Network Working Group                               SNMPv2 Working Group
Request for Comments: 1906                                       J. Case
Obsoletes: 1449                                      SNMP Research, Inc.
Category: Standards Track                                  K. McCloghrie
                                                    Cisco Systems, Inc.
                                                                M. Rose
                                           Dover Beach Consulting, Inc.
                                                          S. Waldbusser
                                         International Network Services
                                                           January 1996


               Transport Mappings for Version 2 of the
             Simple Network Management Protocol (SNMPv2)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Table of Contents

  1. Introduction ................................................    2
  1.1 A Note on Terminology ......................................    2
  2. Definitions .................................................    3
  3. SNMPv2 over UDP .............................................    5
  3.1 Serialization ..............................................    5
  3.2 Well-known Values ..........................................    5
  4. SNMPv2 over OSI .............................................    6
  4.1 Serialization ..............................................    6
  4.2 Well-known Values ..........................................    6
  5. SNMPv2 over DDP .............................................    6
  5.1 Serialization ..............................................    6
  5.2 Well-known Values ..........................................    6
  5.3 Discussion of AppleTalk Addressing .........................    7
  5.3.1 How to Acquire NBP names .................................    8
  5.3.2 When to Turn NBP names into DDP addresses ................    8
  5.3.3 How to Turn NBP names into DDP addresses .................    8
  5.3.4 What if NBP is broken ....................................    9
  6. SNMPv2 over IPX .............................................    9
  6.1 Serialization ..............................................    9
  6.2 Well-known Values ..........................................    9
  7. Proxy to SNMPv1 .............................................   10
  8. Serialization using the Basic Encoding Rules ................   10
  8.1 Usage Example ..............................................   11



SNMPv2 Working Group        Standards Track                     [Page 1]

RFC 1906             Transport Mappings for SNMPv2          January 1996


  9. Security Considerations .....................................   11
  10. Editor's Address ...........................................   12
  11. Acknowledgements ...........................................   12
  12. References .................................................   13

1.  Introduction

  A management system contains:  several (potentially many) nodes, each
  with a processing entity, termed an agent, which has access to
  management instrumentation; at least one management station; and, a
  management protocol, used to convey management information between
  the agents and management stations.  Operations of the protocol are
  carried out under an administrative framework which defines
  authentication, authorization, access control, and privacy policies.

  Management stations execute management applications which monitor and
  control managed elements.  Managed elements are devices such as
  hosts, routers, terminal servers, etc., which are monitored and
  controlled via access to their management information.

  The management protocol, version 2 of the Simple Network Management
  Protocol [1], may be used over a variety of protocol suites.  It is
  the purpose of this document to define how the SNMPv2 maps onto an
  initial set of transport domains.  Other mappings may be defined in
  the future.

  Although several mappings are defined, the mapping onto UDP is the
  preferred mapping.  As such, to provide for the greatest level of
  interoperability, systems which choose to deploy other mappings
  should also provide for proxy service to the UDP mapping.

1.1.  A Note on Terminology

  For the purpose of exposition, the original Internet-standard Network
  Management Framework, as described in RFCs 1155 (STD 16), 1157 (STD
  15), and 1212 (STD 16), is termed the SNMP version 1 framework
  (SNMPv1).  The current framework is termed the SNMP version 2
  framework (SNMPv2).













SNMPv2 Working Group        Standards Track                     [Page 2]

RFC 1906             Transport Mappings for SNMPv2          January 1996


2.  Definitions

SNMPv2-TM DEFINITIONS ::= BEGIN

IMPORTS
   OBJECT-IDENTITY, snmpDomains, snmpProxys
       FROM SNMPv2-SMI
   TEXTUAL-CONVENTION
       FROM SNMPv2-TC;

-- SNMPv2 over UDP over IPv4

snmpUDPDomain  OBJECT-IDENTITY
   STATUS     current
   DESCRIPTION
           "The SNMPv2 over UDP transport domain.  The corresponding
           transport address is of type SnmpUDPAddress."
   ::= { snmpDomains 1 }

SnmpUDPAddress ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "1d.1d.1d.1d/2d"
   STATUS       current
   DESCRIPTION
           "Represents a UDP address:

              octets   contents        encoding
               1-4     IP-address      network-byte order
               5-6     UDP-port        network-byte order
           "
   SYNTAX       OCTET STRING (SIZE (6))


-- SNMPv2 over OSI

snmpCLNSDomain OBJECT-IDENTITY
   STATUS     current
   DESCRIPTION
           "The SNMPv2 over CLNS transport domain.  The corresponding
           transport address is of type SnmpOSIAddress."
   ::= { snmpDomains 2 }

snmpCONSDomain OBJECT-IDENTITY
   STATUS     current
   DESCRIPTION
           "The SNMPv2 over CONS transport domain.  The corresponding
           transport address is of type SnmpOSIAddress."
   ::= { snmpDomains 3 }




SNMPv2 Working Group        Standards Track                     [Page 3]

RFC 1906             Transport Mappings for SNMPv2          January 1996


SnmpOSIAddress ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "*1x:/1x:"
   STATUS       current
   DESCRIPTION
           "Represents an OSI transport-address:

              octets   contents           encoding
                 1     length of NSAP     'n' as an unsigned-integer
                                             (either 0 or from 3 to 20)
              2..(n+1) NSAP                concrete binary representation
              (n+2)..m TSEL                string of (up to 64) octets
           "
   SYNTAX       OCTET STRING (SIZE (1 | 4..85))


-- SNMPv2 over DDP

snmpDDPDomain  OBJECT-IDENTITY
   STATUS     current
   DESCRIPTION
           "The SNMPv2 over DDP transport domain.  The corresponding
           transport address is of type SnmpNBPAddress."
   ::= { snmpDomains 4 }

SnmpNBPAddress ::= TEXTUAL-CONVENTION
   STATUS       current
   DESCRIPTION
           "Represents an NBP name:

                octets        contents          encoding
                   1          length of object  'n' as an unsigned integer
                 2..(n+1)     object            string of (up to 32) octets
                  n+2         length of type    'p' as an unsigned integer
             (n+3)..(n+2+p)   type              string of (up to 32) octets
                 n+3+p        length of zone    'q' as an unsigned integer
           (n+4+p)..(n+3+p+q) zone              string of (up to 32) octets

           For comparison purposes, strings are case-insensitive All
           strings may contain any octet other than 255 (hex ff)."
   SYNTAX       OCTET STRING (SIZE (3..99))


-- SNMPv2 over IPX

snmpIPXDomain  OBJECT-IDENTITY
   STATUS     current
   DESCRIPTION
           "The SNMPv2 over IPX transport domain.  The corresponding



SNMPv2 Working Group        Standards Track                     [Page 4]

RFC 1906             Transport Mappings for SNMPv2          January 1996


           transport address is of type SnmpIPXAddress."
   ::= { snmpDomains 5 }

SnmpIPXAddress ::= TEXTUAL-CONVENTION
   DISPLAY-HINT "4x.1x:1x:1x:1x:1x:1x.2d"
   STATUS       current
   DESCRIPTION
           "Represents an IPX address:

              octets   contents            encoding
               1-4     network-number      network-byte order
               5-10    physical-address    network-byte order
              11-12    socket-number       network-byte order
           "
   SYNTAX       OCTET STRING (SIZE (12))


-- for proxy to SNMPv1 (RFC 1157)

rfc1157Proxy   OBJECT IDENTIFIER ::= { snmpProxys 1 }

rfc1157Domain  OBJECT-IDENTITY
   STATUS     current
   DESCRIPTION
           "The transport domain for SNMPv1 over UDP.  The
           corresponding transport address is of type SnmpUDPAddress."
   ::= { rfc1157Proxy 1 }

--  ::= { rfc1157Proxy 2 }            this OID is obsolete


END

3.  SNMPv2 over UDP

  This is the preferred transport mapping.

3.1.  Serialization

  Each instance of a message is serialized (i.e., encoded according to
  the convention of [1]) onto a single UDP[2] datagram, using the
  algorithm specified in Section 8.

3.2.  Well-known Values

  It is suggested that administrators configure their SNMPv2 entities
  acting in an agent role to listen on UDP port 161.  Further, it is
  suggested that notification sinks be configured to listen on UDP port



SNMPv2 Working Group        Standards Track                     [Page 5]

RFC 1906             Transport Mappings for SNMPv2          January 1996


  162.

  When an SNMPv2 entity uses this transport mapping, it must be capable
  of accepting messages that are at least 484 octets in size.
  Implementation of larger values is encouraged whenever possible.

4.  SNMPv2 over OSI

  This is an optional transport mapping.

4.1.  Serialization

  Each instance of a message is serialized onto a single TSDU [3,4] for
  the OSI Connectionless-mode Transport Service (CLTS), using the
  algorithm specified in Section 8.

4.2.  Well-known Values

  It is suggested that administrators configure their SNMPv2 entities
  acting in an agent role to listen on transport selector "snmp-l"
  (which consists of six ASCII characters), when using a CL-mode
  network service to realize the CLTS.  Further, it is suggested that
  notification sinks be configured to listen on transport selector
  "snmpt-l" (which consists of seven ASCII characters, six letters and
  a hyphen) when using a CL-mode network service to realize the CLTS.
  Similarly, when using a CO-mode network service to realize the CLTS,
  the suggested transport selectors are "snmp-o" and "snmpt-o", for
  agent and notification sink, respectively.

  When an SNMPv2 entity uses this transport mapping, it must be capable
  of accepting messages that are at least 484 octets in size.
  Implementation of larger values is encouraged whenever possible.

5.  SNMPv2 over DDP

  This is an optional transport mapping.

5.1.  Serialization

  Each instance of a message is serialized onto a single DDP datagram
  [5], using the algorithm specified in Section 8.

5.2.  Well-known Values

  SNMPv2 messages are sent using DDP protocol type 8.  SNMPv2 entities
  acting in an agent role listens on DDP socket number 8, whilst
  notification sinks listen on DDP socket number 9.




SNMPv2 Working Group        Standards Track                     [Page 6]

RFC 1906             Transport Mappings for SNMPv2          January 1996


  Administrators must configure their SNMPv2 entities acting in an
  agent role to use NBP type "SNMP Agent" (which consists of ten ASCII
  characters), whilst notification sinks must be configured to use NBP
  type "SNMP Trap Handler" (which consists of seventeen ASCII
  characters).

  The NBP name for agents and notification sinks should be stable - NBP
  names should not change any more often than the IP address of a
  typical TCP/IP node.  It is suggested that the NBP name be stored in
  some form of stable storage.

  When an SNMPv2 entity uses this transport mapping, it must be capable
  of accepting messages that are at least 484 octets in size.
  Implementation of larger values is encouraged whenever possible.

5.3.  Discussion of AppleTalk Addressing

  The AppleTalk protocol suite has certain features not manifest in the
  TCP/IP suite.  AppleTalk's naming strategy and the dynamic nature of
  address assignment can cause problems for SNMPv2 entities that wish
  to manage AppleTalk networks.  TCP/IP nodes have an associated IP
  address which distinguishes each from the other.  In contrast,
  AppleTalk nodes generally have no such characteristic.  The network-
  level address, while often relatively stable, can change at every
  reboot (or more frequently).

  Thus, when SNMPv2 is mapped over DDP, nodes are identified by a
  "name", rather than by an "address".  Hence, all AppleTalk nodes that
  implement this mapping are required to respond to NBP lookups and
  confirms (e.g., implement the NBP protocol stub), which guarantees
  that a mapping from NBP name to DDP address will be possible.

  In determining the SNMP identity to register for an SNMPv2 entity, it
  is suggested that the SNMP identity be a name which is associated
  with other network services offered by the machine.

  NBP lookups, which are used to map NBP names into DDP addresses, can
  cause large amounts of network traffic as well as consume CPU
  resources.  It is also the case that the ability to perform an NBP
  lookup is sensitive to certain network disruptions (such as zone
  table inconsistencies) which would not prevent direct AppleTalk
  communications between two SNMPv2 entities.

  Thus, it is recommended that NBP lookups be used infrequently,
  primarily to create a cache of name-to-address mappings.  These
  cached mappings should then be used for any further SNMP traffic.  It
  is recommended that SNMPv2 entities acting in a manager role should
  maintain this cache between reboots.  This caching can help minimize



SNMPv2 Working Group        Standards Track                     [Page 7]

RFC 1906             Transport Mappings for SNMPv2          January 1996


  network traffic, reduce CPU load on the network, and allow for (some
  amount of) network trouble shooting when the basic name-to-address
  translation mechanism is broken.

5.3.1.  How to Acquire NBP names

  An SNMPv2 entity acting in a manager role may have a pre-configured
  list of names of "known" SNMPv2 entities acting in an agent role.
  Similarly, an SNMPv2 entity acting in a manager role might interact
  with an operator.  Finally, an SNMPv2 entity acting in a manager role
  might communicate with all SNMPv2 entities acting in an agent role in
  a set of zones or networks.

5.3.2.  When to Turn NBP names into DDP addresses

  When an SNMPv2 entity uses a cache entry to address an SNMP packet,
  it should attempt to confirm the validity mapping, if the mapping
  hasn't been confirmed within the last T1 seconds.  This cache entry
  lifetime, T1, has a minimum, default value of 60 seconds, and should
  be configurable.

  An SNMPv2 entity acting in a manager role may decide to prime its
  cache of names prior to actually communicating with another SNMPv2
  entity.  In general, it is expected that such an entity may want to
  keep certain mappings "more current" than other mappings, e.g., those
  nodes which represent the network infrastructure (e.g., routers) may
  be deemed "more important".

  Note that an SNMPv2 entity acting in a manager role should not prime
  its entire cache upon initialization - rather, it should attempt
  resolutions over an extended period of time (perhaps in some pre-
  determined or configured priority order).  Each of these resolutions
  might, in fact, be a wildcard lookup in a given zone.

  An SNMPv2 entity acting in an agent role must never prime its cache.
  Such an entity should do NBP lookups (or confirms) only when it needs
  to send an SNMP trap.  When generating a response, such an entity
  does not need to confirm a cache entry.

5.3.3.  How to Turn NBP names into DDP addresses

  If the only piece of information available is the NBP name, then an
  NBP lookup should be performed to turn that name into a DDP address.
  However, if there is a piece of stale information, it can be used as
  a hint to perform an NBP confirm (which sends a unicast to the
  network address which is presumed to be the target of the name
  lookup) to see if the stale information is, in fact, still valid.




SNMPv2 Working Group        Standards Track                     [Page 8]

RFC 1906             Transport Mappings for SNMPv2          January 1996


  An NBP name to DDP address mapping can also be confirmed implicitly
  using only SNMP transactions.  For example, an SNMPv2 entity acting
  in a manager role issuing a retrieval operation could also retrieve
  the relevant objects from the NBP group [6] for the SNMPv2 entity
  acting in an agent role.  This information can then be correlated
  with the source DDP address of the response.

5.3.4.  What if NBP is broken

  Under some circumstances, there may be connectivity between two
  SNMPv2 entities, but the NBP mapping machinery may be broken, e.g.,

o    the NBP FwdReq (forward NBP lookup onto local attached network)
    mechanism might be broken at a router on the other entity's
    network; or,

o    the NBP BrRq (NBP broadcast request) mechanism might be broken
    at a router on the entity's own network; or,

o    NBP might be broken on the other entity's node.

  An SNMPv2 entity acting in a manager role which is dedicated to
  AppleTalk management might choose to alleviate some of these failures
  by directly implementing the router portion of NBP.  For example,
  such an entity might already know all the zones on the AppleTalk
  internet and the networks on which each zone appears.  Given an NBP
  lookup which fails, the entity could send an NBP FwdReq to the
  network in which the agent was last located.  If that failed, the
  station could then send an NBP LkUp (NBP lookup packet) as a directed
  (DDP) multicast to each network number on that network.  Of the above
  (single) failures, this combined approach will solve the case where
  either the local router's BrRq-to-FwdReq mechanism is broken or the
  remote router's FwdReq-to-LkUp mechanism is broken.

6.  SNMPv2 over IPX

  This is an optional transport mapping.

6.1.  Serialization

  Each instance of a message is serialized onto a single IPX datagram
  [7], using the algorithm specified in Section 8.

6.2.  Well-known Values

  SNMPv2 messages are sent using IPX packet type 4 (i.e., Packet
  Exchange Protocol).




SNMPv2 Working Group        Standards Track                     [Page 9]

RFC 1906             Transport Mappings for SNMPv2          January 1996


  It is suggested that administrators configure their SNMPv2 entities
  acting in an agent role to listen on IPX socket 36879 (900f
  hexadecimal).  Further, it is suggested that notification sinks be
  configured to listen on IPX socket 36880 (9010 hexadecimal)

  When an SNMPv2 entity uses this transport mapping, it must be capable
  of accepting messages that are at least 546 octets in size.
  Implementation of larger values is encouraged whenever possible.

7.  Proxy to SNMPv1

  In order to provide proxy to SNMPv1 [8], it may be useful to define a
  transport domain, rfc1157Domain, which indicates the transport
  mapping for SNMP messages as defined in RFC 1157.  Section 3.1 of [9]
  specifies the behavior of the proxy agent.

8.  Serialization using the Basic Encoding Rules

  When the Basic Encoding Rules [10] are used for serialization:

  (1)  When encoding the length field, only the definite form is used; use
       of the indefinite form encoding is prohibited.  Note that when
       using the definite-long form, it is permissible to use more than
       the minimum number of length octets necessary to encode the length
       field.

  (2)  When encoding the value field, the primitive form shall be used for
       all simple types, i.e., INTEGER, OCTET STRING, and OBJECT
       IDENTIFIER (either IMPLICIT or explicit).  The constructed form of
       encoding shall be used only for structured types, i.e., a SEQUENCE
       or an IMPLICIT SEQUENCE.

  (3)  When encoding an object whose syntax is described using the BITS
       construct, the value is encoded as an OCTET STRING, in which all
       the named bits in (the definition of) the bitstring, commencing
       with the first bit and proceeding to the last bit, are placed in
       bits 8 to 1 of the first octet, followed by bits 8 to 1 of each
       subsequent octet in turn, followed by as many bits as are needed of
       the final subsequent octet, commencing with bit 8.  Remaining bits,
       if any, of the final octet are set to zero on generation and
       ignored on receipt.

  These restrictions apply to all aspects of ASN.1 encoding, including
  the message wrappers, protocol data units, and the data objects they
  contain.






SNMPv2 Working Group        Standards Track                    [Page 10]

RFC 1906             Transport Mappings for SNMPv2          January 1996


8.1.  Usage Example

  As an example of applying the Basic Encoding Rules, suppose one
  wanted to encode an instance of the GetBulkRequest-PDU [1]:

    [5] IMPLICIT SEQUENCE {
            request-id      1414684022,
            non-repeaters   1,
            max-repetitions 2,
            variable-bindings {
                { name sysUpTime,
                  value { unspecified NULL } },
                { name ipNetToMediaPhysAddress,
                  value { unspecified NULL } },
                { name ipNetToMediaType,
                  value { unspecified NULL } }
            }
        }

Applying the BER, this would be encoded (in hexadecimal) as:

[5] IMPLICIT SEQUENCE          a5 82 00 39
   INTEGER                    02 04 52 54 5d 76
   INTEGER                    02 01 01
   INTEGER                    02 01 02
   SEQUENCE                   30 2b
       SEQUENCE               30 0b
           OBJECT IDENTIFIER  06 07 2b 06 01 02 01 01 03
           NULL               05 00
       SEQUENCE               30 0d
           OBJECT IDENTIFIER  06 09 2b 06 01 02 01 04 16 01 02
           NULL               05 00
       SEQUENCE               30 0d
           OBJECT IDENTIFIER  06 09 2b 06 01 02 01 04 16 01 04
           NULL               05 00

  Note that the initial SEQUENCE is not encoded using the minimum
  number of length octets.  (The first octet of the length, 82,
  indicates that the length of the content is encoded in the next two
  octets.)

9.  Security Considerations

  Security issues are not discussed in this memo.







SNMPv2 Working Group        Standards Track                    [Page 11]

RFC 1906             Transport Mappings for SNMPv2          January 1996


10.  Editor's Address

  Keith McCloghrie
  Cisco Systems, Inc.
  170 West Tasman Drive
  San Jose, CA  95134-1706
  US

  Phone: +1 408 526 5260
  EMail: [email protected]

11.  Acknowledgements

  This document is the result of significant work by the four major
  contributors:

  Jeffrey D. Case (SNMP Research, [email protected])
  Keith McCloghrie (Cisco Systems, [email protected])
  Marshall T. Rose (Dover Beach Consulting, [email protected])
  Steven Waldbusser (International Network Services, [email protected])

  In addition, the contributions of the SNMPv2 Working Group are
  acknowledged.  In particular, a special thanks is extended for the
  contributions of:

    Alexander I. Alten (Novell)
    Dave Arneson (Cabletron)
    Uri Blumenthal (IBM)
    Doug Book (Chipcom)
    Kim Curran (Bell-Northern Research)
    Jim Galvin (Trusted Information Systems)
    Maria Greene (Ascom Timeplex)
    Iain Hanson (Digital)
    Dave Harrington (Cabletron)
    Nguyen Hien (IBM)
    Jeff Johnson (Cisco Systems)
    Michael Kornegay (Object Quest)
    Deirdre Kostick (AT&T Bell Labs)
    David Levi (SNMP Research)
    Daniel Mahoney (Cabletron)
    Bob Natale (ACE*COMM)
    Brian O'Keefe (Hewlett Packard)
    Andrew Pearson (SNMP Research)
    Dave Perkins (Peer Networks)
    Randy Presuhn (Peer Networks)
    Aleksey Romanov (Quality Quorum)
    Shawn Routhier (Epilogue)
    Jon Saperia (BGS Systems)



SNMPv2 Working Group        Standards Track                    [Page 12]

RFC 1906             Transport Mappings for SNMPv2          January 1996


    Bob Stewart (Cisco Systems, [email protected]), chair
    Kaj Tesink (Bellcore)
    Glenn Waters (Bell-Northern Research)
    Bert Wijnen (IBM)

12.  References

[1]  SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
    S. Waldbusser, "Protocol Operations for Version 2 of the Simple
    Network Management Protocol (SNMPv2)", RFC 1905, January 1996.

[2]  Postel, J., "User Datagram Protocol", STD 6, RFC 768,
    USC/Information Sciences Institute, August 1980.

[3]  Information processing systems - Open Systems Interconnection -
    Transport Service Definition, International Organization for
    Standardization.  International Standard 8072, (June, 1986).

[4]  Information processing systems - Open Systems Interconnection -
    Transport Service Definition - Addendum 1: Connectionless-mode
    Transmission, International Organization for Standardization.
    International Standard 8072/AD 1, (December, 1986).

[5]  G. Sidhu, R. Andrews, A. Oppenheimer, Inside AppleTalk (second
    edition).  Addison-Wesley, 1990.

[6]  Waldbusser, S., "AppleTalk Management Information Base", RFC 1243,
    Carnegie Mellon University, July 1991.

[7]  Network System Technical Interface Overview.  Novell, Inc, (June,
    1989).

[8]  Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple Network
    Management Protocol", STD 15, RFC 1157, SNMP Research, Performance
    Systems International, MIT Laboratory for Computer Science, May
    1990.

[9]  SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
    S. Waldbusser, "Coexistence between Version 1 and Version 2 of the
    Internet-standard Network Management Framework", RFC 1908,
    January 1996.

[10] Information processing systems - Open Systems Interconnection -
    Specification of Basic Encoding Rules for Abstract Syntax Notation
    One (ASN.1), International Organization for Standardization.
    International Standard 8825, December 1987.





SNMPv2 Working Group        Standards Track                    [Page 13]