Network Working Group                                         G. Ziemba
Request for Comments: 1858                                      Alantec
Category: Informational                                         D. Reed
                                                           Cybersource
                                                             P. Traina
                                                         cisco Systems
                                                          October 1995


          Security Considerations for IP Fragment Filtering

Status of This Memo

  This memo provides information for the Internet community.  This memo
  does not specify an Internet standard of any kind.  Distribution of
  this memo is unlimited.

Abstract

  IP fragmentation can be used to disguise TCP packets from IP filters
  used in routers and hosts. This document describes two methods of
  attack as well as remedies to prevent them.

1. Background

  System administrators rely on manufacturers of networking equipment
  to provide them with packet filters; these filters are used for
  keeping attackers from accessing private systems and information,
  while permitting friendly agents to transfer data between private
  nets and the Internet.  For this reason, it is important for network
  equipment vendors to anticipate possible attacks against their
  equipment and to implement robust mechanisms to deflect such attacks.

  The growth of the global Internet has brought with it an increase in
  "undesirable elements" manifested in antisocial behavior.  Recent
  months have seen the use of novel attacks on Internet hosts, which
  have in some cases led to the compromise of sensitive data.

  Increasingly sophisticated attackers have begun to exploit the more
  subtle aspects of the Internet Protocol; fragmentation of IP packets,
  an important feature in heterogeneous internetworks, poses several
  potential problems which we explore here.









Ziemba, Reed & Traina        Informational                      [Page 1]

RFC 1858    Security Considerations - IP Fragment Filtering October 1995


2. Filtering IP Fragments

  IP packet filters on routers are designed with a user interface that
  hides packet fragmentation from the administrator; conceptually, an
  IP filter is applied to each IP packet as a complete entity.

  One approach to fragment filtering, described by Mogul [1], involves
  keeping track of the results of applying filter rules to the first
  fragment (FO==0) and applying them to subsequent fragments of the
  same packet.  The filtering module would maintain a list of packets
  indexed by the source address, destination address, protocol, and IP
  ID.  When the initial (FO==0) fragment is seen, if the MF bit is set,
  a list item would be allocated to hold the result of filter access
  checks.  When packets with a non-zero FO come in, look up the list
  element with a matching SA/DA/PROT/ID and apply the stored result
  (pass or block).  When a fragment with a zero MF bit is seen, free
  the list element.

  Although this method (or some refinement of it) might successfully
  remove any trace of the offending whole packet, it has some
  difficulties.  Fragments that arrive out of order, possibly because
  they traveled over different paths, violate one of the design
  assumptions, and undesired fragments can leak through as a result.
  Furthermore, if the filtering router lies on one of several parallel
  paths, the filtering module will not see every fragment and cannot
  guarantee complete fragment filtering in the case of packets that
  should be dropped.


  Fortunately, we do not need to remove all fragments of an offending
  packet.  Since "interesting" packet information is contained in the
  headers at the beginning, filters are generally applied only to the
  first fragment.  Non-first fragments are passed without filtering,
  because it will be impossible for the destination host to complete
  reassembly of the packet if the first fragment is missing, and
  therefore the entire packet will be discarded.

  The Internet Protocol allows fragmentation of packets into pieces so
  small as to be impractical because of data and computational
  overhead.  Attackers can sometimes exploit typical filter behavior
  and the ability to create peculiar fragment sequences in order to
  sneak otherwise disallowed packets past the filter.  In normal
  practice, such pathalogical fragmentation is never used, so it is
  safe to drop these fragments without danger of preventing normal
  operation.






Ziemba, Reed & Traina        Informational                      [Page 2]

RFC 1858    Security Considerations - IP Fragment Filtering October 1995


3. Tiny Fragment Attack

  With many IP implementations it is possible to impose an unusually
  small fragment size on outgoing packets.  If the fragment size is
  made small enough to force some of a TCP packet's TCP header fields
  into the second fragment, filter rules that specify patterns for
  those fields will not match.  If the filtering implementation does
  not enforce a minimum fragment size, a disallowed packet might be
  passed because it didn't hit a match in the filter.

  STD 5, RFC 791 states:

     Every internet module must be able to forward a datagram of 68
     octets without further fragmentation.  This is because an internet
     header may be up to 60 octets, and the minimum fragment is 8
     octets.

  Note that, for the purpose of security, it is not sufficient to
  merely guarantee that a fragment contains at least 8 octets of data
  beyond the IP header because important transport header information
  (e.g., the CODE field of the TCP header) might be beyond the 8th data
  octet.

  3.1 Example of the Tiny Fragment Attack

     In this example, the first fragment contains only eight octets of
     data (the minimum fragment size).  In the case of TCP, this is
     sufficient to contain the source and destination port numbers, but
     it will force the TCP flags field into the second fragment.

     Filters that attempt to drop connection requests (TCP datagrams
     having SYN=1 and ACK=0) will be unable to test these flags in the
     first octet, and will typically ignore them in subsequent
     fragments.

     FRAGMENT 1

     IP HEADER
     +-+-+-+     +-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+
     |     | ... | Fragment Offset = 0 | ... |     |
     +-+-+-+     +-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+

     TCP HEADER
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |        Source Port            |       Destination Port        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       Sequence Number                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Ziemba, Reed & Traina        Informational                      [Page 3]

RFC 1858    Security Considerations - IP Fragment Filtering October 1995


     FRAGMENT 2

     IP HEADER
     +-+-+-+     +-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+
     |     | ... | Fragment Offset = 1 | ... |     |
     +-+-+-+     +-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+

     TCP HEADER
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    Acknowledgment Number                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Data |           |U|A|P|R|S|F|                               |
     | Offset| Reserved  |R|C|S|S|Y|I|            Window             |
     |       |           |G|K|H|T|N|N|                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  3.2 Prevention of the Tiny Fragment Attack

     In a router, one can prevent this sort of attack by enforcing
     certain limits on fragments passing through, namely, that the
     first fragment be large enough to contain all the necessary header
     information.

     There are two ways to guarantee that the first fragment of a
     "passed" packet includes all the required fields, one direct, the
     other indirect.

     3.2.1 Direct Method

        There is some number TMIN which is the minimum length of a
        transport header required to contain "interesting" fields
        (i.e., fields whose values are significant to packet filters).
        This length is measured from the beginning of the transport
        header in the original unfragmented IP packet.

        Note that TMIN is a function of the transport protocol involved
        and also of the particular filters currently configured.

        The direct method involves computing the length of the
        transport header in each zero-offset fragment and comparing it
        against TMIN.  If the transport header length is less than
        TMIN, the fragment is discarded.  Non-zero-offset fragments
        need not be checked because if the zero-offset fragment is
        discarded, the destination host will be unable to complete
        reassembly.  So far we have:






Ziemba, Reed & Traina        Informational                      [Page 4]

RFC 1858    Security Considerations - IP Fragment Filtering October 1995


           if FO=0 and TRANSPORTLEN < tmin then
                   DROP PACKET

        However, the "interesting" fields of the common transport
        protocols, except TCP, lie in the first eight octets of the
        transport header, so it isn't possible to push them into a
        non-zero-offset fragment. Therefore, as of this writing, only
        TCP packets are vulnerable to tiny-fragment attacks and the
        test need not be applied to IP packets carrying other transport
        protocols.  A better version of the tiny fragment test might
        therefore be:

           if FO=0 and PROTOCOL=TCP and TRANSPORTLEN < tmin then
                   DROP PACKET

        As discussed in the section on overlapping fragments below,
        however, this test does not block all fragmentation attacks,
        and is in fact unnecessary when a more general technique is
        used.

     3.2.2 Indirect Method

        The indirect method relies on the observation that when a TCP
        packet is fragmented so as to force "interesting" header fields
        out of the zero-offset fragment, there must exist a fragment
        with FO equal to 1.

        If a packet with FO==1 is seen, conversely, it could indicate
        the presence, in the fragment set, of a zero-offset fragment
        with a transport header length of eight octets Discarding this
        one-offset fragment will block reassembly at the receiving host
        and be as effective as the direct method described above.

4. Overlapping Fragment Attack

  RFC 791, the current IP protocol specification, describes a
  reassembly algorithm that results in new fragments overwriting any
  overlapped portions of previously-received fragments.

  Given such a reassembly implementation, an attacker could construct a
  series of packets in which the lowest (zero-offset) fragment would
  contain innocuous data (and thereby be passed by administrative
  packet filters), and in which some subsequent packet having a non-
  zero offset would overlap TCP header information (destination port,
  for instance) and cause it to be modified.  The second packet would
  be passed through most filter implementations because it does not
  have a zero fragment offset.




Ziemba, Reed & Traina        Informational                      [Page 5]

RFC 1858    Security Considerations - IP Fragment Filtering October 1995


  RFC 815 outlines an improved datagram reassembly algorithm, but it
  concerns itself primarily with filling gaps during the reassembly
  process.  This RFC remains mute on the issue of overlapping
  fragments.

  Thus, fully-compliant IP implementations are not guaranteed to be
  immune to overlapping-fragment attacks.  The 4.3 BSD reassembly
  implementation takes care to avoid these attacks by forcing data from
  lower-offset fragments to take precedence over data from higher-
  offset fragments.  However, not all IP implementations are based on
  the original BSD code, and it is likely that some of them are
  vulnerable.

  4.1 Example of the Overlapping Fragment Attack

     In this example, fragments are large enough to satisfy the minimum
     size requirements described in the previous section.  The filter
     is configured to drop TCP connection request packets.

     The first fragment contains values, e.g., SYN=0, ACK=1, that
     enable it to pass through the filter unharmed.

     The second fragment, with a fragment offset of eight octets,
     contains TCP Flags that differ from those given in the first
     fragment, e.g., SYN=1, ACK=0.  Since this second fragment is not a
     0-offset fragment, it will not be checked, and it, too will pass
     through the filter.

     The receiving host, if it conforms fully to the algorithms given
     in RFC 791, will reconstitute the packet as a connection request
     because the "bad" data arrived later.




















Ziemba, Reed & Traina        Informational                      [Page 6]

RFC 1858    Security Considerations - IP Fragment Filtering October 1995


     FRAGMENT 1

     IP HEADER
     +-+-+-+     +-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+
     |     | ... | Fragment Offset = 0 | ... |     |
     +-+-+-+     +-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+

     TCP HEADER
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |        Source Port            |       Destination Port        |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       Sequence Number                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    Acknowledgment Number                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Data |           |U|A|P|R|S|F|                               |
     | Offset| Reserved  |R|C|S|S|Y|I|            Window             |
     |       |           |G|K|H|T|N|N|                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                  .
                                  .
                                  .
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        (Other data)                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


     FRAGMENT 2

     IP HEADER
     +-+-+-+     +-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+
     |     | ... | Fragment Offset = 1 | ... |     |
     +-+-+-+     +-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+

     TCP HEADER
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    Acknowledgment Number                      |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |  Data |           |U|A|P|R|S|F|                               |
     | Offset| Reserved  |R|C|S|S|Y|I|            Window             |
     |       |           |G|K|H|T|N|N|                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                                  .
                                  .
                                  .
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                        (Other data)                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



Ziemba, Reed & Traina        Informational                      [Page 7]

RFC 1858    Security Considerations - IP Fragment Filtering October 1995


     If the receiving host has a reassembly algorithm that prevents new
     data from overwriting data received previously, we can send
     Fragment 2 first, followed by Fragment 1, and accomplish the same
     successful attack.

  4.2 Prevention of the Overlapping Fragment Attack

     Since no standard requires that an overlap-safe reassembly
     algorithm be used, the potential vulnerability of hosts to this
     attack is quite large.

     By adopting a better strategy in a router's IP filtering code, one
     can be assured of blocking this "attack".  If the router's
     filtering module enforces a minimum fragment offset for fragments
     that have non-zero offsets, it can prevent overlaps in filter
     parameter regions of the transport headers.

     In the case of TCP, this minimum is sixteen octets, to ensure that
     the TCP flags field is never contained in a non-zero-offset
     fragment.  If a TCP fragment has FO==1, it should be discarded
     because it starts only eight octets into the transport header.
     Conveniently, dropping FO==1 fragments also protects against the
     tiny fragment attack, as discussed earlier.

     RFC 791 demands that an IP stack must be capable of passing an 8
     byte IP data payload without further fragmentation (fragments sit
     on 8 byte boundaries).  Since an IP header can be up to 60 bytes
     long (including options), this means that the minimum MTU on a
     link should be 68 bytes.

     A typical IP header is only 20 bytes long and can therefore carry
     48 bytes of data.  No one in the real world should EVER be
     generating a TCP packet with FO=1, as it would require both that a
     previous system fragmenting IP data down to the 8 byte minimum and
     a 60 byte IP header.

     A general algorithm, then, for ensuring that filters work in the
     face of both the tiny fragment attack and the overlapping fragment
     attack is:

        IF FO=1 and PROTOCOL=TCP then
                DROP PACKET

     If filtering based on fields in other transport protocol headers
     is provided in a router, the minimum could be greater, depending
     on the position of those fields in the header.  In particular, if
     filtering is permitted on data beyond the sixteenth octet of the
     transport header, either because of a flexible user interface or



Ziemba, Reed & Traina        Informational                      [Page 8]

RFC 1858    Security Considerations - IP Fragment Filtering October 1995


     the implementation of filters for some new transport protocol,
     dropping packets with FO==1 might not be sufficient.

5. Security Considerations

  This memo is concerned entirely with the security implications of
  filtering fragmented IP packets.

6. Acknowledgements

  The attack scenarios described above grew from discussions that took
  place on the firewalls mailing list during May of 1995.  Participants
  included: Darren Reed <[email protected]>, Tom Fitzgerald
  <[email protected]>, and Paul Traina <[email protected]>.

7. References

  [1] Mogul, J., "Simple and Flexible Datagram Access Controls for
      Unix-based Gateways", Digital Equipment Corporation, March 1989.

  [2] Postel, J., Editor, "Internet Protocol - DARPA Internet Program
      Protocol Specification", STD 5, RFC 791, USC/Information Sciences
      Institute, September 1981.

  [3] Postel, J., Editor, "Transmission Control Protocol - DARPA
      Internet Program Protocol Specification", STD 7, RFC 793,
      USC/Information Sciences Institute, September 1981.

  [4] Clark, D., "IP Datagram Reassembly Algorithms", RFC 815, MIT
      Laboratory for Computer Science/Computer Systems and
      Communications Group, July 1982.




















Ziemba, Reed & Traina        Informational                      [Page 9]

RFC 1858    Security Considerations - IP Fragment Filtering October 1995


Authors' Addresses

  G. Paul Ziemba
  Alantec
  2115 O'Nel Drive
  San Jose, CA 95131

  EMail: [email protected]


  Darren Reed
  Cybersource
  1275A Malvern Rd
  Melbourne, Vic 3144
  Australia

  EMail: [email protected]


  Paul Traina
  cisco Systems, Inc.
  170 W. Tasman Dr.
  San Jose, CA 95028

  EMail: [email protected]


























Ziemba, Reed & Traina        Informational                     [Page 10]