Network Working Group                               SNMPv2 Working Group
Request for Comments: 1902                                       J. Case
Obsoletes: 1442                                      SNMP Research, Inc.
Category: Standards Track                                  K. McCloghrie
                                                    Cisco Systems, Inc.
                                                                M. Rose
                                           Dover Beach Consulting, Inc.
                                                          S. Waldbusser
                                         International Network Services
                                                           January 1996


                 Structure of Management Information
                         for Version 2 of the
             Simple Network Management Protocol (SNMPv2)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

1.  Introduction

  A management system contains:  several (potentially many) nodes, each
  with a processing entity, termed an agent, which has access to
  management instrumentation; at least one management station; and, a
  management protocol, used to convey management information between
  the agents and management stations.  Operations of the protocol are
  carried out under an administrative framework which defines
  authentication, authorization, access control, and privacy policies.

  Management stations execute management applications which monitor and
  control managed elements.  Managed elements are devices such as
  hosts, routers, terminal servers, etc., which are monitored and
  controlled via access to their management information.

  Management information is viewed as a collection of managed objects,
  residing in a virtual information store, termed the Management
  Information Base (MIB).  Collections of related objects are defined
  in MIB modules.  These modules are written using an adapted subset of
  OSI's Abstract Syntax Notation One (ASN.1) [1].  It is the purpose of
  this document, the Structure of Management Information (SMI), to
  define that adapted subset, and to assign a set of associated
  administrative values.




SNMPv2 Working Group        Standards Track                     [Page 1]

RFC 1902                     SMI for SNMPv2                 January 1996


  The SMI is divided into three parts:  module definitions, object
  definitions, and, notification definitions.

(1)  Module definitions are used when describing information modules.
    An ASN.1 macro, MODULE-IDENTITY, is used to concisely convey the
    semantics of an information module.

(2)  Object definitions are used when describing managed objects.  An
    ASN.1 macro, OBJECT-TYPE, is used to concisely convey the syntax
    and semantics of a managed object.

(3)  Notification definitions are used when describing unsolicited
    transmissions of management information.  An ASN.1 macro,
    NOTIFICATION-TYPE, is used to concisely convey the syntax and
    semantics of a notification.

1.1.  A Note on Terminology

  For the purpose of exposition, the original Internet-standard Network
  Management Framework, as described in RFCs 1155 (STD 16), 1157 (STD
  15), and 1212 (STD 16), is termed the SNMP version 1 framework
  (SNMPv1).  The current framework is termed the SNMP version 2
  framework (SNMPv2).

2.  Definitions

SNMPv2-SMI DEFINITIONS ::= BEGIN


-- the path to the root

org            OBJECT IDENTIFIER ::= { iso 3 }
dod            OBJECT IDENTIFIER ::= { org 6 }
internet       OBJECT IDENTIFIER ::= { dod 1 }

directory      OBJECT IDENTIFIER ::= { internet 1 }

mgmt           OBJECT IDENTIFIER ::= { internet 2 }
mib-2          OBJECT IDENTIFIER ::= { mgmt 1 }
transmission   OBJECT IDENTIFIER ::= { mib-2 10 }

experimental   OBJECT IDENTIFIER ::= { internet 3 }

private        OBJECT IDENTIFIER ::= { internet 4 }
enterprises    OBJECT IDENTIFIER ::= { private 1 }

security       OBJECT IDENTIFIER ::= { internet 5 }




SNMPv2 Working Group        Standards Track                     [Page 2]

RFC 1902                     SMI for SNMPv2                 January 1996


snmpV2         OBJECT IDENTIFIER ::= { internet 6 }

-- transport domains
snmpDomains    OBJECT IDENTIFIER ::= { snmpV2 1 }

-- transport proxies
snmpProxys     OBJECT IDENTIFIER ::= { snmpV2 2 }

-- module identities
snmpModules    OBJECT IDENTIFIER ::= { snmpV2 3 }


-- definitions for information modules

MODULE-IDENTITY MACRO ::=
BEGIN
   TYPE NOTATION ::=
                 "LAST-UPDATED" value(Update UTCTime)
                 "ORGANIZATION" Text
                 "CONTACT-INFO" Text
                 "DESCRIPTION" Text
                 RevisionPart

   VALUE NOTATION ::=
                 value(VALUE OBJECT IDENTIFIER)

   RevisionPart ::=
                 Revisions
               | empty
   Revisions ::=
                 Revision
               | Revisions Revision
   Revision ::=
                 "REVISION" value(Update UTCTime)
                 "DESCRIPTION" Text

   -- uses the NVT ASCII character set
   Text ::= """" string """"
END


OBJECT-IDENTITY MACRO ::=
BEGIN
   TYPE NOTATION ::=
                 "STATUS" Status
                 "DESCRIPTION" Text
                 ReferPart




SNMPv2 Working Group        Standards Track                     [Page 3]

RFC 1902                     SMI for SNMPv2                 January 1996


   VALUE NOTATION ::=
                 value(VALUE OBJECT IDENTIFIER)

   Status ::=
                 "current"
               | "deprecated"
               | "obsolete"

   ReferPart ::=
               "REFERENCE" Text
             | empty

   Text ::= """" string """"
END


-- names of objects

ObjectName ::=
   OBJECT IDENTIFIER

NotificationName ::=
   OBJECT IDENTIFIER

-- syntax of objects

ObjectSyntax ::=
   CHOICE {
       simple
           SimpleSyntax,

         -- note that SEQUENCEs for conceptual tables and
         -- rows are not mentioned here...

       application-wide
           ApplicationSyntax
   }


-- built-in ASN.1 types

SimpleSyntax ::=
   CHOICE {
       -- INTEGERs with a more restrictive range
       -- may also be used
       integer-value               -- includes Integer32
           INTEGER (-2147483648..2147483647),




SNMPv2 Working Group        Standards Track                     [Page 4]

RFC 1902                     SMI for SNMPv2                 January 1996


       -- OCTET STRINGs with a more restrictive size
       -- may also be used
       string-value
           OCTET STRING (SIZE (0..65535)),

       objectID-value
           OBJECT IDENTIFIER
   }


-- indistinguishable from INTEGER, but never needs more than
-- 32-bits for a two's complement representation
Integer32 ::=
   [UNIVERSAL 2]
       IMPLICIT INTEGER (-2147483648..2147483647)


-- application-wide types

ApplicationSyntax ::=
   CHOICE {
       ipAddress-value
           IpAddress,

       counter-value
           Counter32,

       timeticks-value
           TimeTicks,

       arbitrary-value
           Opaque,

       big-counter-value
           Counter64,

       unsigned-integer-value  -- includes Gauge32
           Unsigned32
   }

-- in network-byte order
-- (this is a tagged type for historical reasons)
IpAddress ::=
   [APPLICATION 0]
       IMPLICIT OCTET STRING (SIZE (4))

-- this wraps
Counter32 ::=



SNMPv2 Working Group        Standards Track                     [Page 5]

RFC 1902                     SMI for SNMPv2                 January 1996


   [APPLICATION 1]
       IMPLICIT INTEGER (0..4294967295)

-- this doesn't wrap
Gauge32 ::=
   [APPLICATION 2]
       IMPLICIT INTEGER (0..4294967295)

-- an unsigned 32-bit quantity
-- indistinguishable from Gauge32
Unsigned32 ::=
   [APPLICATION 2]
       IMPLICIT INTEGER (0..4294967295)

-- hundredths of seconds since an epoch
TimeTicks ::=
   [APPLICATION 3]
       IMPLICIT INTEGER (0..4294967295)

-- for backward-compatibility only
Opaque ::=
   [APPLICATION 4]
       IMPLICIT OCTET STRING

-- for counters that wrap in less than one hour with only 32 bits
Counter64 ::=
   [APPLICATION 6]
       IMPLICIT INTEGER (0..18446744073709551615)


-- definition for objects

OBJECT-TYPE MACRO ::=
BEGIN
   TYPE NOTATION ::=
                 "SYNTAX" Syntax
                 UnitsPart
                 "MAX-ACCESS" Access
                 "STATUS" Status
                 "DESCRIPTION" Text
                 ReferPart
                 IndexPart
                 DefValPart

   VALUE NOTATION ::=
                 value(VALUE ObjectName)

   Syntax ::=



SNMPv2 Working Group        Standards Track                     [Page 6]

RFC 1902                     SMI for SNMPv2                 January 1996


                 type(ObjectSyntax)
               | "BITS" "{" Kibbles "}"
   Kibbles ::=
                 Kibble
               | Kibbles "," Kibble
   Kibble ::=
                identifier "(" nonNegativeNumber ")"

   UnitsPart ::=
                 "UNITS" Text
               | empty

   Access ::=
                 "not-accessible"
               | "accessible-for-notify"
               | "read-only"
               | "read-write"
               | "read-create"

   Status ::=
                 "current"
               | "deprecated"
               | "obsolete"

   ReferPart ::=
                 "REFERENCE" Text
               | empty

   IndexPart ::=
                 "INDEX"    "{" IndexTypes "}"
               | "AUGMENTS" "{" Entry      "}"
               | empty
   IndexTypes ::=
                 IndexType
               | IndexTypes "," IndexType
   IndexType ::=
                 "IMPLIED" Index
               | Index
   Index ::=
                   -- use the SYNTAX value of the
                   -- correspondent OBJECT-TYPE invocation
                 value(Indexobject ObjectName)
   Entry ::=
                   -- use the INDEX value of the
                   -- correspondent OBJECT-TYPE invocation
                 value(Entryobject ObjectName)

   DefValPart ::=



SNMPv2 Working Group        Standards Track                     [Page 7]

RFC 1902                     SMI for SNMPv2                 January 1996


                 "DEFVAL" "{" value(Defval Syntax) "}"
               | empty

   -- uses the NVT ASCII character set
   Text ::= """" string """"
END


-- definitions for notifications

NOTIFICATION-TYPE MACRO ::=
BEGIN
   TYPE NOTATION ::=
                 ObjectsPart
                 "STATUS" Status
                 "DESCRIPTION" Text
                 ReferPart

   VALUE NOTATION ::=
                 value(VALUE NotificationName)

   ObjectsPart ::=
                 "OBJECTS" "{" Objects "}"
               | empty
   Objects ::=
                 Object
               | Objects "," Object
   Object ::=
                 value(Name ObjectName)

   Status ::=
                 "current"
               | "deprecated"
               | "obsolete"

   ReferPart ::=
               "REFERENCE" Text
             | empty

   -- uses the NVT ASCII character set
   Text ::= """" string """"
END

-- definitions of administrative identifiers

zeroDotZero    OBJECT-IDENTITY
   STATUS     current
   DESCRIPTION



SNMPv2 Working Group        Standards Track                     [Page 8]

RFC 1902                     SMI for SNMPv2                 January 1996


           "A value used for null identifiers."
   ::= { 0 0 }

END

3.  Information Modules

  An "information module" is an ASN.1 module defining information
  relating to network management.

  The SMI describes how to use a subset of ASN.1 to define an
  information module.  Further, additional restrictions are placed on
  "standard" information modules.  It is strongly recommended that
  "enterprise-specific" information modules also adhere to these
  restrictions.

  Typically, there are three kinds of information modules:

(1)  MIB modules, which contain definitions of inter-related managed
    objects, make use of the OBJECT-TYPE and NOTIFICATION-TYPE macros;

(2)  compliance statements for MIB modules, which make use of the
    MODULE-COMPLIANCE and OBJECT-GROUP macros [2]; and,

(3)  capability statements for agent implementations which make use of
    the AGENT-CAPABILITIES macros [2].

  This classification scheme does not imply a rigid taxonomy.  For
  example, a "standard" information module will normally include
  definitions of managed objects and a compliance statement.
  Similarly, an "enterprise-specific" information module might include
  definitions of managed objects and a capability statement.  Of
  course, a "standard" information module may not contain capability
  statements.

  The constructs of ASN.1 allowed in SNMPv2 information modules
  include: the IMPORTS clause, value definitions for OBJECT
  IDENTIFIERs, type definitions for SEQUENCEs (with restrictions),
  ASN.1 type assignments of the restricted ASN.1 types allowed in
  SNMPv2, and instances of ASN.1 macros defined in this document and in
  other documents [2, 3] of the SNMPv2 framework.  Additional ASN.1
  macros may not be defined in SNMPv2 information modules.

  The names of all standard information modules must be unique (but
  different versions of the same information module should have the
  same name).  Developers of enterprise information modules are
  encouraged to choose names for their information modules that will
  have a low probability of colliding with standard or other enterprise



SNMPv2 Working Group        Standards Track                     [Page 9]

RFC 1902                     SMI for SNMPv2                 January 1996


  information modules. An information module may not use the ASN.1
  construct of placing an object identifier value between the module
  name and the "DEFINITIONS" keyword.

  All information modules start with exactly one invocation of the
  MODULE-IDENTITY macro, which provides contact information as well as
  revision history to distinguish between versions of the same
  information module.  This invocation must appear immediately after
  any IMPORTs statements.

3.1.  Macro Invocation

  Within an information module, each macro invocation appears as:

    <descriptor> <macro> <clauses> ::= <value>

  where <descriptor> corresponds to an ASN.1 identifier, <macro> names
  the macro being invoked, and <clauses> and <value> depend on the
  definition of the macro.  (Note that this definition of a descriptor
  applies to all macros defined in this memo and in [2].)

  For the purposes of this specification, an ASN.1 identifier consists
  of one or more letters or digits, and its initial character must be a
  lower-case letter.  (Note that hyphens are not allowed by this
  specification, even though hyphen is allowed by [1].  This
  restriction enables arithmetic expressions in languages which use the
  minus sign to reference these descriptors without ambiguity.)

  For all descriptors appearing in an information module, the
  descriptor shall be unique and mnemonic, and shall not exceed 64
  characters in length.  (However, descriptors longer than 32
  characters are not recommended.)  This promotes a common language for
  humans to use when discussing the information module and also
  facilitates simple table mappings for user-interfaces.

  The set of descriptors defined in all "standard" information modules
  shall be unique.

  Finally, by convention, if the descriptor refers to an object with a
  SYNTAX clause value of either Counter32 or Counter64, then the
  descriptor used for the object should denote plurality.

3.1.1.  Textual Clauses

  Some clauses in a macro invocation may take a textual value (e.g.,
  the DESCRIPTION clause).  Note that, in order to conform to the ASN.1
  syntax, the entire value of these clauses must be enclosed in double
  quotation marks, and therefore cannot itself contain double quotation



SNMPv2 Working Group        Standards Track                    [Page 10]

RFC 1902                     SMI for SNMPv2                 January 1996


  marks, although the value may be multi-line.

3.2.  IMPORTing Symbols

  To reference an external object, the IMPORTS statement must be used
  to identify both the descriptor and the module in which the
  descriptor is defined, where the module is identified by its ASN.1
  module name.

  Note that when symbols from "enterprise-specific" information modules
  are referenced  (e.g., a descriptor), there is the possibility of
  collision.  As such, if different objects with the same descriptor
  are IMPORTed, then this ambiguity is resolved by prefixing the
  descriptor with the name of the information module and a dot ("."),
  i.e.,

    "module.descriptor"

  (All descriptors must be unique within any information module.)

  Of course, this notation can be used even when there is no collision
  when IMPORTing symbols.

  Finally, the IMPORTS statement may not be used to import an ASN.1
  named type which corresponds to either the SEQUENCE or SEQUENCE OF
  type.

3.3.  Exporting Symbols

  The ASN.1 EXPORTS statement is not allowed in SNMPv2 information
  modules.  All items defined in an information module are
  automatically exported.

3.4.  ASN.1 Comments

  Comments in ASN.1 commence with a pair of adjacent hyphens and end
  with the next pair of adjacent hyphens or at the end of the line,
  whichever occurs first.

3.5.  OBJECT IDENTIFIER values

  An OBJECT IDENTIFIER value is an ordered list of non-negative
  numbers.  For the SNMPv2 framework, each number in the list is
  referred to as a sub-identifier, there are at most 128 sub-
  identifiers in a value, and each sub-identifier has a maximum value
  of 2^32-1 (4294967295 decimal).  All OBJECT IDENTIFIER values have at
  least two sub-identifiers, where the value of the first sub-
  identifier is one of the following well-known names:



SNMPv2 Working Group        Standards Track                    [Page 11]

RFC 1902                     SMI for SNMPv2                 January 1996


    Value   Name
      0     ccitt
      1     iso
      2     joint-iso-ccitt

4.  Naming Hierarchy

  The root of the subtree administered by the Internet Assigned Numbers
  Authority (IANA) for the Internet is:

    internet       OBJECT IDENTIFIER ::= { iso 3 6 1 }

  That is, the Internet subtree of OBJECT IDENTIFIERs starts with the
  prefix:

    1.3.6.1.

  Several branches underneath this subtree are used for network
  management:

    mgmt           OBJECT IDENTIFIER ::= { internet 2 }
    experimental   OBJECT IDENTIFIER ::= { internet 3 }
    private        OBJECT IDENTIFIER ::= { internet 4 }
    enterprises    OBJECT IDENTIFIER ::= { private 1 }

  However, the SMI does not prohibit the definition of objects in other
  portions of the object tree.

  The mgmt(2) subtree is used to identify "standard" objects.

  The experimental(3) subtree is used to identify objects being
  designed by working groups of the IETF.  If an information module
  produced by a working group becomes a "standard" information module,
  then at the very beginning of its entry onto the Internet standards
  track, the objects are moved under the mgmt(2) subtree.

  The private(4) subtree is used to identify objects defined
  unilaterally.  The enterprises(1) subtree beneath private is used,
  among other things, to permit providers of networking subsystems to
  register models of their products.

5.  Mapping of the MODULE-IDENTITY macro

  The MODULE-IDENTITY macro is used to provide contact and revision
  history for each information module.  It must appear exactly once in
  every information module.  It should be noted that the expansion of
  the MODULE-IDENTITY macro is something which conceptually happens
  during implementation and not during run-time.



SNMPv2 Working Group        Standards Track                    [Page 12]

RFC 1902                     SMI for SNMPv2                 January 1996


  Note that reference in an IMPORTS clause or in clauses of SNMPv2
  macros to an information module is NOT through the use of the
  'descriptor' of a MODULE-IDENTITY macro; rather, an information
  module is referenced through specifying its module name.

5.1.  Mapping of the LAST-UPDATED clause

  The LAST-UPDATED clause, which must be present, contains the date and
  time that this information module was last edited.  The date and time
  are represented in UTC Time format (see Appendix B).

5.2.  Mapping of the ORGANIZATION clause

  The ORGANIZATION clause, which must be present, contains a textual
  description of the organization under whose auspices this information
  module was developed.

5.3.  Mapping of the CONTACT-INFO clause

  The CONTACT-INFO clause, which must be present, contains the name,
  postal address, telephone number, and electronic mail address of the
  person to whom technical queries concerning this information module
  should be sent.

5.4.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which must be present, contains a high-level
  textual description of the contents of this information module.

5.5.  Mapping of the REVISION clause

  The REVISION clause, which need not be present, is repeatedly used to
  describe the revisions (including the initial version) made to this
  information module, in reverse chronological order (i.e., most recent
  first).  Each instance of this clause contains the date and time of
  the revision.  The date and time are represented in UTC Time format
  (see Appendix B).

5.5.1.  Mapping of the DESCRIPTION sub-clause

  The DESCRIPTION clause, which must be present for each REVISION
  clause, contains a high-level textual description of the revision
  identified in that REVISION clause.

5.6.  Mapping of the MODULE-IDENTITY value

  The value of an invocation of the MODULE-IDENTITY macro is an OBJECT
  IDENTIFIER.  As such, this value may be authoritatively used when



SNMPv2 Working Group        Standards Track                    [Page 13]

RFC 1902                     SMI for SNMPv2                 January 1996


  specifying an OBJECT IDENTIFIER value to refer to the information
  module containing the invocation.

5.7.  Usage Example

  Consider how a skeletal MIB module might be constructed:  e.g.,

FIZBIN-MIB DEFINITIONS ::= BEGIN

IMPORTS
   MODULE-IDENTITY, OBJECT-TYPE, experimental
       FROM SNMPv2-SMI;


fizbin MODULE-IDENTITY
   LAST-UPDATED "9505241811Z"
   ORGANIZATION "IETF SNMPv2 Working Group"
   CONTACT-INFO
           "        Marshall T. Rose

            Postal: Dover Beach Consulting, Inc.
                    420 Whisman Court
                    Mountain View, CA  94043-2186
                    US

               Tel: +1 415 968 1052
               Fax: +1 415 968 2510

            E-mail: [email protected]"
   DESCRIPTION
           "The MIB module for entities implementing the xxxx
           protocol."
   REVISION      "9505241811Z"
   DESCRIPTION
           "The latest version of this MIB module."
   REVISION      "9210070433Z"
   DESCRIPTION
           "The initial version of this MIB module."
-- contact IANA for actual number
   ::= { experimental xx }


END








SNMPv2 Working Group        Standards Track                    [Page 14]

RFC 1902                     SMI for SNMPv2                 January 1996


6.  Mapping of the OBJECT-IDENTITY macro

  The OBJECT-IDENTITY macro is used to define information about an
  OBJECT IDENTIFIER assignment.  All administrative OBJECT IDENTIFIER
  assignments which define a type identification value (see
  AutonomousType, a textual convention defined in [3]) should be
  defined via the OBJECT-IDENTITY macro.  It should be noted that the
  expansion of the OBJECT-IDENTITY macro is something which
  conceptually happens during implementation and not during run-time.

6.1.  Mapping of the STATUS clause

  The STATUS clause, which must be present, indicates whether this
  definition is current or historic.

  The values "current", and "obsolete" are self-explanatory.  The
  "deprecated" value indicates that the definition is obsolete, but
  that an implementor may wish to support it to foster interoperability
  with older implementations.

6.2.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which must be present, contains a textual
  description of the object assignment.

6.3.  Mapping of the REFERENCE clause

  The REFERENCE clause, which need not be present, contains a textual
  cross-reference to an object assignment defined in some other
  information module.

6.4.  Mapping of the OBJECT-IDENTITY value

  The value of an invocation of the OBJECT-IDENTITY macro is an OBJECT
  IDENTIFIER.

6.5.  Usage Example

  Consider how an OBJECT IDENTIFIER assignment might be made:  e.g.,

fizbin69 OBJECT-IDENTITY
   STATUS  current
   DESCRIPTION
           "The authoritative identity of the Fizbin 69 chipset."
   ::= { fizbinChipSets 1 }






SNMPv2 Working Group        Standards Track                    [Page 15]

RFC 1902                     SMI for SNMPv2                 January 1996


7.  Mapping of the OBJECT-TYPE macro

  The OBJECT-TYPE macro is used to define a type of managed object.  It
  should be noted that the expansion of the OBJECT-TYPE macro is
  something which conceptually happens during implementation and not
  during run-time.

  For leaf objects which are not columnar objects (i.e., not contained
  within a conceptual table), instances of the object are identified by
  appending a sub-identifier of zero to the name of that object.
  Otherwise, the INDEX clause of the conceptual row object superior to
  a columnar object defines instance identification information.

7.1.  Mapping of the SYNTAX clause

  The SYNTAX clause, which must be present, defines the abstract data
  structure corresponding to that object.  The data structure must be
  one of the following: a base type, the BITS construct, or a textual
  convention.  (SEQUENCE OF and SEQUENCE are also possible for
  conceptual tables, see section 7.1.12).  The base types are those
  defined in the ObjectSyntax CHOICE.  A textual convention is a
  newly-defined type defined as a sub-type of a base type [3].

  A extended subset of the full capabilities of ASN.1 sub-typing is
  allowed, as appropriate to the underingly ASN.1 type.  Any such
  restriction on size, range, enumerations or repertoire specified in
  this clause represents the maximal level of support which makes
  "protocol sense".  Restrictions on sub-typing are specified in detail
  in Section 9 and Appendix C of this memo.

  The semantics of ObjectSyntax are now described.

7.1.1.  Integer32 and INTEGER

  The Integer32 type represents integer-valued information between
  -2^31 and 2^31-1 inclusive (-2147483648 to 2147483647 decimal).  This
  type is indistinguishable from the INTEGER type.  Both the INTEGER
  and Integer32 types may be sub-typed to be more constrained than the
  Integer32 type.

  The INTEGER type may also be used to represent integer-valued
  information as named-number enumerations.  In this case, only those
  named-numbers so enumerated may be present as a value.  Note that
  although it is recommended that enumerated values start at 1 and be
  numbered contiguously, any valid value for Integer32 is allowed for
  an enumerated value and, further, enumerated values needn't be
  contiguously assigned.




SNMPv2 Working Group        Standards Track                    [Page 16]

RFC 1902                     SMI for SNMPv2                 January 1996


  Finally, a label for a named-number enumeration must consist of one
  or more letters or digits (no hyphens), up to a maximum of 64
  characters, and the initial character must be a lower-case letter.
  (However, labels longer than 32 characters are not recommended.)

7.1.2.  OCTET STRING

  The OCTET STRING type represents arbitrary binary or textual data.
  Although there is no SMI-specified size limitation for this type, MIB
  designers should realize that there may be implementation and
  interoperability limitations for sizes in excess of 255 octets.

7.1.3.  OBJECT IDENTIFIER

  The OBJECT IDENTIFIER type represents administratively assigned
  names.  Any instance of this type may have at most 128 sub-
  identifiers.  Further, each sub-identifier must not exceed the value
  2^32-1 (4294967295 decimal).

7.1.4.  The BITS construct

  The BITS construct represents an enumeration of named bits.  This
  collection is assigned non-negative, contiguous values, starting at
  zero.  Only those named-bits so enumerated may be present in a value.
  (Thus, enumerations must be assigned to consecutive bits; however,
  see Section 9 for refinements of an object with this syntax.)

  Although there is no SMI-specified limitation on the number of
  enumerations (and therefore on the length of a value), MIB designers
  should realize that there may be implementation and interoperability
  limitations for sizes in excess of 128 bits.

  Finally, a label for a named-number enumeration must consist of one
  or more letters or digits (no hyphens), up to a maximum of 64
  characters, and the initial character must be a lower-case letter.
  (However, labels longer than 32 characters are not recommended.)

7.1.5.  IpAddress

  The IpAddress type represents a 32-bit internet address.  It is
  represented as an OCTET STRING of length 4, in network byte-order.

  Note that the IpAddress type is a tagged type for historical reasons.
  Network addresses should be represented using an invocation of the
  TEXTUAL-CONVENTION macro [3].






SNMPv2 Working Group        Standards Track                    [Page 17]

RFC 1902                     SMI for SNMPv2                 January 1996


7.1.6.  Counter32

  The Counter32 type represents a non-negative integer which
  monotonically increases until it reaches a maximum value of 2^32-1
  (4294967295 decimal), when it wraps around and starts increasing
  again from zero.

  Counters have no defined "initial" value, and thus, a single value of
  a Counter has (in general) no information content.  Discontinuities
  in the monotonically increasing value normally occur at re-
  initialization of the management system, and at other times as
  specified in the description of an object-type using this ASN.1 type.
  If such other times can occur, for example, the creation of an object
  instance at times other than re-initialization, then a corresponding
  object should be defined with a SYNTAX clause value of TimeStamp (a
  textual convention defined in [3]) indicating the time of the last
  discontinuity.

  The value of the MAX-ACCESS clause for objects with a SYNTAX clause
  value of Counter32 is either "read-only" or "accessible-for-notify".

  A DEFVAL clause is not allowed for objects with a SYNTAX clause value
  of Counter32.

7.1.7.  Gauge32

  The Gauge32 type represents a non-negative integer, which may
  increase or decrease, but shall never exceed a maximum value.  The
  maximum value can not be greater than 2^32-1 (4294967295 decimal).
  The value of a Gauge has its maximum value whenever the information
  being modeled is greater or equal to that maximum value; if the
  information being modeled subsequently decreases below the maximum
  value, the Gauge also decreases.

7.1.8.  TimeTicks

  The TimeTicks type represents a non-negative integer which represents
  the time, modulo 2^32 (4294967296 decimal), in hundredths of a second
  between two epochs.  When objects are defined which use this ASN.1
  type, the description of the object identifies both of the reference
  epochs.

  For example, [3] defines the TimeStamp textual convention which is
  based on the TimeTicks type.  With a TimeStamp, the first reference
  epoch is defined as the time when sysUpTime [5] was zero, and the
  second reference epoch is defined as the current value of sysUpTime.

  The TimeTicks type may not be sub-typed.



SNMPv2 Working Group        Standards Track                    [Page 18]

RFC 1902                     SMI for SNMPv2                 January 1996


7.1.9.  Opaque

  The Opaque type is provided solely for backward-compatibility, and
  shall not be used for newly-defined object types.

  The Opaque type supports the capability to pass arbitrary ASN.1
  syntax.  A value is encoded using the ASN.1 Basic Encoding Rules [4]
  into a string of octets.  This, in turn, is encoded as an OCTET
  STRING, in effect "double-wrapping" the original ASN.1 value.

  Note that a conforming implementation need only be able to accept and
  recognize opaquely-encoded data.  It need not be able to unwrap the
  data and then interpret its contents.

  A requirement on "standard" MIB modules is that no object may have a
  SYNTAX clause value of Opaque.

7.1.10.  Counter64

  The Counter64 type represents a non-negative integer which
  monotonically increases until it reaches a maximum value of 2^64-1
  (18446744073709551615 decimal), when it wraps around and starts
  increasing again from zero.

  Counters have no defined "initial" value, and thus, a single value of
  a Counter has (in general) no information content.  Discontinuities
  in the monotonically increasing value normally occur at re-
  initialization of the management system, and at other times as
  specified in the description of an object-type using this ASN.1 type.
  If such other times can occur, for example, the creation of an object
  instance at times other than re-initialization, then a corresponding
  object should be defined with a SYNTAX clause value of TimeStamp (a
  textual convention defined in [3]) indicating the time of the last
  discontinuity.

  The value of the MAX-ACCESS clause for objects with a SYNTAX clause
  value of Counter64 is either "read-only" or "accessible-for-notify".

  A requirement on "standard" MIB modules is that the Counter64 type
  may be used only if the information being modeled would wrap in less
  than one hour if the Counter32 type was used instead.

  A DEFVAL clause is not allowed for objects with a SYNTAX clause value
  of Counter64.







SNMPv2 Working Group        Standards Track                    [Page 19]

RFC 1902                     SMI for SNMPv2                 January 1996


7.1.11.  Unsigned32

  The Unsigned32 type represents integer-valued information between 0
  and 2^32-1 inclusive (0 to 4294967295 decimal).

7.1.12.  Conceptual Tables

  Management operations apply exclusively to scalar objects.  However,
  it is sometimes convenient for developers of management applications
  to impose an imaginary, tabular structure on an ordered collection of
  objects within the MIB.  Each such conceptual table contains zero or
  more rows, and each row may contain one or more scalar objects,
  termed columnar objects.  This conceptualization is formalized by
  using the OBJECT-TYPE macro to define both an object which
  corresponds to a table and an object which corresponds to a row in
  that table.  A conceptual table has SYNTAX of the form:

    SEQUENCE OF <EntryType>

  where <EntryType> refers to the SEQUENCE type of its subordinate
  conceptual row.  A conceptual row has SYNTAX of the form:

    <EntryType>

  where <EntryType> is a SEQUENCE type defined as follows:

    <EntryType> ::= SEQUENCE { <type1>, ... , <typeN> }

  where there is one <type> for each subordinate object, and each
  <type> is of the form:

    <descriptor> <syntax>

  where <descriptor> is the descriptor naming a subordinate object, and
  <syntax> has the value of that subordinate object's SYNTAX clause,
  normally omitting the sub-typing information.  Further, these ASN.1
  types are always present (the DEFAULT and OPTIONAL clauses are
  disallowed in the SEQUENCE definition).  The MAX-ACCESS clause for
  conceptual tables and rows is "not-accessible".

7.1.12.1.  Creation and Deletion of Conceptual Rows

  For newly-defined conceptual rows which allow the creation of new
  object instances and/or the deletion of existing object instances,
  there should be one columnar object with a SYNTAX clause value of
  RowStatus (a textual convention defined in [3]) and a MAX-ACCESS
  clause value of read-create.  By convention, this is termed the
  status column for the conceptual row.



SNMPv2 Working Group        Standards Track                    [Page 20]

RFC 1902                     SMI for SNMPv2                 January 1996


7.2.  Mapping of the UNITS clause

  This UNITS clause, which need not be present, contains a textual
  definition of the units associated with that object.

7.3.  Mapping of the MAX-ACCESS clause

  The MAX-ACCESS clause, which must be present, defines whether it
  makes "protocol sense" to read, write and/or create an instance of
  the object, or to include its value in a notification.  This is the
  maximal level of access for the object.  (This maximal level of
  access is independent of any administrative authorization policy.)

  The value "read-write" indicates that read and write access make
  "protocol sense", but create does not.  The value "read-create"
  indicates that read, write and create access make "protocol sense".
  The value "not-accessible" indicates an auxiliary object (see Section
  7.7).  The value "accessible-for-notify" indicates an object which is
  accessible only via a notification (e.g., snmpTrapOID [5]).

  These values are ordered, from least to greatest:  "not-accessible",
  "accessible-for-notify", "read-only", "read-write", "read-create".

  If any columnar object in a conceptual row has "read-create" as its
  maximal level of access, then no other columnar object of the same
  conceptual row may have a maximal access of "read-write".  (Note that
  "read-create" is a superset of "read-write".)

7.4.  Mapping of the STATUS clause

  The STATUS clause, which must be present, indicates whether this
  definition is current or historic.

  The values "current", and "obsolete" are self-explanatory.  The
  "deprecated" value indicates that the definition is obsolete, but
  that an implementor may wish to support that object to foster
  interoperability with older implementations.

7.5.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which must be present, contains a textual
  definition of that object which provides all semantic definitions
  necessary for implementation, and should embody any information which
  would otherwise be communicated in any ASN.1 commentary annotations
  associated with the object.






SNMPv2 Working Group        Standards Track                    [Page 21]

RFC 1902                     SMI for SNMPv2                 January 1996


7.6.  Mapping of the REFERENCE clause

  The REFERENCE clause, which need not be present, contains a textual
  cross-reference to an object defined in some other information
  module.  This is useful when de-osifying a MIB module produced by
  some other organization.

7.7.  Mapping of the INDEX clause

  The INDEX clause, which must be present if that object corresponds to
  a conceptual row (unless an AUGMENTS clause is present instead), and
  must be absent otherwise, defines instance identification information
  for the columnar objects subordinate to that object.

  The instance identification information in an INDEX clause must
  specify object(s) such that value(s) of those object(s) will
  unambiguously distinguish a conceptual row.  The syntax of those
  objects indicate how to form the instance-identifier:

(1)  integer-valued:  a single sub-identifier taking the integer value
    (this works only for non-negative integers);

(2)  string-valued, fixed-length strings (or variable-length preceded by
    the IMPLIED keyword):  `n' sub-identifiers, where `n' is the length
    of the string (each octet of the string is encoded in a separate
    sub-identifier);

(3)  string-valued, variable-length strings (not preceded by the IMPLIED
    keyword):  `n+1' sub-identifiers, where `n' is the length of the
    string (the first sub-identifier is `n' itself, following this,
    each octet of the string is encoded in a separate sub-identifier);

(4)  object identifier-valued (when preceded by the IMPLIED keyword):
    `n' sub-identifiers, where `n' is the number of sub-identifiers in
    the value (each sub-identifier of the value is copied into a
    separate sub-identifier);

(5)  object identifier-valued (when not preceded by the IMPLIED
    keyword):  `n+1' sub-identifiers, where `n' is the number of sub-
    identifiers in the value (the first sub-identifier is `n' itself,
    following this, each sub-identifier in the value is copied);

(6)  IpAddress-valued:  4 sub-identifiers, in the familiar a.b.c.d
    notation.

  Note that the IMPLIED keyword can only be present for an object
  having a variable-length syntax (e.g., variable-length strings or
  object identifier-valued objects), Further, the IMPLIED keyword can



SNMPv2 Working Group        Standards Track                    [Page 22]

RFC 1902                     SMI for SNMPv2                 January 1996


  only be associated with the last object in the INDEX clause.
  Finally, the IMPLIED keyword may not be used on a variable-length
  string object if that string might have a value of zero-length.

  Instances identified by use of integer-valued objects should be
  numbered starting from one (i.e., not from zero).  The use of zero as
  a value for an integer-valued index object should be avoided, except
  in special cases.

  Objects which are both specified in the INDEX clause of a conceptual
  row and also columnar objects of the same conceptual row are termed
  auxiliary objects.  The MAX-ACCESS clause for auxiliary objects is
  "not-accessible", except in the following circumstances:

(1)  within a MIB module originally written to conform to the SNMPv1
    framework, and later converted to conform to the SNMPv2 framework;
    or

(2)  a conceptual row must contain at least one columnar object which is
    not an auxiliary object.  In the event that all of a conceptual
    row's columnar objects are also specified in its INDEX clause, then
    one of them must be accessible, i.e., have a MAX-ACCESS clause of
    "read-only". (Note that this situation does not arise for a
    conceptual row allowing create access, since such a row will have a
    status column which will not be an auxiliary object.)

  Note that objects specified in a conceptual row's INDEX clause need
  not be columnar objects of that conceptual row.  In this situation,
  the DESCRIPTION clause of the conceptual row must include a textual
  explanation of how the objects which are included in the INDEX clause
  but not columnar objects of that conceptual row, are used in uniquely
  identifying instances of the conceptual row's columnar objects.

7.8.  Mapping of the AUGMENTS clause

  The AUGMENTS clause, which must not be present unless the object
  corresponds to a conceptual row, is an alternative to the INDEX
  clause.  Every object corresponding to a conceptual row has either an
  INDEX clause or an AUGMENTS clause.

  If an object corresponding to a conceptual row has an INDEX clause,
  that row is termed a base conceptual row; alternatively, if the
  object has an AUGMENTS clause, the row is said to be a conceptual row
  augmentation, where the AUGMENTS clause names the object
  corresponding to the base conceptual row which is augmented by this
  conceptual row augmentation.  (Thus, a conceptual row augmentation
  cannot itself be augmented.) Instances of subordinate columnar
  objects of a conceptual row augmentation are identified according to



SNMPv2 Working Group        Standards Track                    [Page 23]

RFC 1902                     SMI for SNMPv2                 January 1996


  the INDEX clause of the base conceptual row corresponding to the
  object named in the AUGMENTS clause.  Further, instances of
  subordinate columnar objects of a conceptual row augmentation exist
  according to the same semantics as instances of subordinate columnar
  objects of the base conceptual row being augmented.  As such, note
  that creation of a base conceptual row implies the correspondent
  creation of any conceptual row augmentations.

  For example, a MIB designer might wish to define additional columns
  in an "enterprise-specific" MIB which logically extend a conceptual
  row in a "standard" MIB.  The "standard" MIB definition of the
  conceptual row would include the INDEX clause and the "enterprise-
  specific" MIB would contain the definition of a conceptual row using
  the AUGMENTS clause.  On the other hand, it would be incorrect to use
  the AUGMENTS clause for the relationship between RFC 1573's ifTable
  and the many media-specific MIBs which extend it for specific media
  (e.g., the dot3Table in RFC 1650), since not all interfaces are of
  the same media.

  Note that a base conceptual row may be augmented by multiple
  conceptual row augmentations.

7.8.1.  Relation between INDEX and AUGMENTS clauses

  When defining instance identification information for a conceptual
  table:

(1)  If there is a one-to-one correspondence between the conceptual rows
    of this table and an existing table, then the AUGMENTS clause
    should be used.

(2)  Otherwise, if there is a sparse relationship between the conceptual
    rows of this table and an existing table, then an INDEX clause
    should be used which is identical to that in the existing table.
    For example, the relationship between RFC 1573's ifTable and a
    media-specific MIB which extends the ifTable for a specific media
    (e.g., the dot3Table in RFC 1650), is a sparse relationship.

(3)  Otherwise, if no existing objects have the required syntax and
    semantics, then auxiliary objects should be defined within the
    conceptual row for the new table, and those objects should be used
    within the INDEX clause for the conceptual row.

7.9.  Mapping of the DEFVAL clause

  The DEFVAL clause, which need not be present, defines an acceptable
  default value which may be used at the discretion of a SNMPv2 entity
  acting in an agent role when an object instance is created.



SNMPv2 Working Group        Standards Track                    [Page 24]

RFC 1902                     SMI for SNMPv2                 January 1996


  During conceptual row creation, if an instance of a columnar object
  is not present as one of the operands in the correspondent management
  protocol set operation, then the value of the DEFVAL clause, if
  present, indicates an acceptable default value that a SNMPv2 entity
  acting in an agent role might use.

  The value of the DEFVAL clause must, of course, correspond to the
  SYNTAX clause for the object.  If the value is an OBJECT IDENTIFIER,
  then it must be expressed as a single ASN.1 identifier, and not as a
  collection of sub-identifiers.

  Note that if an operand to the management protocol set operation is
  an instance of a read-only object, then the error `notWritable' [6]
  will be returned.  As such, the DEFVAL clause can be used to provide
  an acceptable default value that a SNMPv2 entity acting in an agent
  role might use.

  By way of example, consider the following possible DEFVAL clauses:

    ObjectSyntax       DEFVAL clause
    ----------------   ------------
    Integer32          DEFVAL { 1 }
                       -- same for Gauge32, TimeTicks, Unsigned32
    INTEGER            DEFVAL { valid } -- enumerated value
    OCTET STRING       DEFVAL { 'ffffffffffff'H }
    OBJECT IDENTIFIER  DEFVAL { sysDescr }
    BITS               DEFVAL { { primary, secondary } }
                       -- enumerated values that are set
    IpAddress          DEFVAL { 'c0210415'H } -- 192.33.4.21

  Object types with SYNTAX of Counter32 and Counter64 may not have
  DEFVAL clauses, since they do not have defined initial values.
  However, it is recommended that they be initialized to zero.

7.10.  Mapping of the OBJECT-TYPE value

  The value of an invocation of the OBJECT-TYPE macro is the name of
  the object, which is an OBJECT IDENTIFIER, an administratively
  assigned name.

  When an OBJECT IDENTIFIER is assigned to an object:

(1)  If the object corresponds to a conceptual table, then only a single
    assignment, that for a conceptual row, is present immediately
    beneath that object.  The administratively assigned name for the
    conceptual row object is derived by appending a sub-identifier of
    "1" to the administratively assigned name for the conceptual table.




SNMPv2 Working Group        Standards Track                    [Page 25]

RFC 1902                     SMI for SNMPv2                 January 1996


(2)  If the object corresponds to a conceptual row, then at least one
    assignment, one for each column in the conceptual row, is present
    beneath that object.  The administratively assigned name for each
    column is derived by appending a unique, positive sub-identifier to
    the administratively assigned name for the conceptual row.

(3)  Otherwise, no other OBJECT IDENTIFIERs which are subordinate to the
    object may be assigned.

  Note that the final sub-identifier of any administratively assigned
  name for an object shall be positive.  A zero-valued  final sub-
  identifier is reserved for future use.

  Further note that although conceptual tables and rows are given
  administratively assigned names, these conceptual objects may not be
  manipulated in aggregate form by the management protocol.

7.11.  Usage Example

  Consider how one might define a conceptual table and its
  subordinates.  (This example uses the RowStatus textual convention
  defined in [3].)

evalSlot OBJECT-TYPE
   SYNTAX      INTEGER
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
           "The index number of the first unassigned entry in the
           evaluation table.

           A management station should create new entries in the
           evaluation table using this algorithm:  first, issue a
           management protocol retrieval operation to determine the
           value of evalSlot; and, second, issue a management protocol
           set operation to create an instance of the evalStatus object
           setting its value to createAndGo(4) or createAndWait(5).  If
           this latter operation succeeds, then the management station
           may continue modifying the instances corresponding to the
           newly created conceptual row, without fear of collision with
           other management stations."
   ::= { eval 1 }

evalTable OBJECT-TYPE
   SYNTAX      SEQUENCE OF EvalEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION



SNMPv2 Working Group        Standards Track                    [Page 26]

RFC 1902                     SMI for SNMPv2                 January 1996


           "The (conceptual) evaluation table."
   ::= { eval 2 }

evalEntry OBJECT-TYPE
   SYNTAX      EvalEntry
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
           "An entry (conceptual row) in the evaluation table."
   INDEX   { evalIndex }
   ::= { evalTable 1 }

EvalEntry ::=
   SEQUENCE {
       evalIndex       Integer32,
       evalString      DisplayString,
       evalValue       Integer32,
       evalStatus      RowStatus
   }

evalIndex OBJECT-TYPE
   SYNTAX      Integer32
   MAX-ACCESS  not-accessible
   STATUS      current
   DESCRIPTION
           "The auxiliary variable used for identifying instances of
           the columnar objects in the evaluation table."
       ::= { evalEntry 1 }

evalString OBJECT-TYPE
   SYNTAX      DisplayString
   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
           "The string to evaluate."
       ::= { evalEntry 2 }

evalValue OBJECT-TYPE
   SYNTAX      Integer32
   MAX-ACCESS  read-only
   STATUS      current
   DESCRIPTION
           "The value when evalString was last executed."
   DEFVAL  { 0 }
       ::= { evalEntry 3 }

evalStatus OBJECT-TYPE
   SYNTAX      RowStatus



SNMPv2 Working Group        Standards Track                    [Page 27]

RFC 1902                     SMI for SNMPv2                 January 1996


   MAX-ACCESS  read-create
   STATUS      current
   DESCRIPTION
           "The status column used for creating, modifying, and
           deleting instances of the columnar objects in the evaluation
           table."
   DEFVAL  { active }
       ::= { evalEntry 4 }

8.  Mapping of the NOTIFICATION-TYPE macro

  The NOTIFICATION-TYPE macro is used to define the information
  contained within an unsolicited transmission of management
  information (i.e., within either a SNMPv2-Trap-PDU or InformRequest-
  PDU).  It should be noted that the expansion of the NOTIFICATION-TYPE
  macro is something which conceptually happens during implementation
  and not during run-time.

8.1.  Mapping of the OBJECTS clause

  The OBJECTS clause, which need not be present, defines the ordered
  sequence of MIB object types which are contained within every
  instance of the notification.  An object type specified in this
  clause may not have an MAX-ACCESS clause of "not-accessible".

8.2.  Mapping of the STATUS clause

  The STATUS clause, which must be present, indicates whether this
  definition is current or historic.

  The values "current", and "obsolete" are self-explanatory.  The
  "deprecated" value indicates that the definition is obsolete, but
  that an implementor may wish to support the notification to foster
  interoperability with older implementations.

8.3.  Mapping of the DESCRIPTION clause

  The DESCRIPTION clause, which must be present, contains a textual
  definition of the notification which provides all semantic
  definitions necessary for implementation, and should embody any
  information which would otherwise be communicated in any ASN.1
  commentary annotations associated with the notification.  In
  particular, the DESCRIPTION clause should document which instances of
  the objects mentioned in the OBJECTS clause should be contained
  within notifications of this type.






SNMPv2 Working Group        Standards Track                    [Page 28]

RFC 1902                     SMI for SNMPv2                 January 1996


8.4.  Mapping of the REFERENCE clause

  The REFERENCE clause, which need not be present, contains a textual
  cross-reference to a notification defined in some other information
  module.  This is useful when de-osifying a MIB module produced by
  some other organization.

8.5.  Mapping of the NOTIFICATION-TYPE value

  The value of an invocation of the NOTIFICATION-TYPE macro is the name
  of the notification, which is an OBJECT IDENTIFIER, an
  administratively assigned name.  In order to achieve compatibility
  with the procedures employed by proxy agents (see Section 3.1.2 of
  [7]), the next to last sub-identifier in the name of any newly-
  defined notification must have the value zero.

  Sections 4.2.6 and 4.2.7 of [6] describe how the NOTIFICATION-TYPE
  macro is used to generate a SNMPv2-Trap-PDU or InformRequest-PDU,
  respectively.

8.6.  Usage Example

  Consider how a linkUp trap might be described:

linkUp NOTIFICATION-TYPE
   OBJECTS { ifIndex }
   STATUS  current
   DESCRIPTION
           "A linkUp trap signifies that the SNMPv2 entity, acting in
           an agent role, recognizes that one of the communication
           links represented in its configuration has come up."
   ::= { snmpTraps 4 }

According to this invocation, the trap authoritatively identified as

    { snmpTraps 4 }

is used to report a link coming up.

9.  Refined Syntax

  Some macros have clauses which allows syntax to be refined,
  specifically: the SYNTAX clause of the OBJECT-TYPE macro, and the
  SYNTAX/WRITE-SYNTAX clauses of the MODULE-COMPLIANCE and AGENT-
  CAPABILITIES macros [2].  However, not all refinements of syntax are
  appropriate.  In particular, the object's primitive or application
  type must not be changed.




SNMPv2 Working Group        Standards Track                    [Page 29]

RFC 1902                     SMI for SNMPv2                 January 1996


  Further, the following restrictions apply:

                           Restrictions to Refinement on
 object syntax         range   enumeration     size    repertoire
 -----------------     -----   -----------     ----    ----------
           INTEGER      (1)        (2)           -         -
         Integer32      (1)         -            -         -
        Unsigned32      (1)         -            -         -
      OCTET STRING       -          -           (3)       (4)
 OBJECT IDENTIFIER       -          -            -         -
              BITS       -         (2)           -         -
         IpAddress       -          -            -         -
         Counter32       -          -            -         -
         Counter64       -          -            -         -
           Gauge32      (1)         -            -         -
         TimeTicks       -          -            -         -

where:

(1)  the range of permitted values may be refined by raising the lower-
    bounds, by reducing the upper-bounds, and/or by reducing the
    alternative value/range choices;

(2)  the enumeration of named-values may be refined by removing one or
    more named-values (note that for BITS, a refinement may cause the
    enumerations to no longer be contiguous);

(3)  the size in characters of the value may be refined by raising the
    lower-bounds, by reducing the upper-bounds, and/or by reducing the
    alternative size choices; or,

(4)  the repertoire of characters in the value may be reduced by further
    sub-typing.

  Otherwise no refinements are possible.  Further details on sub-typing
  are provided in Appendix C.

10.  Extending an Information Module

  As experience is gained with a published information module, it may
  be desirable to revise that information module.

  To begin, the invocation of the MODULE-IDENTITY macro should be
  updated to include information about the revision.  Usually, this
  consists of updating the LAST-UPDATED clause and adding a pair of
  REVISION and DESCRIPTION clauses.  However, other existing clauses in
  the invocation may be updated.




SNMPv2 Working Group        Standards Track                    [Page 30]

RFC 1902                     SMI for SNMPv2                 January 1996


  Note that the module's label (e.g., "FIZBIN-MIB" from the example in
  Section 5.8), is not changed when the information module is revised.

10.1.  Object Assignments

  If any non-editorial change is made to any clause of a object
  assignment, then the OBJECT IDENTIFIER value associated with that
  object assignment must also be changed, along with its associated
  descriptor.

10.2.  Object Definitions

  An object definition may be revised in any of the following ways:

(1)  A SYNTAX clause containing an enumerated INTEGER may have new
    enumerations added or existing labels changed.

(2)  A STATUS clause value of "current" may be revised as "deprecated"
    or "obsolete".  Similarly, a STATUS clause value of "deprecated"
    may be revised as "obsolete".

(3)  A DEFVAL clause may be added or updated.

(4)  A REFERENCE clause may be added or updated.

(5)  A UNITS clause may be added.

(6)  A conceptual row may be augmented by adding new columnar objects at
    the end of the row.

(7)  Entirely new objects may be defined, named with previously
    unassigned OBJECT IDENTIFIER values.

  Otherwise, if the semantics of any previously defined object are
  changed (i.e., if a non-editorial change is made to any clause other
  those specifically allowed above), then the OBJECT IDENTIFIER value
  associated with that object must also be changed.

  Note that changing the descriptor associated with an existing object
  is considered a semantic change, as these strings may be used in an
  IMPORTS statement.

  Finally, note that if an object has the value of its STATUS clause
  changed, then the value of its DESCRIPTION clause should be updated
  accordingly.






SNMPv2 Working Group        Standards Track                    [Page 31]

RFC 1902                     SMI for SNMPv2                 January 1996


10.3.  Notification Definitions

  A notification definition may be revised in any of the following
  ways:

  (1)  A REFERENCE clause may be added or updated.

  Otherwise, if the semantics of any previously defined notification
  are changed (i.e., if a non-editorial change is made to any clause
  other those specifically allowed above), then the OBJECT IDENTIFIER
  value associated with that notification must also be changed.

  Note that changing the descriptor associated with an existing
  notification is considered a semantic change, as these strings may be
  used in an IMPORTS statement.

  Finally, note that if an object has the value of its STATUS clause
  changed, then the value of its DESCRIPTION clause should be updated
  accordingly.
































SNMPv2 Working Group        Standards Track                    [Page 32]

RFC 1902                     SMI for SNMPv2                 January 1996


11.  Appendix A: de-OSIfying a MIB module

  There has been an increasing amount of work recently on taking MIBs
  defined by other organizations (e.g., the IEEE) and de-osifying them
  for use with the Internet-standard network management framework.  The
  steps to achieve this are straight-forward, though tedious.  Of
  course, it is helpful to already be experienced in writing MIB
  modules for use with the Internet-standard network management
  framework.

  The first step is to construct a skeletal MIB module, as shown
  earlier in Section 5.8.  The next step is to categorize the objects
  into groups.  Optional objects are not permitted.  Thus, when a MIB
  module is created, optional objects must be placed in a additional
  groups, which, if implemented, all objects in the group must be
  implemented.  For the first pass, it is wisest to simply ignore any
  optional objects in the original MIB:  experience shows it is better
  to define a core MIB module first, containing only essential objects;
  later, if experience demands, other objects can be added.

11.1.  Managed Object Mapping

  Next for each managed object class, determine whether there can exist
  multiple instances of that managed object class.  If not, then for
  each of its attributes, use the OBJECT-TYPE macro to make an
  equivalent definition.

  Otherwise, if multiple instances of the managed object class can
  exist, then define a conceptual table having conceptual rows each
  containing a columnar object for each of the managed object class's
  attributes.  If the managed object class is contained within the
  containment tree of another managed object class, then the assignment
  of an object is normally required for each of the "distinguished
  attributes" of the containing managed object class.  If they do not
  already exist within the MIB module, then they can be added via the
  definition of additional columnar objects in the conceptual row
  corresponding to the contained managed object class.

  In defining a conceptual row, it is useful to consider the
  optimization of network management operations which will act upon its
  columnar objects.  In particular, it is wisest to avoid defining more
  columnar objects within a conceptual row, than can fit in a single
  PDU.  As a rule of thumb, a conceptual row should contain no more
  than approximately 20 objects.  Similarly, or as a way to abide by
  the "20 object guideline", columnar objects should be grouped into
  tables according to the expected grouping of network management
  operations upon them.  As such, the content of conceptual rows should
  reflect typical access scenarios, e.g., they should be organized



SNMPv2 Working Group        Standards Track                    [Page 33]

RFC 1902                     SMI for SNMPv2                 January 1996


  along functional lines such as one row for statistics and another row
  for parameters, or along usage lines such as commonly-needed objects
  versus rarely-needed objects.

  On the other hand, the definition of conceptual rows where the number
  of columnar objects used as indexes outnumbers the number used to
  hold information, should also be avoided.  In particular, the
  splitting of a managed object class's attributes into many conceptual
  tables should not be used as a way to obtain the same degree of
  flexibility/complexity as is often found in MIBs with a myriad of
  optionals.

11.1.1.  Mapping to the SYNTAX clause

  When mapping to the SYNTAX clause of the OBJECT-TYPE macro:

(1)  An object with BOOLEAN syntax becomes a TruthValue [3].

(2)  An object with INTEGER syntax becomes an Integer32.

(3)  An object with ENUMERATED syntax becomes an INTEGER with
    enumerations, taking any of the values given which can be
    represented with an Integer32.

(4)  An object with BIT STRING syntax having enumerations becomes a BITS
    construct.

(5)  An object with BIT STRING syntax but no enumerations becomes an
    OCTET STRING.

(6)  An object with a character string syntax becomes either an OCTET
    STRING, or a DisplayString [3], depending on the repertoire of the
    character string.

(7)  A non-tabular object with a complex syntax, such as REAL or
    EXTERNAL, must be decomposed, usually into an OCTET STRING (if
    sensible).  As a rule, any object with a complicated syntax should
    be avoided.

(8)  Tabular objects must be decomposed into rows of columnar objects.

11.1.2.  Mapping to the UNITS clause

  If the description of this managed object defines a unit-basis, then
  mapping to this clause is straight-forward.






SNMPv2 Working Group        Standards Track                    [Page 34]

RFC 1902                     SMI for SNMPv2                 January 1996


11.1.3.  Mapping to the MAX-ACCESS clause

  This is straight-forward.

11.1.4.  Mapping to the STATUS clause

  This is straight-forward.

11.1.5.  Mapping to the DESCRIPTION clause

  This is straight-forward:  simply copy the text, making sure that any
  embedded double quotation marks are sanitized (i.e., replaced with
  single-quotes or removed).

11.1.6.  Mapping to the REFERENCE clause

  This is straight-forward:  simply include a textual reference to the
  object being mapped, the document which defines the object, and
  perhaps a page number in the document.

11.1.7.  Mapping to the INDEX clause

  If necessary, decide how instance-identifiers for columnar objects
  are to be formed and define this clause accordingly.

11.1.8.  Mapping to the DEFVAL clause

  Decide if a meaningful default value can be assigned to the object
  being mapped, and if so, define the DEFVAL clause accordingly.

11.2.  Action Mapping

  Actions are modeled as read-write objects, in which writing a
  particular value results in a state change.  (Usually, as a part of
  this state change, some action might take place.)

11.2.1.  Mapping to the SYNTAX clause

  Usually the Integer32 syntax is used with a distinguished value
  provided for each action that the object provides access to.  In
  addition, there is usually one other distinguished value, which is
  the one returned when the object is read.

11.2.2.  Mapping to the MAX-ACCESS clause

  Always use read-write or read-create.





SNMPv2 Working Group        Standards Track                    [Page 35]

RFC 1902                     SMI for SNMPv2                 January 1996


11.2.3.  Mapping to the STATUS clause

  This is straight-forward.

11.2.4.  Mapping to the DESCRIPTION clause

  This is straight-forward:  simply copy the text, making sure that any
  embedded double quotation marks are sanitized (i.e., replaced with
  single-quotes or removed).

11.2.5.  Mapping to the REFERENCE clause

  This is straight-forward:  simply include a textual reference to the
  action being mapped, the document which defines the action, and
  perhaps a page number in the document.

11.3.  Event Mapping

  Events are modeled as SNMPv2 notifications using NOTIFICATION-TYPE
  macro.  However, recall that SNMPv2 emphasizes trap-directed polling.
  As such, few, and usually no, notifications, need be defined for any
  MIB module.

11.3.1.  Mapping to the STATUS clause

  This is straight-forward.

11.3.2.  Mapping to the DESCRIPTION clause

  This is straight-forward:  simply copy the text, making sure that any
  embedded double quotation marks are sanitized (i.e., replaced with
  single-quotes or removed).

11.3.3.  Mapping to the REFERENCE clause

  This is straight-forward:  simply include a textual reference to the
  notification being mapped, the document which defines the
  notification, and perhaps a page number in the document.













SNMPv2 Working Group        Standards Track                    [Page 36]

RFC 1902                     SMI for SNMPv2                 January 1996


12.  Appendix B: UTC Time Format

  Several clauses defined in this document use the UTC Time format:

    YYMMDDHHMMZ

    where: YY - last two digits of year
           MM - month (01 through 12)
           DD - day of month (01 through 31)
           HH - hours (00 through 23)
           MM - minutes (00 through 59)
            Z - the character "Z" denotes Greenwich Mean Time (GMT).

  For example, "9502192015Z" represents 8:15pm GMT on 19 February 1995.

13.  Appendix C: Detailed Sub-typing Rules

13.1.  Syntax Rules

  The syntax rules for sub-typing are given below.  Note that while
  this syntax is based on ASN.1, it includes some extensions beyond
  what is allowed in ASN.1, and a number of ASN.1 constructs are not
  allowed by this syntax.

    <integerSubType>
        ::= <empty>
          | "(" <range> ["|" <range>]... ")"

    <octetStringSubType>
        ::= <empty>
          | "(" "SIZE" "(" <range> ["|" <range>]... ")" ")"

    <range>
        ::= <value>
          | <value> ".." <value>

    <value>
        ::= "-" <number>
          | <number>
          | <hexString>
          | <binString>

    where:
        <empty>     is the empty string
        <number>    is a non-negative integer
        <hexString> is a hexadecimal string (i.e. 'xxxx'H)
        <binString> is a binary string (i.e. 'xxxx'B)




SNMPv2 Working Group        Standards Track                    [Page 37]

RFC 1902                     SMI for SNMPv2                 January 1996


        <range> is further restricted as follows:
            - any <value> used in a SIZE clause must be non-negative.
            - when a pair of values is specified, the first value
              must be less than the second value.
            - when multiple ranges are specified, the ranges may
              not overlap but may touch. For example, (1..4 | 4..9)
              is invalid, and (1..4 | 5..9) is valid.
            - the ranges must be a subset of the maximum range of the
              base type.

13.2.  Examples

Some examples of legal sub-typing:

        Integer32 (-20..100)
        Integer32 (0..100 | 300..500)
        Integer32 (300..500 | 0..100)
        Integer32 (0 | 2 | 4 | 6 | 8 | 10)
        OCTET STRING (SIZE(0..100))
        OCTET STRING (SIZE(0..100 | 300..500))
        OCTET STRING (SIZE(0 | 2 | 4 | 6 | 8 | 10))

Some examples of illegal sub-typing:

    Integer32 (150..100)         -- first greater than second
    Integer32 (0..100 | 50..500) -- ranges overlap
    Integer32 (0 | 2 | 0 )       -- value duplicated
    Integer32 (MIN..-1 | 1..MAX) -- MIN and MAX not allowed
    Integer32 ((SIZE (0..34))    -- must not use SIZE
    OCTET STRING (0..100)        -- must use SIZE
    OCTET STRING (SIZE(-10..100)) -- negative SIZE

13.3.  Rules for Textual Conventions

  Sub-typing of Textual Conventions (see [3]) is allowed but must be
  valid.  In particular, each range specified for the textual
  convention must be a subset of a range specified for the base type.
  For example,

    Tc1 ::= INTEGER (1..10 | 11..20)
    Tc2 ::= Tc1 (2..10 | 12..15)       -- is valid
    Tc3 ::= Tc1 (4..8)                 -- is valid
    Tc4 ::= Tc1 (8..12)                -- is invalid

14.  Security Considerations

  Security issues are not discussed in this memo.




SNMPv2 Working Group        Standards Track                    [Page 38]

RFC 1902                     SMI for SNMPv2                 January 1996


15.  Editor's Address

  Keith McCloghrie
  Cisco Systems, Inc.
  170 West Tasman Drive
  San Jose, CA  95134-1706
  US

  Phone: +1 408 526 5260
  EMail: [email protected]

16.  Acknowledgements

  This document is the result of significant work by the four major
  contributors:

  Jeffrey D. Case (SNMP Research, [email protected])
  Keith McCloghrie (Cisco Systems, [email protected])
  Marshall T. Rose (Dover Beach Consulting, [email protected])
  Steven Waldbusser (International Network Services, [email protected])

  In addition, the contributions of the SNMPv2 Working Group are
  acknowledged.  In particular, a special thanks is extended for the
  contributions of:

    Alexander I. Alten (Novell)
    Dave Arneson (Cabletron)
    Uri Blumenthal (IBM)
    Doug Book (Chipcom)
    Kim Curran (Bell-Northern Research)
    Jim Galvin (Trusted Information Systems)
    Maria Greene (Ascom Timeplex)
    Iain Hanson (Digital)
    Dave Harrington (Cabletron)
    Nguyen Hien (IBM)
    Jeff Johnson (Cisco Systems)
    Michael Kornegay (Object Quest)
    Deirdre Kostick (AT&T Bell Labs)
    David Levi (SNMP Research)
    Daniel Mahoney (Cabletron)
    Bob Natale (ACE*COMM)
    Brian O'Keefe (Hewlett Packard)
    Andrew Pearson (SNMP Research)
    Dave Perkins (Peer Networks)
    Randy Presuhn (Peer Networks)
    Aleksey Romanov (Quality Quorum)
    Shawn Routhier (Epilogue)
    Jon Saperia (BGS Systems)



SNMPv2 Working Group        Standards Track                    [Page 39]

RFC 1902                     SMI for SNMPv2                 January 1996


    Bob Stewart (Cisco Systems, [email protected]), chair
    Kaj Tesink (Bellcore)
    Glenn Waters (Bell-Northern Research)
    Bert Wijnen (IBM)

17.  References

[1]  Information processing systems - Open Systems Interconnection -
    Specification of Abstract Syntax Notation One (ASN.1),
    International Organization for Standardization.  International
    Standard 8824, (December, 1987).

[2]  SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
    S. Waldbusser, "Conformance Statements for Version 2 of the Simple
    Network Management Protocol (SNMPv2)", RFC 1904, January 1996.

[3]  SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
    S. Waldbusser, "Textual Conventions for Version 2 of the Simple
    Network Management Protocol (SNMPv2)", RFC 1903, January 1996.

[4]  Information processing systems - Open Systems Interconnection -
    Specification of Basic Encoding Rules for Abstract Syntax Notation
    One (ASN.1), International Organization for Standardization.
    International Standard 8825, (December, 1987).

[5]  SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
    S. Waldbusser, "Management Information Base for Version 2 of the
    Simple Network Management Protocol (SNMPv2)", RFC 1907,
    January 1996.

[6]  SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
    S. Waldbusser, "Protocol Operations for Version 2 of the Simple
    Network Management Protocol (SNMPv2)", RFC 1905, January 1996.

[7]  SNMPv2 Working Group, Case, J., McCloghrie, K., Rose, M., and
    S. Waldbusser, "Coexistence between Version 1 and Version 2 of the
    Internet-standard Network Management Framework", RFC 1908,
    January 1996.













SNMPv2 Working Group        Standards Track                    [Page 40]