such that:
                   c = a {+2s} b;                          # sum value
                   r = (c & 0xFFFF) {+2s} (c >> 16);       # sum carry

  Bits of a twos-complement lookahead adder are progressively more
  complex in carry lookahead. (OR the contents of each row, where terms
  are AND'd or XOR'd {^})

           4-bit carry-lookahead 2's complement adder:
                   a,b : input data
                   p   : carry propagate, where pi = ai*bi = (ai)(bi)
                   g   : carry generate, where gi = ai + bi

           Out0 := a0 ^ b0 ^ ci

           Out1 := a1 ^ b1 ^ (cip0     + g0)

           Out2 := a2 ^ b2 ^ (cip0p1   + g0p1   + g1)

           Out3 := a3 ^ b3 ^ (cip0p1p2 + g0p1p2 + g1p2 + g2)

           Cout := cip0p1p2p3 + g0p1p2p3 + g1p2p3 + g2p3 + g3

  The true ones-complement lookahead adder recognizes that the carry-
  wrap of the twos-complement addition is equivalent to a toroidal
  carry-lookahead. Bits of a ones-complement lookahead adder are all
  the same complexity, that of the high-bit of a twos-complement
  lookahead adder. Thus the ones-complement sum (and thus the Internet
  Checksum) is bit-position independent. We replace `ci' with the `co'
  expression and reduce. (OR terms in each row pair).



Touch & Parham               Informational                      [Page 4]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


           4-bit carry-lookahead 1's complement ring adder:

           Out0 = a0 ^ b0 ^ (g3       + g2p3     + g1p2p3   + g0p1p2p3)

           Out1 = a1 ^ b1 ^ (g3p0     + g2p3p0   + g1p2p3p0 + g0)

           Out2 = a2 ^ b2 ^ (g3p0p1   + g2p3p0p1 + g1       + g0p1)

           Out3 = a3 ^ b3 ^ (g3p0p1p2 + g2       + g1p2     + g0p1p2)

  A hardware implementation can use this toroidal design directly,
  together with conventional twos-complement fast-adder internal
  components, to perform a pipelined ones-complement adder [8].

  A VLSI implementation could use any full-lookahead adder, adapted to
  be toroidal and bit-equivalent, as above. In our PLD implementation,
  we implement the adders via 2- and 3-bit full-lookahead sub-
  components. The adder components are chained in a ring via carry bit
  registers.  This relies on delayed carry-propagation to implement a
  carry pipeline between the fast-adder stages.

           Full-lookahead adders in a toroidal pipeline

        +-+-+-+   +-+-+-+   +-+-+   +-+-+-+   +-+-+-+   +-+-+
        |i|i|i|   |i|i|i|   |i|i|   |i|i|i|   |i|i|i|   |i|i|
        |F|E|D|   |C|B|A|   |9|8|   |7|6|5|   |4|3|2|   |1|0|
        +-+-+-+   +-+-+-+   +-+-+   +-+-+-+   +-+-+-+   +-+-+
          "+"       "+"      "+"      "+"       "+"      "+"
        +-+-+-+   +-+-+-+   +-+-+   +-+-+-+   +-+-+-+   +-+-+
        |s|s|s|   |s|s|s|   |s|s|   |s|s|s|   |s|s|s|   |s|s|
        |F|E|D|   |C|B|A|   |9|8|   |7|6|5|   |4|3|2|   |1|0|
        +-+-+-+   +-+-+-+   +-+-+   +-+-+-+   +-+-+-+   +-+-+
        v     |   v     |   v   |   v     |   v     |   v   |   +--+
        |     ^   |     ^   |   ^   |     ^   |     ^   |   ^   v  |
        |      +-+       +-+     +-+       +-+       +-+     +-+   |
        |      |c|       |c|     |c|       |c|       |c|     |c|   |
        |      |5|       |4|     |3|       |2|       |1|     |0|   |
        |      +-+       +-+     +-+       +-+       +-+     +-+   |
        +----------------------------------------------------------+

  Implementation of fast-adders in PLD hardware is currently limited to
  3-bits, because an i-bit adder requires 4+2^i product terms, and
  current PLDs support only 16 product terms.  The resulting device
  takes at most 5 "idle" clock periods for the carries to propagate
  through the accumulation pipeline.






Touch & Parham               Informational                      [Page 5]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


Interfaces

  The above device has been installed in a VL-Bus PC host interface
  card [8]. It has a hardware and software interface, defined as
  follows.

Hardware Interface

  The Internet Checksum hardware appears as a single-port 32-bit
  register, with clock and control signals [8]:

                  +----------------------+
           CLR--->|                      |
           OE---->|  32-bit register as  |
           CLK--->|  2 adjacent 16-bit   |<---/---> 32-bit data bus
           ICLK-->| ones-complement sums |
           ADD--->|                      |
                  +----------------------+

           CLR    = zero the register
           OE     = write the register onto the data bus
           CLK    = clock to cycle the pipeline operation
           ICLK   = input data latch clock
           ADD    = initiating an add of latched input data

  CLR causes the contents of the checksum register and input latch to
  be zeroed. There is no explicit load; a CLR followed by a write of
  the load value to a dummy location is equivalent.

  The OE causes the register to be written to the data bus, or tri-
  stated.

  The CLK causes the pipeline to operate. If no new input data is
  latched to be added (via ICLK, ADD), a virtual "zero" is summed into
  the register, to permit the pipeline to empty.

  The ICLK (transparently) latches the value on the data bus to be
  latched internally, to be summed into the accumulator on the next ADD
  signal. The ADD signal causes the latched input data (ICLK) to be
  accumulated into the checksum pipeline. ADD and ICLK are commonly
  tied together. One 32-bit data value can be latched and accumulated
  into the pipeline adder every 26-ns clock, assuming data is stable
  when the ADD/ICLK signal occurs.

  The internal 32-bit register is organized as two 16-bit ones-
  complement sums, over the even and odd 16-bit words of the data
  stream. To compute the Internet Checksum from this quantity, ones-
  complement add the halves together, and invert the result.



Touch & Parham               Informational                      [Page 6]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


Software Interface

  The device is used as a memory-mapped register. The register is read
  by performing a read on its equivalent memory location.

  The device is controlled via an external memory-mapped register. Bits
  in this control register clear the device (set/clear the CLR line),
  and enable and disable the device (set/clear the ADD line). The CLR
  line can alternatively be mapped to a memory write, e.g., such that
  reading the location is a non-destructive read of the checksum
  register, and a write of any value clears the checksum register. The
  enable/disable control must be stored in an external register.

  The device is designed to operate in background during memory
  transfers (either DMA or programmed I/O). Once enabled, all transfers
  across that bus are summed into the checksum register. The checksum
  is available 5 clocks after the last enabled data accumulation. This
  delay is often hidden by memory access mechanisms and bus
  arbitration.  If required, "stall" instructions can be executed for
  the appropriate delay.

  For the following example, we assume that the device is located at
  CKSUMLOC. We assume that reading that location reads the checksum
  register, and writing any value to that location clears the register.
  The control register is located at CTLLOC, and the checksum
  enable/disable bit is CKSUMBIT, where 1 is enabled, and 0 is
  disabled.  To perform a checksum, a programmer would clear the
  register, (optionally initialize the checksum), initiate a series of
  transfers, and use the result:

           /******* initialization *******/
           *(CTLLOC) &= ~((ctlsize)(CKSUMBIT));     /* disable sum */
           (word32)(*(CKSUMLOC)) = 0;               /* clear reg   */
           *(CTLLOC) |= CKSUMBIT;                   /* enable sum  */
           { (optional) write initial value to a dummy location }

           /***** perform a transfer *****/
           { do one or more DMA or PIO transfers - read or write }

           /***** gather the results *****/
           *(CTLLOC) &= ~((ctlsize)(CKSUMBIT));     /* disable sum  */
           sum = (word32)(*(CKSUMLOC));             /* read sum     */
           sum = (sum & 0xFFFF) + (sum >> 16);      /* fold halves  */
           sum = (sum & 0xFFFF) + (sum >> 16);      /* add in carry */
           ipcksum = (halfword16)(~(sum & 0xFFFF)); /* 1's negative */






Touch & Parham               Informational                      [Page 7]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


Summary

  This note describes the design of a hardware Internet Checksum that
  can be implemented in an inexpensive PLD, achieving 1.26 Gbps. This
  design has been implemented in the PC-ATOMIC host interface hardware
  [8]. We believe this design is of general use to the Internet
  community.

Security Considerations

  Security considerations are not addressed here. The Internet Checksum
  is not intended as a security measure.

Acknowledgements

  The authors would like to thank the members of the "High-Performance
  Computing and Communications", notably Mike Carlton, and "Advanced
  Systems" Divisions at ISI for their assistance in the development of
  the hardware, and this memo.

References

  [1] Braden, R., Borman, D., and Partridge, C., "Computing the
      Internet Checksum," Network Working Group RFC-1071, ISI, Cray
      Research, and BBN Labs, Sept. 1988.

  [2] Mallory, T., and Kullberg, A., "Incremental Updating of the
      Internet Checksum," Network Working Group RFC-1141, BBN Comm.,
      Jan. 1990.

  [3] Plummer, W., "TCP Checksum Function Design," IEN-45, BBN, 1978,
      included as an appendix in RFC-1071.

  [4] Postel, Jon, "Internet Protocol," Network Working Group RFC-
      791/STD-5, ISI, Sept. 1981.

  [5] Postel, Jon, "User Datagram Protocol," Network Working Group
      RFC-768/STD-6, ISI, Aug. 1980.

  [6] Postel, Jon, "Transmission Control Protocol," Network Working
      Group RFC-793/STD-7, ISI, Sept. 1981.

  [7] Rijsinghani, A., "Computation of the Internet Checksum via
      Incremental Update," Network Working Group RFC-1624, Digital
      Equipment Corp., May 1994.

  [8] Touch, J., "PC-ATOMIC", ISI Tech. Report. SR-95-407, June 1995.




Touch & Parham               Informational                      [Page 8]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


Authors' Addresses

  Joe Touch
  University of Southern California/Information Sciences Institute
  4676 Admiralty Way
  Marina del Rey, CA 90292-6695
  USA
  Phone: +1 310-822-1511 x151
  Fax:   +1 310-823-6714
  URL:   http://www.isi.edu/~touch
  EMail: [email protected]


  Bruce Parham
  University of Southern California/Information Sciences Institute
  4676 Admiralty Way
  Marina del Rey, CA 90292-6695
  USA
  Phone: +1 310-822-1511 x101
  Fax:   +1 310-823-6714
  EMail: [email protected]






























Touch & Parham               Informational                      [Page 9]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


Appendix A: PLD source code

The following is the PLD source code for an AMD MACH-435 PLD. The
MACH-435 is composed of 8 22V10-equivalent PLD blocks, connected by a
configurable internal matrix.


---- (PLD source code follows) ----

TITLE    PC-ATOMIC IP Sum Accelerator - 1-clock 2- and 3-bit 26 ns version
PATTERN  ip_sum
REVISION 1.01
AUTHOR   J. Touch & B. Parham
COMPANY  USC/ISI
DATE     06/21/94

CHIP    ip_sum          MACH435

; accumulates in 1 clock (1 level of logic)
;
; resources allocated to reduce fitting time
;
; uses an input register "dl" to latch the data bus values on rising edge
; accumulates a hi/lo ones-complement sum in register "q"
; the input and output are accessed via bidirectional pins "dq"
;
; uses 2 groups of 6 carry bit registers "cy"
;
; use 3-bit full-adders with carry lookahead (settles in 6 clocks)
; group 16 bits as      [000102 030405 0607 080910 111213 1415]
;                       [161718 192021 2223 242526 272829 3031]
;
; locking the pins down speeds up fitting and is designed to force
; 4-bit components into single "segments" of the PLD.
; we could have indicated the same thing via:
;       GROUP MACH_SEG_A        dq[6..0]
;       GROUP MACH_SEG_B        dq[14..8]
;       GROUP MACH_SEG_C        dq[22..16]
;       GROUP MACH_SEG_D        dq[30..24]

;
; control pins:
;
PIN     20      clk             ; adder clock
PIN     62      ip_add          ; add current data to sum
PIN     83      ip_sum_ena      ; output current sum
PIN     41      ip_clr          ; clear current sum
PIN 23  ip_dclk                 ; input data latch (tied to clk, or not)



Touch & Parham               Informational                     [Page 10]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


;
; dq are data bus pins
; dl is the input register
;
PIN     [9..3]          dq[6..0] IPAIR dl[6..0]         ; IO port
PIN     [18..12]        dq[14..8] IPAIR dl[14..8]       ; IO port
PIN     [30..24]        dq[22..16] IPAIR dl[22..16]     ; IO port
PIN     [39..33]        dq[30..24] IPAIR dl[30..24]     ; IO port
PIN     ?       dq[31,23,15,7] IPAIR dl[31,23,15,7]     ; IO port

;
; q  is the partial checksum register
; dl is the input register
; dq are the data bus pins
;
NODE    ?       q[31..0] OPAIR dq[31..0]        ; internal data in reg
NODE    ?       dl[31..0] REG                   ; input reg

;
; cy are the carry register bits
;
NODE    ?       cy[31,29,26,23,21,18,15,13,10,7,5,2] REG
                                               ;1-bit internal carry bits

EQUATIONS

;
; .trst is the tri-state control, 0 means these are always inputs
;
ip_add.trst             = 0
ip_clr.trst             = 0
ip_sum_ena.trst         = 0

;
; grab data to the input register on every clock (irrelevant if invalid)
;
dl[31..0].clkf          = ip_dclk       ; grab data all the time
       ; don't use setf, rstf, or trst for dl
       ; we want dl to map to input registers, not internal cells
       ; besides, input registers don't need setf, rstf, or trst

;
; control of the checksum register
;
dq[31..0].clkf          = clk                   ; clk clocks everything
dq[31..0].setf          = gnd                   ; never preset registers
dq[31..0].rstf          = ip_clr                ; clear on reset
dq[31..0].trst          = ip_sum_ena            ; ena outputs sum - read



Touch & Parham               Informational                     [Page 11]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


;
; control for the carry register
;
cy[31,29,26,23,21,18,15,13,10,7,5,2].clkf       = clk
cy[31,29,26,23,21,18,15,13,10,7,5,2].setf       = gnd    ; never preset
cy[31,29,26,23,21,18,15,13,10,7,5,2].rstf       = ip_clr ; clear on reset

;
; INPUT DATA LATCH
; nothing fancy here - grab all inputs when ip_add signal is high
; i.e., grab data in input register
;
dl[31..0]             := dq[31..0]

;
; COMBINATORIAL ADDER
;
; built as a series of 2-bit and 3-bit (carry-lookahead) full-adders
; with carries sent to the carry register "pipeline"
;
; sum[n] are sum bits
; cy[m] are carry bits
; ":+:" is XOR

;
; SUM[0] = (A0 :+: B0 :+: CARRY_IN)
;
; CY[0] = ((A0 * B0) + ((A0 :+: B0) * CARRY_IN))
;
; actually, the latter can be rewritten as
;
; CY[0] = ((A0 * B0) + ((A0 + B0) * CARRY_IN))
;
; because the XOR won't be invalidated by the AND case, since the
; result is always 1 from the first term then anyway
; this helps reduce the number of XOR terms required, which are
; a limited resource in PLDs
;













Touch & Parham               Informational                     [Page 12]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


; SUM THE LOW-ORDER WORD
;

;
; the first 5 bits [0..4] of the low-order word
;
q[0]    := (q[0] :+: (ip_add * dl[0]) :+: cy[15])

q[1]    := (q[1] :+: (ip_add * dl[1]) :+:
       ((ip_add *
               (q[0] * dl[0] +
               dl[0] * cy[15])) +
       (q[0] * cy[15])))

q[2]    := (q[2] :+: (ip_add * dl[2]) :+:
       ((ip_add *
               (q[1] * dl[1] +
                q[1] *  q[0] *  dl[0] +
               dl[1] *  q[0] *  dl[0] +
                q[1] * dl[0] * cy[15] +
               dl[1] * dl[0] * cy[15] +
               dl[1] *  q[0] * cy[15])) +
       (q[1] * q[0] * cy[15])))

cy[2]   := ((ip_add *
               (q[2] * dl[2] +
                q[2] *  q[1] * dl[1] +
               dl[2] *  q[1] * dl[1] +
                q[2] *  q[1] *  q[0] *  dl[0] +
                q[2] * dl[1] *  q[0] *  dl[0] +
               dl[2] *  q[1] *  q[0] *  dl[0] +
               dl[2] * dl[1] *  q[0] *  dl[0] +
                q[2] *  q[1] * dl[0] * cy[15] +
                q[2] * dl[1] *  q[0] * cy[15] +
                q[2] * dl[1] * dl[0] * cy[15] +
               dl[2] *  q[1] *  q[0] * cy[15] +
               dl[2] *  q[1] * dl[0] * cy[15] +
               dl[2] * dl[1] *  q[0] * cy[15] +
               dl[2] * dl[1] * dl[0] * cy[15])) +
       (q[2] * q[1] * q[0] * cy[15]))

q[3]    := (q[3] :+: (ip_add * dl[3]) :+: cy[2])

q[4]    := (q[4] :+: (ip_add * dl[4]) :+:
       ((ip_add *
               (q[3] * dl[3] +
               dl[3] * cy[2])) +
       (q[3] * cy[2])))



Touch & Parham               Informational                     [Page 13]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


;
; the next 3 bits [5..7] of the low-order word
;
q[5]    := (q[5] :+: (ip_add * dl[5]) :+:
       ((ip_add *
               (q[4] * dl[4] +
                q[4] *  q[3] * dl[3] +
               dl[4] *  q[3] * dl[3] +
                q[4] * dl[3] * cy[2] +
               dl[4] * dl[3] * cy[2] +
               dl[4] *  q[3] * cy[2])) +
       (q[4] * q[3] * cy[2])))

cy[5]   := ((ip_add * (
                q[5] * dl[5] +
                q[5] *  q[4] * dl[4] +
               dl[5] *  q[4] * dl[4] +
                q[5] *  q[4] *  q[3] * dl[3] +
                q[5] * dl[4] *  q[3] * dl[3] +
               dl[5] *  q[4] *  q[3] * dl[3] +
               dl[5] * dl[4] *  q[3] * dl[3] +
                q[5] *  q[4] * dl[3] * cy[2] +
                q[5] * dl[4] *  q[3] * cy[2] +
                q[5] * dl[4] * dl[3] * cy[2] +
               dl[5] *  q[4] *  q[3] * cy[2] +
               dl[5] *  q[4] * dl[3] * cy[2] +
               dl[5] * dl[4] *  q[3] * cy[2] +
               dl[5] * dl[4] * dl[3] * cy[2])) +
       (q[5] * q[4] * q[3] * cy[2]))

q[6]    := (q[6] :+: (ip_add * dl[6]) :+: cy[5])

q[7]    := (q[7] :+: (ip_add * dl[7]) :+:
       ((ip_add *
               (q[6] * dl[6] +
               dl[6] * cy[5])) +
       (q[6] * cy[5])))

cy[7]   := ((ip_add *
               (q[7] * dl[7] +
                q[7] *  q[6] * dl[6] +
               dl[7] *  q[6] * dl[6] +
                q[7] * dl[6] * cy[5] +
               dl[7] * dl[6] * cy[5] +
               dl[7] *  q[6] * cy[5])) +
       (q[7] * q[6] * cy[5]))





Touch & Parham               Informational                     [Page 14]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


;
; the next 5 bits [8..12] of the low-order word
;
q[8]    := (q[8] :+: (ip_add * dl[8]) :+: cy[7])

q[9]    := (q[9] :+: (ip_add * dl[9]) :+:
       ((ip_add *
               (q[8] * dl[8] +
               dl[8] * cy[7])) +
       (q[8] * cy[7])))

q[10]   := (q[10] :+: (ip_add * dl[10]) :+:
       ((ip_add *
               (q[9] * dl[9] +
                q[9] *  q[8] * dl[8] +
               dl[9] *  q[8] * dl[8] +
                q[9] * dl[8] * cy[7] +
               dl[9] * dl[8] * cy[7] +
               dl[9] *  q[8] * cy[7])) +
       (q[9] * q[8] * cy[7])))

cy[10]  := ((ip_add *
               (q[10] * dl[10] +
                q[10] *  q[9] * dl[9] +
               dl[10] *  q[9] * dl[9] +
                q[10] *  q[9] *  q[8] * dl[8] +
                q[10] * dl[9] *  q[8] * dl[8] +
               dl[10] *  q[9] *  q[8] * dl[8] +
               dl[10] * dl[9] *  q[8] * dl[8] +
                q[10] *  q[9] * dl[8] * cy[7] +
                q[10] * dl[9] *  q[8] * cy[7] +
                q[10] * dl[9] * dl[8] * cy[7] +
               dl[10] *  q[9] *  q[8] * cy[7] +
               dl[10] *  q[9] * dl[8] * cy[7] +
               dl[10] * dl[9] *  q[8] * cy[7] +
               dl[10] * dl[9] * dl[8] * cy[7])) +
       (q[10] * q[9] * q[8] * cy[7]))

q[11]   := (q[11] :+: (ip_add * dl[11]) :+: cy[10])

q[12]   := (q[12] :+: (ip_add * dl[12]) :+:
       ((ip_add *
               (q[11] * dl[11] +
               dl[11] * cy[10])) +
       (q[11] * cy[10])))






Touch & Parham               Informational                     [Page 15]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


;
; the final 3 bits [13..15] of the low-order word
;
q[13]   := (q[13] :+: (ip_add * dl[13]) :+:
       ((ip_add *
               (q[12] * dl[12] +
                q[12] *  q[11] * dl[11] +
               dl[12] *  q[11] * dl[11] +
                q[12] * dl[11] * cy[10] +
               dl[12] * dl[11] * cy[10] +
               dl[12] *  q[11] * cy[10])) +
       (q[12] * q[11] * cy[10])))

cy[13]  := ((ip_add * (
                q[13] * dl[13] +
                q[13] *  q[12] * dl[12] +
               dl[13] *  q[12] * dl[12] +
                q[13] *  q[12] *  q[11] * dl[11] +
                q[13] * dl[12] *  q[11] * dl[11] +
               dl[13] *  q[12] *  q[11] * dl[11] +
               dl[13] * dl[12] *  q[11] * dl[11] +
                q[13] *  q[12] * dl[11] * cy[10] +
                q[13] * dl[12] *  q[11] * cy[10] +
                q[13] * dl[12] * dl[11] * cy[10] +
               dl[13] *  q[12] *  q[11] * cy[10] +
               dl[13] *  q[12] * dl[11] * cy[10] +
               dl[13] * dl[12] *  q[11] * cy[10] +
               dl[13] * dl[12] * dl[11] * cy[10])) +
       (q[13] * q[12] *  q[11] * cy[10]))

q[14]   := (q[14] :+: (ip_add * dl[14]) :+: cy[13])

q[15]   := (q[15] :+: (ip_add * dl[15]) :+:
       ((ip_add *
               (q[14] * dl[14] +
               dl[14] * cy[13])) +
       (q[14] * cy[13])))

cy[15]  := ((ip_add *
               (q[15] * dl[15] +
                q[15] *  q[14] * dl[14] +
               dl[15] *  q[14] * dl[14] +
                q[15] * dl[14] * cy[13] +
               dl[15] * dl[14] * cy[13] +
               dl[15] *  q[14] * cy[13])) +
       (q[15] * q[14] * cy[13]))





Touch & Parham               Informational                     [Page 16]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


; SUM THE HIGH-ORDER WORD
;

;
; the first 5 bits [16..20] of the high-order word
;
q[16]   := (q[16] :+: (ip_add * dl[16]) :+: cy[31])

q[17]   := (q[17] :+: (ip_add * dl[17]) :+:
       ((ip_add *
               (q[16] * dl[16] +
               dl[16] * cy[31])) +
       (q[16] * cy[31])))

q[18]   := (q[18] :+: (ip_add * dl[18]) :+:
       ((ip_add *
               (q[17] * dl[17] +
                q[17] *  q[16] * dl[16] +
               dl[17] *  q[16] * dl[16] +
                q[17] * dl[16] * cy[31] +
               dl[17] * dl[16] * cy[31] +
               dl[17] *  q[16] * cy[31])) +
       (q[17] * q[16] * cy[31])))

cy[18]  := ((ip_add *
               (q[18] * dl[18] +
                q[18] *  q[17] * dl[17] +
               dl[18] *  q[17] * dl[17] +
                q[18] *  q[17] *  q[16] * dl[16] +
                q[18] * dl[17] *  q[16] * dl[16] +
               dl[18] *  q[17] *  q[16] * dl[16] +
               dl[18] * dl[17] *  q[16] * dl[16] +
                q[18] *  q[17] * dl[16] * cy[31] +
                q[18] * dl[17] *  q[16] * cy[31] +
                q[18] * dl[17] * dl[16] * cy[31] +
               dl[18] *  q[17] *  q[16] * cy[31] +
               dl[18] *  q[17] * dl[16] * cy[31] +
               dl[18] * dl[17] *  q[16] * cy[31] +
               dl[18] * dl[17] * dl[16] * cy[31])) +
       (q[18] * q[17] * q[16] * cy[31]))

q[19]   := (q[19] :+: (ip_add * dl[19]) :+: cy[18])

q[20]   := (q[20] :+: (ip_add * dl[20]) :+:
       ((ip_add *
               (q[19] * dl[19] +
               dl[19] * cy[18])) +
       (q[19] * cy[18])))



Touch & Parham               Informational                     [Page 17]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


;
; the next 3 bits [21..23] of the high-order word
;
q[21]   := (q[21] :+: (ip_add * dl[21]) :+:
       ((ip_add *
               (q[20] * dl[20] +
                q[20] *  q[19] * dl[19] +
               dl[20] *  q[19] * dl[19] +
                q[20] * dl[19] * cy[18] +
               dl[20] * dl[19] * cy[18] +
               dl[20] *  q[19] * cy[18])) +
       (q[20] * q[19] * cy[18])))

cy[21]  := ((ip_add * (
                q[21] * dl[21] +
                q[21] *  q[20] * dl[20] +
               dl[21] *  q[20] * dl[20] +
                q[21] *  q[20] *  q[19] * dl[19] +
                q[21] * dl[20] *  q[19] * dl[19] +
               dl[21] *  q[20] *  q[19] * dl[19] +
               dl[21] * dl[20] *  q[19] * dl[19] +
                q[21] *  q[20] * dl[19] * cy[18] +
                q[21] * dl[20] *  q[19] * cy[18] +
                q[21] * dl[20] * dl[19] * cy[18] +
               dl[21] *  q[20] *  q[19] * cy[18] +
               dl[21] *  q[20] * dl[19] * cy[18] +
               dl[21] * dl[20] *  q[19] * cy[18] +
               dl[21] * dl[20] * dl[19] * cy[18])) +
       (q[21] * q[20] * q[19] * cy[18]))

q[22]   := (q[22] :+: (ip_add * dl[22]) :+: cy[21])

q[23]   := (q[23] :+: (ip_add * dl[23]) :+:
       ((ip_add *
               (q[22] * dl[22] +
               dl[22] * cy[21])) +
       (q[22] * cy[21])))

cy[23]  := ((ip_add *
               (q[23] * dl[23] +
                q[23] *  q[22] * dl[22] +
               dl[23] *  q[22] * dl[22] +
                q[23] * dl[22] * cy[21] +
               dl[23] * dl[22] * cy[21] +
               dl[23] *  q[22] * cy[21])) +
       (q[23] * q[22] * cy[21]))





Touch & Parham               Informational                     [Page 18]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


;
; the next 5 bits [24..28] of the high-order word
;
q[24]   := (q[24] :+: (ip_add * dl[24]) :+: cy[23])

q[25]   := (q[25] :+: (ip_add * dl[25]) :+:
       ((ip_add *
               (q[24] * dl[24] +
               dl[24] * cy[23])) +
       (q[24] * cy[23])))

q[26]   := (q[26] :+: (ip_add * dl[26]) :+:
       ((ip_add *
               (q[25] * dl[25] +
                q[25] *  q[24] * dl[24] +
               dl[25] *  q[24] * dl[24] +
                q[25] * dl[24] * cy[23] +
               dl[25] * dl[24] * cy[23] +
               dl[25] *  q[24] * cy[23])) +
       (q[25] * q[24] * cy[23])))

cy[26]  := ((ip_add *
               (q[26] * dl[26] +
                q[26] *  q[25] * dl[25] +
               dl[26] *  q[25] * dl[25] +
                q[26] *  q[25] *  q[24] * dl[24] +
                q[26] * dl[25] *  q[24] * dl[24] +
               dl[26] *  q[25] *  q[24] * dl[24] +
               dl[26] * dl[25] *  q[24] * dl[24] +
                q[26] *  q[25] * dl[24] * cy[23] +
                q[26] * dl[25] *  q[24] * cy[23] +
                q[26] * dl[25] * dl[24] * cy[23] +
               dl[26] *  q[25] *  q[24] * cy[23] +
               dl[26] *  q[25] * dl[24] * cy[23] +
               dl[26] * dl[25] *  q[24] * cy[23] +
               dl[26] * dl[25] * dl[24] * cy[23])) +
       (q[26] * q[25] * q[24] * cy[23]))

q[27]   := (q[27] :+: (ip_add * dl[27]) :+: cy[26])

q[28]   := (q[28] :+: (ip_add * dl[28]) :+:
       ((ip_add *
               (q[27] * dl[27] +
               dl[27] * cy[26])) +
       (q[27] * cy[26])))






Touch & Parham               Informational                     [Page 19]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


;
; the final 3 bits [29..31] of the high-order word
;
q[29]   := (q[29] :+: (ip_add * dl[29]) :+:
       ((ip_add *
               (q[28] * dl[28] +
                q[28] *  q[27] * dl[27] +
               dl[28] *  q[27] * dl[27] +
                q[28] * dl[27] * cy[26] +
               dl[28] * dl[27] * cy[26] +
               dl[28] *  q[27] * cy[26])) +
       (q[28] * q[27] * cy[26])))

cy[29]  := ((ip_add * (
                q[29] * dl[29] +
                q[29] *  q[28] * dl[28] +
               dl[29] *  q[28] * dl[28] +
                q[29] *  q[28] *  q[27] * dl[27] +
                q[29] * dl[28] *  q[27] * dl[27] +
               dl[29] *  q[28] *  q[27] * dl[27] +
               dl[29] * dl[28] *  q[27] * dl[27] +
                q[29] *  q[28] * dl[27] * cy[26] +
                q[29] * dl[28] *  q[27] * cy[26] +
                q[29] * dl[28] * dl[27] * cy[26] +
               dl[29] *  q[28] *  q[27] * cy[26] +
               dl[29] *  q[28] * dl[27] * cy[26] +
               dl[29] * dl[28] *  q[27] * cy[26] +
               dl[29] * dl[28] * dl[27] * cy[26])) +
       (q[29] * q[28] * q[27] * cy[26]))

q[30]   := (q[30] :+: (ip_add * dl[30]) :+: cy[29])

q[31]   := (q[31] :+: (ip_add * dl[31]) :+:
       ((ip_add *
               (q[30] * dl[30] +
               dl[30] * cy[29])) +
       (q[30] * cy[29])))

cy[31]  := ((ip_add *
               (q[31] * dl[31] +
                q[31] *  q[30] * dl[30] +
               dl[31] *  q[30] * dl[30] +
                q[31] * dl[30] * cy[29] +
               dl[31] * dl[30] * cy[29] +
               dl[31] *  q[30] * cy[29])) +
       (q[31] * q[30] * cy[29]))





Touch & Parham               Informational                     [Page 20]

RFC 1936    Implementing the Internet Checksum in Hardware    April 1996


;
; output nodes onto output pins (pending enable..)
;
dq[0]   := {q[0]}
dq[1]   := {q[1]}
dq[2]   := {q[2]}
dq[3]   := {q[3]}
dq[4]   := {q[4]}
dq[5]   := {q[5]}
dq[6]   := {q[6]}
dq[7]   := {q[7]}
dq[8]   := {q[8]}
dq[9]   := {q[9]}
dq[10]  := {q[10]}
dq[11]  := {q[11]}
dq[12]  := {q[12]}
dq[13]  := {q[13]}
dq[14]  := {q[14]}
dq[15]  := {q[15]}

dq[16]  := {q[16]}
dq[17]  := {q[17]}
dq[18]  := {q[18]}
dq[19]  := {q[19]}
dq[20]  := {q[20]}
dq[21]  := {q[21]}
dq[22]  := {q[22]}
dq[23]  := {q[23]}
dq[24]  := {q[24]}
dq[25]  := {q[25]}
dq[26]  := {q[26]}
dq[27]  := {q[27]}
dq[28]  := {q[28]}
dq[29]  := {q[29]}
dq[30]  := {q[30]}
dq[31]  := {q[31]}

;
; end.
;











Touch & Parham               Informational                     [Page 21]