Network Working Group                                  ST2 Working Group
Request for Comments: 1819           L. Delgrossi and L. Berger, Editors
Obsoletes: 1190, IEN 119                                     August 1995
Category: Experimental


               Internet Stream Protocol Version 2 (ST2)
                Protocol Specification - Version ST2+

Status of this Memo

  This memo defines an Experimental Protocol for the Internet
  community.  This memo does not specify an Internet standard of any
  kind.  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

IESG NOTE

  This document is a revision of RFC1190. The charter of this effort
  was clarifying, simplifying and removing errors from RFC1190 to
  ensure interoperability of implementations.

  NOTE WELL: Neither the version of the protocol described in this
  document nor the previous version is an Internet Standard or under
  consideration for that status.

  Since the publication of the original version of the protocol, there
  have been significant developments in the state of the art.  Readers
  should note that standards and technology addressing alternative
  approaches to the resource reservation problem are currently under
  development within the IETF.

Abstract

  This memo contains a revised specification of the Internet STream
  Protocol Version 2 (ST2). ST2 is an experimental resource reservation
  protocol intended to provide end-to-end real-time guarantees over an
  internet. It allows applications to build multi-destination simplex
  data streams with a desired quality of service. The revised version
  of ST2 specified in this memo is called ST2+.

  This specification is a product of the STream Protocol Working Group
  of the Internet Engineering Task Force.








Delgrossi & Berger, Editors   Experimental                      [Page 1]

RFC 1819              ST2+ Protocol Specification            August 1995


Table of Contents

    1  Introduction                                                   6
            1.1  What is ST2?                                         6
            1.2  ST2 and IP                                           8
            1.3  Protocol History                                     8
            1.3.1  RFC1190 ST and ST2+ Major Differences              9
            1.4  Supporting Modules for ST2                          10
            1.4.1  Data Transfer Protocol                            11
            1.4.2  Setup Protocol                                    11
            1.4.3  Flow Specification                                11
            1.4.4  Routing Function                                  12
            1.4.5  Local Resource Manager                            12
            1.5  ST2 Basic Concepts                                  15
            1.5.1  Streams                                           16
            1.5.2  Data Transmission                                 16
            1.5.3  Flow Specification                                17
            1.6  Outline of This Document                            19

    2  ST2 User Service Description                                  19
            2.1  Stream Operations and Primitive Functions           19
            2.2  State Diagrams                                      21
            2.3  State Transition Tables                             25

    3  The ST2 Data Transfer Protocol                                26
            3.1  Data Transfer with ST                               26
            3.2  ST Protocol Functions                               27
            3.2.1  Stream Identification                             27
            3.2.2  Packet Discarding based on Data Priority          27

    4  SCMP Functional Description                                   28
            4.1  Types of Streams                                    29
            4.1.1  Stream Building                                   30
            4.1.2  Knowledge of Receivers                            30
            4.2  Control PDUs                                        31
            4.3  SCMP Reliability                                    32
            4.4  Stream Options                                      33
            4.4.1  No Recovery                                       33
            4.4.2  Join Authorization Level                          34
            4.4.3  Record Route                                      34
            4.4.4  User Data                                         35
            4.5  Stream Setup                                        35
            4.5.1  Information from the Application                  35
            4.5.2  Initial Setup at the Origin                       35
            4.5.2.1  Invoking the Routing Function                   36
            4.5.2.2  Reserving Resources                             36
            4.5.3  Sending CONNECT Messages                          37
            4.5.3.1  Empty Target List                               37



Delgrossi & Berger, Editors   Experimental                      [Page 2]

RFC 1819              ST2+ Protocol Specification            August 1995


            4.5.4  CONNECT Processing by an Intermediate ST agent    37
            4.5.5  CONNECT Processing at the Targets                 38
            4.5.6  ACCEPT Processing by an Intermediate ST agent     38
            4.5.7  ACCEPT Processing by the Origin                   39
            4.5.8  REFUSE Processing by the Intermediate ST agent    39
            4.5.9  REFUSE Processing by the Origin                   39
            4.5.10  Other Functions during Stream Setup              40
            4.6  Modifying an Existing Stream                        40
            4.6.1  The Origin Adding New Targets                     41
            4.6.2  The Origin Removing a Target                      41
            4.6.3  A Target Joining a Stream                         42
            4.6.3.1  Intermediate Agent (Router) as Origin           43
            4.6.4  A Target Deleting Itself                          43
            4.6.5  Changing a Stream's FlowSpec                      44
            4.7  Stream Tear Down                                    45

    5  Exceptional Cases                                             45
            5.1  Long ST Messages                                    45
            5.1.1  Handling of Long Data Packets                     45
            5.1.2  Handling of Long Control Packets                  46
            5.2  Timeout Failures                                    47
            5.2.1  Failure due to ACCEPT Acknowledgment Timeout      47
            5.2.2  Failure due to CHANGE Acknowledgment Timeout      47
            5.2.3  Failure due to CHANGE Response Timeout            48
            5.2.4  Failure due to CONNECT Acknowledgment Timeout     48
            5.2.5  Failure due to CONNECT Response Timeout           48
            5.2.6  Failure due to DISCONNECT Acknowledgment Timeout  48
            5.2.7  Failure due to JOIN Acknowledgment Timeout        48
            5.2.8  Failure due to JOIN Response Timeout              49
            5.2.9  Failure due to JOIN-REJECT Acknowledgment Timeout 49
            5.2.10  Failure due to NOTIFY Acknowledgment Timeout     49
            5.2.11  Failure due to REFUSE Acknowledgment Timeout     49
            5.2.12  Failure due to STATUS Response Timeout           49
            5.3  Setup Failures due to Routing Failures              50
            5.3.1  Path Convergence                                  50
            5.3.2  Other Cases                                       51
            5.4  Problems due to Routing Inconsistency               52
            5.5  Problems in Reserving Resources                     53
            5.5.1  Mismatched FlowSpecs                              53
            5.5.2  Unknown FlowSpec Version                          53
            5.5.3  LRM Unable to Process FlowSpec                    53
            5.5.4  Insufficient Resources                            53
            5.6  Problems Caused by CHANGE Messages                  54
            5.7  Unknown Targets in DISCONNECT and CHANGE            55







Delgrossi & Berger, Editors   Experimental                      [Page 3]

RFC 1819              ST2+ Protocol Specification            August 1995


    6  Failure Detection and Recovery                                55
            6.1  Failure Detection                                   55
            6.1.1  Network Failures                                  56
            6.1.2  Detecting ST Agents Failures                      56
            6.2  Failure Recovery                                    58
            6.2.1  Problems in Stream Recovery                       60
            6.3  Stream Preemption                                   62

    7  A Group of Streams                                            63
            7.1  Basic Group Relationships                           63
            7.1.1  Bandwidth Sharing                                 63
            7.1.2  Fate Sharing                                      64
            7.1.3  Route Sharing                                     65
            7.1.4  Subnet Resources Sharing                          65
            7.2  Relationships Orthogonality                         65

    8  Ancillary Functions                                           66
            8.1  Stream ID Generation                                66
            8.2  Group Name Generator                                66
            8.3  Checksum Computation                                67
            8.4  Neighbor ST Agent Identification and
                    Information Collection                           67
            8.5  Round Trip Time Estimation                          68
            8.6  Network MTU Discovery                               68
            8.7  IP Encapsulation of ST                              69
            8.8  IP Multicasting                                     70

    9  The ST2+ Flow Specification                                   71
            9.1  FlowSpec Version #0 - (Null FlowSpec)               72
            9.2  FlowSpec Version #7 - ST2+ FlowSpec                 72
            9.2.1  QoS Classes                                       73
            9.2.2  Precedence                                        74
            9.2.3  Maximum Data Size                                 74
            9.2.4  Message Rate                                      74
            9.2.5  Delay and Delay Jitter                            74
            9.2.6  ST2+ FlowSpec Format                              75

    10  ST2 Protocol Data Units Specification                        77
            10.1  Data PDU                                           77
            10.1.1  ST Data Packets                                  78
            10.2  Control PDUs                                       78
            10.3  Common SCMP Elements                               80
            10.3.1  FlowSpec                                         80
            10.3.2  Group                                            81
            10.3.3  MulticastAddress                                 82
            10.3.4  Origin                                           82
            10.3.5  RecordRoute                                      83
            10.3.6  Target and TargetList                            84



Delgrossi & Berger, Editors   Experimental                      [Page 4]

RFC 1819              ST2+ Protocol Specification            August 1995


            10.3.7  UserData                                         85
            10.3.8  Handling of Undefined Parameters                 86
            10.4  ST Control Message PDUs                            86
            10.4.1  ACCEPT                                           86
            10.4.2  ACK                                              88
            10.4.3  CHANGE                                           89
            10.4.4  CONNECT                                          89
            10.4.5  DISCONNECT                                       92
            10.4.6  ERROR                                            93
            10.4.7  HELLO                                            94
            10.4.8  JOIN                                             95
            10.4.9  JOIN-REJECT                                      96
            10.4.10  NOTIFY                                          97
            10.4.11  REFUSE                                          98
            10.4.12  STATUS                                         100
            10.4.13  STATUS-RESPONSE                                100
            10.5  Suggested Protocol Constants                      101
            10.5.1  SCMP Messages                                   102
            10.5.2  SCMP Parameters                                 102
            10.5.3  ReasonCode                                      102
            10.5.4  Timeouts and Other Constants                    104
            10.6  Data Notations                                    105
    11  References                                                  106
    12  Security Considerations                                     108
    13  Acknowledgments and Authors' Addresses                      108


























Delgrossi & Berger, Editors   Experimental                      [Page 5]

RFC 1819              ST2+ Protocol Specification            August 1995


1.  Introduction

1.1  What is ST2?

  The Internet Stream Protocol, Version 2 (ST2) is an experimental
  connection-oriented internetworking protocol that operates at the
  same layer as connectionless IP. It has been developed to support the
  efficient delivery of data streams to single or multiple destinations
  in applications that require guaranteed quality of service. ST2 is
  part of the IP protocol family and serves as an adjunct to, not a
  replacement for, IP. The main application areas of the protocol are
  the real-time transport of multimedia data, e.g., digital audio and
  video packet streams, and distributed simulation/gaming, across
  internets.

  ST2 can be used to reserve bandwidth for real-time streams across
  network routes. This reservation, together with appropriate network
  access and packet scheduling mechanisms in all nodes running the
  protocol, guarantees a well-defined Quality of Service (QoS) to ST2
  applications. It ensures that real-time packets are delivered within
  their deadlines, that is, at the time where they need to be
  presented.  This facilitates a smooth delivery of data that is
  essential for time- critical applications, but can typically not be
  provided by best- effort IP communication.

                     DATA PATH                         CONTROL PATH
                     =========                         ============
      Upper     +------------------+                     +---------+
      Layer     | Application data |                     | Control |
                +------------------+                     +---------+
                         |                                    |
                         |                                    V
                         |                     +-------------------+
      SCMP               |                     |   SCMP  |         |
                         |                     +-------------------+
                         |                             |
                         V                             V
           +-----------------------+      +------------------------+
      ST   | ST |                  |      | ST |         |         |
           +-----------------------+      +------------------------+
           D-bit=1                       D-bit=0

                  Figure 1: ST2 Data and Control Path

  Just like IP, ST2 actually consists of two protocols: ST for the data
  transport and SCMP, the Stream Control Message Protocol, for all
  control functions. ST is simple and contains only a single PDU format
  that is designed for fast and efficient data forwarding in order to



Delgrossi & Berger, Editors   Experimental                      [Page 6]

RFC 1819              ST2+ Protocol Specification            August 1995


  achieve low communication delays. SCMP, however, is more complex than
  IP's ICMP. As with ICMP and IP, SCMP packets are transferred within
  ST packets as shown in Figure 1.

   +--------------------+
   | Conference Control |
   +--------------------+
  +-------+ +-------+ |
  | Video | | Voice | | +-----+ +------+ +-----+     +-----+ Application
  | Appl  | | Appl  | | | SNMP| |Telnet| | FTP | ... |     |    Layer
  +-------+ +-------+ | +-----+ +------+ +-----+     +-----+
      |        |      |     |        |     |            |
      V        V      |     |        |     |            |   ------------
   +-----+  +-----+   |     |        |     |            |
   | PVP |  | NVP |   |     |        |     |            |
   +-----+  +-----+   +     |        |     |            |
    |   \      | \     \    |        |     |            |
    |    +-----|--+-----+   |        |     |            |
    |     Appl.|control  V  V        V     V            V
    | ST  data |         +-----+    +-------+        +-----+
    | & control|         | UDP |    |  TCP  |    ... | RTP | Transport
    |          |         +-----+    +-------+        +-----+   Layer
    |         /|          / | \       / / |          / /|
    |\       / |  +------+--|--\-----+-/--|--- ... -+ / |
    | \     /  |  |         |   \     /   |          /  |
    |  \   /   |  |         |    \   +----|--- ... -+   |   -----------
    |   \ /    |  |         |     \ /     |             |
    |    V     |  |         |      V      |             |
    | +------+ |  |         |   +------+  |   +------+  |
    | | SCMP | |  |         |   | ICMP |  |   | IGMP |  |    Internet
    | +------+ |  |         |   +------+  |   +------+  |     Layer
    |    |     |  |         |      |      |      |      |
    V    V     V  V         V      V      V      V      V
  +-----------------+  +-----------------------------------+
  | STream protocol |->|      Internet     Protocol        |
  +-----------------+  +-----------------------------------+
                 | \   / |
                 |  \ /  |
                 |   X   |                                  ------------
                 |  / \  |
                 | /   \ |
                 VV     VV
  +----------------+   +----------------+
  | (Sub-) Network |...| (Sub-) Network |                  (Sub-)Network
  |    Protocol    |   |    Protocol    |                     Layer
  +----------------+   +----------------+

                  Figure 2.  Protocol Relationships



Delgrossi & Berger, Editors   Experimental                      [Page 7]

RFC 1819              ST2+ Protocol Specification            August 1995


1.2  ST2 and IP

  ST2 is designed to coexist with IP on each node. A typical
  distributed multimedia application would use both protocols: IP for
  the transfer of traditional data and control information, and ST2 for
  the transfer of real-time data. Whereas IP typically will be accessed
  from TCP or UDP, ST2 will be accessed via new end-to-end real-time
  protocols. The position of ST2 with respect to the other protocols of
  the Internet family is represented in Figure 2.

  Both ST2 and IP apply the same addressing schemes to identify
  different hosts. ST2 and IP packets differ in the first four bits,
  which contain the internetwork protocol version number: number 5 is
  reserved for ST2 (IP itself has version number 4). As a network layer
  protocol, like IP, ST2 operates independently of its underlying
  subnets. Existing implementations use ARP for address resolution, and
  use the same Layer 2 SAPs as IP.

  As a special function, ST2 messages can be encapsulated in IP
  packets.  This is represented in Figure 2 as a link between ST2 and
  IP. This link allows ST2 messages to pass through routers which do
  not run ST2.  Resource management is typically not available for
  these IP route segments. IP encapsulation is, therefore, suggested
  only for portions of the network which do not constitute a system
  bottleneck.

  In Figure 2, the RTP protocol is shown as an example of transport
  layer on top of ST2. Others include the Packet Video Protocol (PVP)
  [Cole81], the Network Voice Protocol (NVP) [Cohe81], and others such
  as the Heidelberg Transport Protocol (HeiTP) [DHHS92].

1.3  Protocol History

  The first version of ST was published in the late 1970's and was used
  throughout the 1980's for experimental transmission of voice, video,
  and distributed simulation. The experience gained in these
  applications led to the development of the revised protocol version
  ST2. The revision extends the original protocol to make it more
  complete and more applicable to emerging multimedia environments. The
  specification of this protocol version is contained in Internet RFC
  1190 which was published in October 1990 [RFC1190].

  With more and more developments of commercial distributed multimedia
  applications underway and with a growing dissatisfaction at the
  transmission quality for audio and video over IP in the MBONE,
  interest in ST2 has grown over the last years. Companies have
  products available incorporating the protocol. The BERKOM MMTS
  project of the German PTT [DeAl92] uses ST2 as its core protocol for



Delgrossi & Berger, Editors   Experimental                      [Page 8]

RFC 1819              ST2+ Protocol Specification            August 1995


  the provision of multimedia teleservices such as conferencing and
  mailing. In addition, implementations of ST2 for Digital Equipment,
  IBM, NeXT, Macintosh, PC, Silicon Graphics, and Sun platforms are
  available.

  In 1993, the IETF started a new working group on ST2 as part of
  ongoing efforts to develop protocols that address resource
  reservation issues.  The group's mission was to clean up the existing
  protocol specification to ensure better interoperability between the
  existing and emerging implementations. It was also the goal to
  produce an updated experimental protocol specification that reflected
  the experiences gained with the existing ST2 implementations and
  applications. Which led to the specification of the ST2+ protocol
  contained in this document.

1.3.1  RFC1190 ST and ST2+ Major Differences

  The protocol changes from RFC1190 were motivated by protocol
  simplification and clarification, and codification of extensions in
  existing implementations. This section provides a list of major
  differences, and is probably of interest only to those who have
  knowledge of RFC1190. The major differences between the versions are:

o   Elimination of "Hop IDentifiers" or HIDs. HIDs added much complexity
   to the protocol and was found to be a major impediment to
   interoperability. HIDs have been replaced by globally unique
   identifiers called "Stream IDentifiers" or SIDs.

o   Elimination of a number of stream options. A number of options were
   found to not be used by any implementation, or were thought to add
   more complexity than value. These options were removed. Removed
   options include: point-to-point, full-duplex, reverse charge, and
   source route.

o   Elimination of the concept of "subset" implementations. RFC1190
   permitted subset implementations, to allow for easy implementation
   and experimentation. This led to interoperability problems. Agents
   implementing the protocol specified in this document, MUST implement
   the full protocol. A number of the protocol functions are best-
   effort. It is expected that some implementations will make more
   effort than others in satisfying particular protocol requests.

o   Clarification of the capability of targets to request to join a
   steam. RFC1190 can be interpreted to support target requests, but
   most implementors did not understand this and did not add support
   for this capability. The lack of this capability was found to be a
   significant limitation in the ability to scale the number of
   participants in a single ST stream. This clarification is based on



Delgrossi & Berger, Editors   Experimental                      [Page 9]

RFC 1819              ST2+ Protocol Specification            August 1995


   work done by IBM Heidelberg.

o   Separation of functions between ST and supporting modules. An effort
   was made to improve the separation of functions provided by ST and
   those provided by other modules. This is reflected in reorganization
   of some text and some PDU formats. ST was also made FlowSpec
   independent, although it does define a FlowSpec for testing and
   interoperability purposes.

o   General reorganization and re-write of the specification. This
   document has been organized with the goal of improved readability
   and clarity. Some sections have been added, and an effort was made
   to improve the introduction of concepts.

1.4  Supporting Modules for ST2

  ST2 is one piece of a larger mosaic. This section presents the
  overall communication architecture and clarifies the role of ST2 with
  respect to its supporting modules.

  ST2 proposes a two-step communication model. In the first step, the
  real-time channels for the subsequent data transfer are built. This
  is called stream setup. It includes selecting the routes to the
  destinations and reserving the correspondent resources. In the second
  step, the data is transmitted over the previously established
  streams.  This is called data transfer. While stream setup does not
  have to be completed in real-time, data transfer has stringent real-
  time requirements. The architecture used to describe the ST2
  communication model includes:

o   a data transfer protocol for the transmission of real-time data
   over the established streams,

o   a setup protocol to establish real-time streams based on the flow
   specification,

o   a flow specification to express user real-time requirements,

o   a routing function to select routes in the Internet,

o   a local resource manager to appropriately handle resources involved
   in the communication.

  This document defines a data protocol (ST), a setup protocol (SCMP),
  and a flow specification (ST2+ FlowSpec). It does not define a
  routing function and a local resource manager. However, ST2 assumes
  their existence.




Delgrossi & Berger, Editors   Experimental                     [Page 10]

RFC 1819              ST2+ Protocol Specification            August 1995


  Alternative architectures are possible, see [RFC1633] for an example
  alternative architecture that could be used when implementing ST2.

1.4.1  Data Transfer Protocol

  The data transfer protocol defines the format of the data packets
  belonging to the stream. Data packets are delivered to the targets
  along the stream paths previously established by the setup protocol.
  Data packets are delivered with the quality of service associated
  with the stream.

  Data packets contain a globally unique stream identifier that
  indicates which stream they belong to. The stream identifier is also
  known by the setup protocol, which uses it during stream
  establishment. The data transfer protocol for ST2, known simply as
  ST, is completely defined by this document.

1.4.2  Setup Protocol

  The setup protocol is responsible for establishing, maintaining, and
  releasing real-time streams. It relies on the routing function to
  select the paths from the source to the destinations. At each
  host/router on these paths, it presents the flow specification
  associated with the stream to the local resource manager. This causes
  the resource managers to reserve appropriate resources for the
  stream.  The setup protocol for ST2 is called Stream Control Message
  Protocol, or SCMP, and is completely defined by this document.

1.4.3  Flow Specification

  The flow specification is a data structure including the ST2
  applications' QoS requirements. At each host/router, it is used by
  the local resource manager to appropriately handle resources so that
  such requirements are met. Distributing the flow specification to all
  resource managers along the communication paths is the task of the
  setup protocol. However, the contents of the flow specification are
  transparent to the setup protocol, which simply carries the flow
  specification. Any operations on the flow specification, including
  updating internal fields and comparing flow specifications are
  performed by the resource managers.

  This document defines a specific flow specification format that
  allows for interoperability among ST2 implementations. This flow
  specification is intended to support a flow with a single
  transmission rate for all destinations in the stream. Implementations
  may support more than one flow specification format and the means are
  provided to add new formats as they are defined in the future.
  However, the flow specification format has to be consistent



Delgrossi & Berger, Editors   Experimental                     [Page 11]

RFC 1819              ST2+ Protocol Specification            August 1995


  throughout the stream, i.e., it is not possible to use different flow
  specification formats for different parts of the same stream.

1.4.4  Routing Function

  The routing function is an external unicast route generation
  capability. It provides the setup protocol with the path to reach
  each of the desired destinations. The routing function is called on a
  hop-by-hop basis and provides next-hop information. Once a route is
  selected by the routing function, it persists for the whole stream
  lifetime. The routing function may try to optimize based on the
  number of targets, the requested resources, or use of local network
  multicast or bandwidth capabilities. Alternatively, the routing
  function may even be based on simple connectivity information.

  The setup protocol is not necessarily aware of the criteria used by
  the routing function to select routes. It works with any routing
  function algorithm. The algorithm adopted is a local matter at each
  host/router and different hosts/routers may use different algorithms.
  The interface between setup protocol and routing function is also a
  local matter and therefore it is not specified by this document.

  This version of ST does not support source routing. It does support
  route recording. It does include provisions that allow identification
  of ST capable neighbors. Identification of remote ST hosts/routers is
  not specifically addressed.

1.4.5  Local Resource Manager

  At each host/router traversed by a stream, the Local Resource Manager
  (LRM) is responsible for handling local resources. The LRM knows
  which resources are on the system and what capacity they can provide.
  Resources include:

o   CPUs on end systems and routers to execute the application and
   protocol software,

o   main memory space for this software (as in all real-time systems,
   code should be pinned in main memory, as swapping it out would have
   detrimental effects on system performance),

o   buffer space to store the data, e.g., communication packets, passing
   through the nodes,

o   network adapters, and






Delgrossi & Berger, Editors   Experimental                     [Page 12]

RFC 1819              ST2+ Protocol Specification            August 1995


o   transmission networks between the nodes. Networks may be as simple
   as point-to-point links or as complex as switched networks such as
   Frame Relay and ATM networks.

  During stream setup and modification, the LRM is presented by the
  setup protocol with the flow specification associated to the stream.
  For each resource it handles, the LRM is expected to perform the
  following functions:

o   Stream Admission Control: it checks whether, given the flow
   specification, there are sufficient resources left to handle the new
   data stream. If the available resources are insufficient, the new
   data stream must be rejected.

o   QoS Computation: it calculates the best possible performance the
   resource can provide for the new data stream under the current
   traffic conditions, e.g., throughput and delay values are computed.

o   Resource Reservation: it reserves the resource capacities required
   to meet the desired QoS.

  During data transfer, the LRM is responsible for:

o   QoS Enforcement: it enforces the QoS requirements by appropriate
   scheduling of resource access. For example, data packets from an
   application with a short guaranteed delay must be served prior to
   data from an application with a less strict delay bound.

  The LRM may also provide the following additional functions:

o   Data Regulation: to smooth a stream's data traffic, e.g., as with the
   leaky bucket algorithm.

o   Policing: to prevent applications exceed their negotiated QoS, e.g.,
   to send data at a higher rate than indicated in the flow
   specification.

o   Stream Preemption: to free up resources for other streams with
   higher priority or importance.

  The strategies adopted by the LRMs to handle resources are resource-
  dependent and may vary at every host/router. However, it is necessary
  that all LRMs have the same understanding of the flow specification.
  The interface between setup protocol and LRM is a local matter at
  every host and therefore it is not specified by this document. An
  example of LRM is the Heidelberg Resource Administration Technique
  (HeiRAT) [VoHN93].




Delgrossi & Berger, Editors   Experimental                     [Page 13]

RFC 1819              ST2+ Protocol Specification            August 1995


  It is also assumed that the LRM provides functions to compare flow
  specifications, i.e., to decide whether a flow specification requires
  a greater, equal, or smaller amount of resource capacities to be
  reserved.















































Delgrossi & Berger, Editors   Experimental                     [Page 14]

RFC 1819              ST2+ Protocol Specification            August 1995


1.5  ST2 Basic Concepts

  The following sections present at an introductory level some of the
  fundamental ST2 concepts including streams, data transfer, and flow
  specification.

           Hosts Connections...                :      ...and Streams
           ====================                :      ==============
       data       Origin                       :          Origin
      packets +-----------+                    :          +----+
         +----|Application|                    :          |    |
         |    |-----------|                    :          +----+
         +--->| ST Agent  |                    :           |  |
              +-----------+                    :           |  |
                    |                          :           |  |
                    V                          :           |  |
             +-------------+                   :           |  |
             |             |                   :           |  |
+-------------|  Network A  |                   :   +-------+  +--+
|             |             |                   :   |             |
|             +-------------+                   :   |     Target 2|
|                    |     Target 2             :   |     & Router|
|     Target 1       |    and Router            :   |             |
|  +-----------+     |  +-----------+           :   V             V
|  |Application|<-+  |  |Application|<-+        : +----+        +----+
|  |-----------|  |  |  |-----------|  |        : |    |        |    |
+->| ST Agent  |--+  +->| ST Agent  |--+        : +----+        +----+
  +-----------+        +-----------+           :Target 1         |  |
                             |                 :                 |  |
                             V                 :                 |  |
                   +-------------+             :                 |  |
                   |             |             :                 |  |
     +-------------|  Network B  |             :           +-----+  |
     |             |             |             :           |        |
     |             +-------------+             :           |        |
     |    Target 3        |    Target 4        :           |        |
     |  +-----------+     |  +-----------+     :           V        V
     |  |Application|<-+  |  |Application|<-+  :         +----+ +----+
     |  |-----------|  |  |  |-----------|  |  :         |    | |    |
     +->| ST Agent  |--+  +->| ST Agent  |--+  :         +----+ +----+
        +-----------+        +-----------+     :      Target 3 Target 4
                                               :

                        Figure 3: The Stream Concept







Delgrossi & Berger, Editors   Experimental                     [Page 15]

RFC 1819              ST2+ Protocol Specification            August 1995


1.5.1  Streams

  Streams form the core concepts of ST2. They are established between a
  sending origin and one or more receiving targets in the form of a
  routing tree. Streams are uni-directional from the origin to the
  targets. Nodes in the tree represent so-called ST agents, entities
  executing the ST2 protocol; links in the tree are called hops. Any
  node in the middle of the tree is called an intermediate agent, or
  router. An agent may have any combination of origin, target, or
  intermediate capabilities.

  Figure 3 illustrates a stream from an origin to four targets, where
  the ST agent on Target 2 also functions as an intermediate agent. Let
  us use this Target 2/Router node to explain some basic ST2
  terminology: the direction of the stream from this node to Target 3
  and 4 is called downstream, the direction towards the Origin node
  upstream. ST agents that are one hop away from a given node are
  called previous-hops in the upstream, and next-hops in the downstream
  direction.

  Streams are maintained using SCMP messages. Typical SCMP messages are
  CONNECT and ACCEPT to build a stream, DISCONNECT and REFUSE to close
  a stream, CHANGE to modify the quality of service associated with a
  stream, and JOIN to request to be added to a stream.

  Each ST agent maintains state information describing the streams
  flowing through it. It can actively gather and distribute such
  information. It can recognize failed neighbor ST agents through the
  use of periodic HELLO message exchanges. It can ask other ST agents
  about a particular stream via a STATUS message. These ST agents then
  send back a STATUS-RESPONSE message. NOTIFY messages can be used to
  inform other ST agents of significant events.

  ST2 offers a wealth of functionalities for stream management. Streams
  can be grouped together to minimize allocated resources or to process
  them in the same way in case of failures. During audio conferences,
  for example, only a limited set of participants may talk at once.
  Using the group mechanism, resources for only a portion of the audio
  streams of the group need to be reserved. Using the same concept, an
  entire group of related audio and video streams can be dropped if one
  of them is preempted.

1.5.2  Data Transmission

  Data transfer in ST2 is simplex in the downstream direction. Data
  transport through streams is very simple. ST2 puts only a small
  header in front of the user data. The header contains a protocol
  identification that distinguishes ST2 from IP packets, an ST2 version



Delgrossi & Berger, Editors   Experimental                     [Page 16]

RFC 1819              ST2+ Protocol Specification            August 1995


  number, a priority field (specifying a relative importance of streams
  in cases of conflict), a length counter, a stream identification, and
  a checksum. These elements form a 12-byte header.

  Efficiency is also achieved by avoiding fragmentation and reassembly
  on all agents. Stream establishment yields a maximum message size for
  data packets on a stream. This maximum message size is communicated
  to the upper layers, so that they provide data packets of suitable
  size to ST2.

  Communication with multiple next-hops can be made even more efficient
  using MAC Layer multicast when it is available. If a subnet supports
  multicast, a single multicast packet is sufficient to reach all
  next-hops connected to this subnet. This leads to a significant
  reduction of the bandwidth requirements of a stream. If multicast is
  not provided, separate packets need to be sent to each next-hop.

  As ST2 relies on reservation, it does not contain error correction
  mechanisms features for data exchange such as those found in TCP. It
  is assumed that real-time data, such as digital audio and video,
  require partially correct delivery only. In many cases, retransmitted
  packets would arrive too late to meet their real-time delivery
  requirements. Also, depending on the data encoding and the particular
  application, a small number of errors in stream data are acceptable.
  In any case, reliability can be provided by layers on top of ST2 when
  needed.

1.5.3  Flow Specification

  As part of establishing a connection, SCMP handles the negotiation of
  quality-of-service parameters for a stream. In ST2 terminology, these
  parameters form a flow specification (FlowSpec) which is associated
  with the stream. Different versions of FlowSpecs exist, see
  [RFC1190], [DHHS92] and [RFC1363], and can be distinguished by a
  version number.  Typically, they contain parameters such as average
  and maximum throughput, end-to-end delay, and delay variance of a
  stream. SCMP itself only provides the mechanism for relaying the
  quality-of-service parameters.

  Three kinds of entities participate in the quality-of-service
  negotiation: application entities on the origin and target sites as
  the service users, ST agents, and local resource managers (LRM). The
  origin application supplies the initial FlowSpec requesting a
  particular service quality. Each ST agent which obtains the FlowSpec
  as part of a connection establishment message, it presents the local
  resource manager with it. ST2 does not determine how resource
  managers make reservations and how resources are scheduled according
  to these reservations; ST2, however, assumes these mechanisms as its



Delgrossi & Berger, Editors   Experimental                     [Page 17]

RFC 1819              ST2+ Protocol Specification            August 1995


  basis.

  An example of the FlowSpec negotiation procedure is illustrated in
  Figure 4. Depending on the success of its local reservations, the LRM
  updates the FlowSpec fields and returns the FlowSpec to the ST agent,
  which passes it downstream as part of the connection message.
  Eventually, the FlowSpec is communicated to the application at the
  target which may base its accept/reject decision for establishing the
  connection on it and may finally also modify the FlowSpec. If a
  target accepts the connection, the (possibly modified) FlowSpec is
  propagated back to the origin which can then calculate an overall
  service quality for all targets. The application entity at the origin
  may later request a CHANGE to adjust reservations.

                Origin                 Router               Target 1
               +------+      1a       +------+      1b      +------+
               |      |-------------->|      |------------->|      |
               +------+               +------+              +------+
                ^  | ^                                          |
                |  | |                    2                     |
                |  | +------------------------------------------+
                +  +
+-------------+  \  \             +-------------+       +-------------+
|Max Delay: 12|   \  \            |Max Delay: 12|       |Max Delay: 12|
|-------------|    \  \           |-------------|       |-------------|
|Min Delay:  2|     \  \          |Min Delay:  5|       |Min Delay:  9|
|-------------|      \  \         |-------------|       |-------------|
|Max Size:4096|       +  +        |Max Size:2048|       |Max Size:2048|
+-------------+       |  |        +-------------+       +-------------+
   FlowSpec           |  | 1
                      |  +---------------+
                      |                  |
                      |                  V
                    2 |               +------+
                      +---------------|      |
                                      +------+
                                      Target 2
                                  +-------------+
                                  |Max Delay: 12|
                                  |-------------|
                                  |Min Delay:  4|
                                  |-------------|
                                  |Max Size:4096|
                                  +-------------+

       Figure 4:  Quality-of-Service Negotiation with FlowSpecs





Delgrossi & Berger, Editors   Experimental                     [Page 18]

RFC 1819              ST2+ Protocol Specification            August 1995


1.6  Outline of This Document

  This document contains the specification of the ST2+ version of the
  ST2 protocol. In the rest of the document, whenever the terms "ST" or
  "ST2" are used, they refer to the ST2+ version of ST2.

  The document is organized as follows:

o   Section 2 describes the ST2 user service from an application point
   of view.

o   Section 3 illustrates the ST2 data transfer protocol, ST.

o   Section 4 through Section 8 specify the ST2 setup protocol, SCMP.

o   the ST2 flow specification is presented in Section 9.

o   the formats of protocol elements and PDUs are defined in Section 10.

2.  ST2 User Service Description

  This section describes the ST user service from the high-level point
  of view of an application. It defines the ST stream operations and
  primitive functions. It specifies which operations on streams can be
  invoked by the applications built on top of ST and when the ST
  primitive functions can be legally executed. Note that the presented
  ST primitives do not specify an API. They are used here with the only
  purpose of illustrating the service model for ST.

2.1  Stream Operations and Primitive Functions

  An ST application at the origin may create, expand, reduce, change,
  send data to, and delete a stream. When a stream is expanded, new
  targets are added to the stream; when a stream is reduced, some of
  the current targets are dropped from it. When a stream is changed,
  the associated quality of service is modified.

  An ST application at the target may join, receive data from, and
  leave a stream. This translates into the following stream operations:

o   OPEN: create new stream [origin], CLOSE: delete stream [origin],

o   ADD: expand stream, i.e., add new targets to it [origin],

o   DROP: reduce stream, i.e., drop targets from it [origin],

o   JOIN: join a stream [target], LEAVE: leave a stream [target],




Delgrossi & Berger, Editors   Experimental                     [Page 19]

RFC 1819              ST2+ Protocol Specification            August 1995


o   DATA: send data through stream [origin],

o   CHG: change a stream's QoS [origin],

  Each stream operation may require the execution of several primitive
  functions to be completed. For instance, to open a new stream, a
  request is first issued by the sender and an indication is generated
  at one or more receivers; then, the receivers may each accept or
  refuse the request and the correspondent indications are generated at
  the sender. A single receiver case is shown in Figure 5 below.

               Sender             Network             Receiver
                 |                   |                   |
    OPEN.req     |                   |                   |
                 |-----------------> |                   |
                 |                   |-----------------> |
                 |                   |                   | OPEN.ind
                 |                   |                   | OPEN.accept
                 |                   |<----------------- |
                 |<----------------- |                   |
 OPEN.accept-ind |                   |                   |
                 |                   |                   |

          Figure 5: Primitives for the OPEN Stream Operation



























Delgrossi & Berger, Editors   Experimental                     [Page 20]

RFC 1819              ST2+ Protocol Specification            August 1995


  Table 1 defines the ST service primitive functions associated to each
  stream operation. The column labelled "O/T" indicates whether the
  primitive is executed at the origin or at the target.

          +===================================================+
          |Primitive      | Descriptive                   |O/T|
          |===================================================|
          |OPEN.req       | open a stream                 | O |
          |OPEN.ind       | connection request indication | T |
          |OPEN.accept    | accept stream                 | T |
          |OPEN.refuse    | refuse stream                 | T |
          |OPEN.accept-ind| connection accept indication  | O |
          |OPEN.refuse-ind| connection refuse indication  | O |
          |ADD.req        | add targets to stream         | O |
          |ADD.ind        | add request indication        | T |
          |ADD.accept     | accept stream                 | T |
          |ADD.refuse     | refuse stream                 | T |
          |ADD.accept-ind | add accept indication         | O |
          |ADD.refuse-ind | add refuse indication         | O |
          |JOIN.req       | join a stream                 | T |
          |JOIN.ind       | join request indication       | O |
          |JOIN.reject    | reject a join                 | O |
          |JOIN.reject-ind| join reject indication        | T |
          |DATA.req       | send data                     | O |
          |DATA.ind       | receive data indication       | T |
          |CHG.req        | change stream QoS             | O |
          |CHG.ind        | change request indication     | T |
          |CHG.accept     | accept change                 | T |
          |CHG.refuse     | refuse change                 | T |
          |CHG.accept-ind | change accept indication      | O |
          |CHG.refuse-ind | change refuse indication      | O |
          |DROP.req       | drop targets                  | O |
          |DROP.ind       | disconnect indication         | T |
          |LEAVE.req      | leave stream                  | T |
          |LEAVE.ind      | leave stream indication       | O |
          |CLOSE.req      | close stream                  | O |
          |CLOSE.ind      | close stream indication       | T |
          +---------------------------------------------------+

                             Table 1: ST Primitives

2.2  State Diagrams

  It is not sufficient to define the set of ST stream operations. It is
  also necessary to specify when the operations can be legally
  executed.  For this reason, a set of states is now introduced and the
  transitions from one state to the others are specified. States are
  defined with respect to a single stream. The previously defined



Delgrossi & Berger, Editors   Experimental                     [Page 21]

RFC 1819              ST2+ Protocol Specification            August 1995


  stream operations can be legally executed only from an appropriate
  state.

  An ST agent may, with respect to an ST stream, be in one of the
  following states:

o   IDLE: the stream has not been created yet.

o   PENDING: the stream is in the process of being established.

o   ACTIVE: the stream is established and active.

o   ADDING: the stream is established. A stream expansion is underway.

o   CHGING: the stream is established. A stream change is underway.

  Previous experience with ST has lead to limits on stream operations
  that can be executed simultaneously. These restrictions are:


  1.  A single ADD or CHG operation can be processed at one time. If
      an ADD or CHG is already underway, further requests are queued
      by the ST agent and handled only after the previous operation
      has been completed. This also applies to two subsequent
      requests of the same kind, e.g., two ADD or two CHG operations.
      The second operation is not executed until the first one has
      been completed.

  2.  Deleting a stream, leaving a stream, or dropping targets from a
      stream is possible only after stream establishment has been
      completed. A stream is considered to be established when all
      the next-hops of the origin have either accepted or refused the
      stream.  Note that stream refuse is automatically forced after
      timeout if no reply comes from a next-hop.

  3.  An ST agent forwards data only along already established paths
      to the targets, see also Section 3.1. A path is considered to
      be established when the next-hop on the path has explicitly
      accepted the stream. This implies that the target and all other
      intermediate ST agents are ready to handle the incoming data
      packets. In no cases an ST agent will forward data to a
      next-hop ST agent that has not explicitly accepted the stream.
      To be sure that all targets receive the data, an application
      should send the data only after all paths have been
      established, i.e., the stream is established.






Delgrossi & Berger, Editors   Experimental                     [Page 22]

RFC 1819              ST2+ Protocol Specification            August 1995


  4.  It is allowed to send data from the CHGING and ADDING states.
      While sending data from the CHGING state, the quality of
      service to the targets affected by the change should be assumed
      to be the more restrictive quality of service. When sending
      data from the ADDING state, the targets that receive the data
      include at least all the targets that were already part of the
      stream at the time the ADD operation was invoked.

  The rules introduced above require ST agents to queue incoming
  requests when the current state does not allow to process them
  immediately. In order to preserve the semantics, ST agents have to
  maintain the order of the requests, i.e., implement FIFO queuing.
  Exceptionally, the CLOSE request at the origin and the LEAVE request
  at the target may be immediately processed: in these cases, the queue
  is deleted and it is possible that requests in the queue are not
  processed.

  The following state diagrams define the ST service. Separate diagrams
  are presented for the origin and the targets.

  The symbol (a/r)* indicates that all targets in the target list have
  explicitly accepted or refused the stream, or refuse has been forced
  after timeout. If the target list is empty, i.e., it contains no
  targets, the (a/r)* condition is immediately satisfied, so the empty
  stream is created and state ESTBL is entered.

  The separate OPEN and ADD primitives at the target are for conceptual
  purposes only. The target is actually unable to distinguish between
  an OPEN and an ADD. This is reflected in Figure 7 and Table 3 through
  the notation OPEN/ADD.





















Delgrossi & Berger, Editors   Experimental                     [Page 23]

RFC 1819              ST2+ Protocol Specification            August 1995


                       +------------+
                       |            |<-------------------+
           +---------->|    IDLE    |-------------+      |
           |           |            |    OPEN.req |      |
           |           +------------+             |      |
CLOSE.req  |      CLOSE.req ^   ^ CLOSE.req       V      | CLOSE.req
           |                |   |            +---------+ |
           |                |   |            | PENDING |-|-+ JOIN.reject
           |                |   -------------|         |<|-+
           |    JOIN.reject |                +---------+ |
           |    DROP.req +----------+             |      |
           |       +-----|          |             |      |
           |       |     |  ESTDL   | OPEN.(a/r)* |      |
           |       +---->|          |<------------+      |
           |             +----------+                    |
           |              |  ^  |  ^                     |
           |              |  |  |  |                     |
      +----------+ CHG.req|  |  |  | Add.(a/r)*    +----------+
      |          |<-------+  |  |  +-------------- |          |
      |  CHGING  |           |  |                  |  ADDING  |
      |          |-----------+  +----------------->|          |
      +----------+ CHG.(a/r)*         JOIN.ind     +----------+
          |   ^                         ADD.req        |   ^
          |   |                                        |   |
          +---+                                        +---+
          DROP.req                                    DROP.req
          JOIN.reject                                 JOIN.reject

                 Figure 6: ST Service at the Origin

                +--------+
                |        |-----------------------+
                |  IDLE  |                       |
                |        |<---+                  | OPEN/ADD.ind
                +--------+    | CLOSE.ind        | JOIN.req
                    ^         | OPEN/ADD.refuse  |
                    |         | JOIN.refect-ind  |
        CLOSE.ind   |         |                  V
        DROP.ind    |         |             +---------+
        LEAVE.req   |         +-------------|         |
                    |                       | PENDING |
                +-------+                   |         |
                |       |                   +---------+
                | ESTBL |    OPEN/ADD.accept     |
                |       |<-----------------------+
                +-------+

                    Figure 7: ST Service at the Target



Delgrossi & Berger, Editors   Experimental                     [Page 24]

RFC 1819              ST2+ Protocol Specification            August 1995


2.3  State Transition Tables

  Table 2 and Table 3 define which primitives can be processed from
  which states and the possible state transitions.

+======================================================================+
|Primitive      |IDLE|    PENDING    |  ESTBL |    CHGING  |    ADDING |
|======================================================================|
|OPEN.req       | ok | -             | -      | -          | -         |
|OPEN.accept-ind| -  |if(a,r)*->ESTBL| -      | -          | -         |
|OPEN.refuse-ind| -  |if(a,r)*->ESTBL| -      | -          | -         |
|ADD.req        | -  | queued        |->ADDING| queued     | queued    |
|ADD.accept-ind | -  | -             | -      | -          |if(a,r)*   |
|               | -  | -             | -      | -          |->ESTBL    |
|ADD.refuse-ind | -  | -             | -      | -          |if(a,r)*   |
|               | -  | -             | -      | -          |->ESTBL    |
|JOIN.ind       | -  | queued        |->ADDING| queued     |queued     |
|JOIN.reject    | -  | OK            | ok     | ok         | ok        |
|DATA.req       | -  | -             | ok     | ok         | ok        |
|CHG.req        | -  | queued        |->CHGING| queued     |queued     |
|CHG.accept-ind | -  | -             | -      |if(a,r)*    | -         |
|               | -  | -             | -      |->ESTBL     | -         |
|CHG.refuse.ind | -  | -             | -      |if(a,r)*    | -         |
|               | -  | -             | -      |->ESTBL     | -         |
|DROP.req       | -  | -             | ok     | ok         | ok        |
|LEAVE.ind      | -  | OK            | ok     | ok         | ok        |
|CLOSE.req      | -  | OK            | ok     | ok         | ok        |
+----------------------------------------------------------------------+
               Table 2: Primitives and States at the Origin

            +======================================================+
            | Primitive       |   IDLE    |  PENDING   |   ESTBL   |
            |======================================================|
            | OPEN/ADD.ind    | ->PENDING | -          | -         |
            | OPEN/ADD.accept | -         | ->ESTBL    | -         |
            | OPEN/ADD.refuse | -         | ->IDLE     | -         |
            | JOIN.req        | ->PENDING | -          | -         |
            | JOIN.reject-ind |-          | ->IDLE     | -         |
            | DATA.ind        | -         | -          | ok        |
            | CHG.ind         | -         | -          | ok        |
            | CHG.accept      | -         | -          | ok        |
            | DROP.ind        | -         | ok         | ok        |
            | LEAVE.req       | -         | ok         | ok        |
            | CLOSE.ind       | -         | ok         | ok        |
            | CHG.ind         | -         | -          | ok        |
            +------------------------------------------------------+
               Table 3: Primitives and States at the Target




Delgrossi & Berger, Editors   Experimental                     [Page 25]

RFC 1819              ST2+ Protocol Specification            August 1995


3.  The ST2 Data Transfer Protocol

  This section presents the ST2 data transfer protocol, ST. First, data
  transfer is described in Section 3.1, then, the data transfer
  protocol functions are illustrated in Section 3.2.

3.1  Data Transfer with ST

  Data transmission with ST is unreliable. An application is not
  guaranteed that the data reaches its destinations and ST makes no
  attempts to recover from packet loss, e.g., due to the underlying
  network. However, if the data reaches its destination, it should do
  so according to the quality of service associated with the stream.

  Additionally, ST may deliver data corrupted in transmission. Many
  types of real-time data, such as digital audio and video, require
  partially correct delivery only. In many cases, retransmitted packets
  would arrive too late to meet their real-time delivery requirements.
  On the other hand, depending on the data encoding and the particular
  application, a small number of errors in stream data are acceptable.
  In any case, reliability can be provided by layers on top of ST2 if
  needed.

  Also, no data fragmentation is supported during the data transfer
  phase. The application is expected to segment its data PDUs according
  to the minimum MTU over all paths in the stream. The application
  receives information on the MTUs relative to the paths to the targets
  as part of the ACCEPT message, see Section 8.6. The minimum MTU over
  all paths can be calculated from the MTUs relative to the single
  paths. ST agents silently discard too long data packets, see also
  Section 5.1.1.

  An ST agent forwards the data only along already established paths to
  targets. A path is considered to be established once the next-hop ST
  agent on the path sends an ACCEPT message, see Section 2.2. This
  implies that the target and all other intermediate ST agents on the
  path to the target are ready to handle the incoming data packets. In
  no cases will an ST agent forward data to a next-hop ST agent that
  has not explicitly accepted the stream.

  To be reasonably sure that all targets receive the data with the
  desired quality of service, an application should send the data only
  after the whole stream has been established. Depending on the local
  API, an application may not be prevented from sending data before the
  completion of stream setup, but it should be aware that the data
  could be lost or not reach all intended targets. This behavior may
  actually be desirable to applications, such as those application that
  have multiple targets which can each process data as soon as it is



Delgrossi & Berger, Editors   Experimental                     [Page 26]

RFC 1819              ST2+ Protocol Specification            August 1995


  available (e.g., a lecture or distributed gaming).

  It is desirable for implementations to take advantage of networks
  that support multicast. If a network does not support multicast, or
  for the case where the next-hops are on different networks, multiple
  copies of the data packet must be sent.

3.2  ST Protocol Functions

  The ST protocol provides two functions:

  o   stream identification

  o   data priority

3.2.1  Stream Identification

  ST data packets are encapsulated by an ST header containing the
  Stream IDentifier (SID). This SID is selected at the origin so that
  it is globally unique over the Internet. The SID must be known by the
  setup protocol as well. At stream establishment time, the setup
  protocol builds, at each agent traversed by the stream, an entry into
  its local database containing stream information. The SID can be used
  as a reference into this database, to obtain quickly the necessary
  replication and forwarding information.

  Stream IDentifiers are intended to be used to make the packet
  forwarding task most efficient. The time-critical operation is an
  intermediate ST agent receiving a packet from the previous-hop ST
  agent and forwarding it to the next-hop ST agents.

  The format of data PDUs including the SID is defined in Section 10.1.
  Stream IDentifier generation is discussed in Section 8.1.

3.2.2  Packet Discarding based on Data Priority

  ST provides a well defined quality of service to its applications.
  However, there may be cases where the network is temporarily
  congested and the ST agents have to discard certain packets to
  minimize the overall impact to other streams. The ST protocol
  provides a mechanism to discard data packets based on the Priority
  field in the data PDU, see Section 10.1. The application assigns each
  data packet with a discard-priority level, carried into the Priority
  field. ST agents will attempt to discard lower priority packets first
  during periods of network congestion. Applications may choose to send
  data at multiple priority levels so that less important data may be
  discarded first.




Delgrossi & Berger, Editors   Experimental                     [Page 27]

RFC 1819              ST2+ Protocol Specification            August 1995


4.  SCMP Functional Description

  ST agents create and manage streams using the ST Control Message
  Protocol (SCMP). Conceptually, SCMP resides immediately above ST (as
  does ICMP above IP). SCMP follows a request-response model. SCMP
  messages are made reliable through the use of retransmission after
  timeout.

  This section contains a functional description of stream management
  with SCMP. To help clarify the SCMP exchanges used to setup and
  maintain ST streams, we include an example of a simple network
  topology, represented in Figure 8. Using the SCMP messages described
  in this section it will be possible for an ST application to:

  o   Create a stream from A to the peers at B, C and D,

  o   Add a peer at E,

  o   Drop peers B and C, and

  o   Let F join the stream

  o   Delete the stream.




























Delgrossi & Berger, Editors   Experimental                     [Page 28]

RFC 1819              ST2+ Protocol Specification            August 1995


                                              +---------+    +---+
                                              |         |----| B |
              +---------+      +----------+   |         |    +---+
              |         |------| Router 1 |---| Subnet2 |
              |         |      +----------+   |         |
              |         |                     |         |
              |         |                     +---------+
              |         |                         |
              | Subnet1 |                         |
              |         |                     +----------+
              |         |                     | Router 3 |
      +---+   |         |                     +----------+
      | A |---|         |    +----------+           |
      +---+   |         |----| Router 2 |           |
              |         |    +----------+           |
              +---------+         |                 |
                                  |                 |
                                  |          +----------+    +---+
                                  +----------|          |----| C |
                                             |          |    +---+
                        +---------+          |  Subnet3 |
                +---+   |         |   +---+  |          |    +---+
                | F |---| Subnet4 |---| E |--|          |----| D |
                +---+   |         |   +---+  +----------+    +---+
                        +---------+

               Figure 8:  Sample Topology for an ST Stream

  We first describe the possible types of stream in Section 4.1;
  Section 4.2 introduces SCMP control message types; SCMP reliability
  is discussed in Section 4.3; stream options are covered in Section
  4.4; stream setup is presented in Section 4.5; Section 4.6
  illustrates stream modification including stream expansion,
  reduction, changes of the quality of service associated to a stream.
  Finally, stream deletion is handled in Section 4.7.

4.1  Types of Streams

  SCMP allows for the setup and management of different types of
  streams. Streams differ in the way they are built and the information
  maintained on connected targets.










Delgrossi & Berger, Editors   Experimental                     [Page 29]

RFC 1819              ST2+ Protocol Specification            August 1995


4.1.1  Stream Building

  Streams may be built in a sender-oriented fashion, receiver-oriented
  fashion, or with a mixed approach:

o   in the sender-oriented fashion, the application at the origin
   provides the ST agent with the list of receivers for the stream. New
   targets, if any, are also added from the origin.

o   in the receiver-oriented approach, the application at the origin
   creates an empty stream that contains no targets. Each target then
   joins the stream autonomously.

o   in the mixed approach, the application at the origin creates a
   stream that contains some targets and other targets join the stream
   autonomously.

  ST2 provides stream options to support sender-oriented and mixed
  approach steams. Receiver-oriented streams can be emulated through
  the use of mixed streams. The fashion by which targets may be added
  to a particular stream is controlled via join authorization levels.
  Join authorization levels are described in Section 4.4.2.

4.1.2  Knowledge of Receivers

  When streams are built in the sender-oriented fashion, all ST agents
  will have full information on all targets down stream of a particular
  agent. In this case, target information is relayed down stream from
  agent-to-agent during stream set-up.

  When targets add themselves to mixed approach streams, upstream ST
  agents may or may not be informed. Propagation of information on
  targets that "join" a stream is also controlled via join
  authorization levels. As previously mentioned, join authorization
  levels are described in Section 4.4.2.

  This leads to two types of streams:

o   full target information is propagated in a full-state stream. For
   such streams, all agents are aware of all downstream targets
   connected to the stream. This results in target information being
   maintained at the origin and at intermediate agents. Operations on
   single targets are always possible, i.e., change a certain target,
   or, drop that target from the stream. It is also always possible for
   any ST agent to attempt recovery of all downstream targets.






Delgrossi & Berger, Editors   Experimental                     [Page 30]

RFC 1819              ST2+ Protocol Specification            August 1995


o   in light-weight streams, it is possible that the origin and other
   upstream agents have no knowledge about some targets. This results
   in less maintained state and easier stream management, but it limits
   operations on specific targets. Special actions may be required to
   support change and drop operations on unknown targets, see Section
   5.7. Also, stream recovery may not be possible. Of course, generic
   functions such as deleting the whole stream, are still possible. It
   is expected that applications that will have a large number of
   targets will use light-weight streams in order to limit state in
   agents and the number of targets per control message.

  Full-state streams serve well applications as video conferencing or
  distributed gaming, where it is important to have knowledge on the
  connected receivers, e.g., to limit who participates. Light-weight
  streams may be exploited by applications such as remote lecturing or
  playback applications of radio and TV broadcast where the receivers
  do not need to be known by the sender. Section 4.4.2 defines join
  authorization levels, which support two types of full-state streams
  and one type of light-weight stream.

4.2  Control PDUs

  SCMP defines the following PDUs (the main purpose of each PDU is also
  indicated):

1.      ACCEPT          to accept a new stream
2.      ACK             to acknowledge an incoming message
3.      CHANGE          to change the quality of service associated with
                               a stream
4.      CONNECT         to establish a new stream or add new targets to
                               an existing stream
5.      DISCONNECT      to remove some or all of the stream's targets
6.      ERROR           to indicate an error contained in an incoming
                               message
7.      HELLO           to detect failures of neighbor ST agents
8.      JOIN            to request stream joining from a target
9.      JOIN-REJECT     to reject a stream joining request from a target
10.     NOTIFY          to inform an ST agent of a significant event
11.     REFUSE          to refuse the establishment of a new stream
12.     STATUS          to query an ST agent on a specific stream
13.     STATUS-RESPONSE to reply queries on a specific stream

  SCMP follows a request-response model with all requests expecting
  responses. Retransmission after timeout is used to allow for lost or
  ignored messages. Control messages do not extend across packet
  boundaries; if a control message is too large for the MTU of a hop,
  its information is partitioned and a control message per partition is
  sent, as described in Section 5.1.2.



Delgrossi & Berger, Editors   Experimental                     [Page 31]

RFC 1819              ST2+ Protocol Specification            August 1995


  CONNECT and CHANGE request messages are answered with ACCEPT messages
  which indicate success, and with REFUSE messages which indicate
  failure. JOIN messages are answered with either a CONNECT message
  indicating success, or with a JOIN-REJECT message indicating failure.
  Targets may be removed from a stream by either the origin or the
  target via the DISCONNECT and REFUSE messages.

  The ACCEPT, CHANGE, CONNECT, DISCONNECT, JOIN, JOIN-REJECT, NOTIFY
  and REFUSE messages must always be explicitly acknowledged:

o   with an ACK message, if the message was received correctly and it
   was possible to parse and correctly extract and interpret its
   header, fields and parameters,

o   with an ERROR message, if a syntax error was detected in the header,
   fields, or parameters included in the message. The errored PDU may
   be optionally returned as part of the ERROR message. An ERROR
   message indicates a syntax error only. If any other errors are
   detected, it is necessary to first acknowledge with ACK and then
   take appropriate actions. For instance, suppose a CHANGE message
   contains an unknown SID: first, an ACK message has to be sent, then
   a REFUSE message with ReasonCode (SIDUnknown) follows.

  If no ACK or ERROR message are received before the correspondent
  timer expires, a timeout failure occurs. The way an ST agent should
  handle timeout failures is described in Section 5.2.

  ACK, ERROR, and STATUS-RESPONSE messages are never acknowledged.

  HELLO messages are a special case. If they contain a syntax error, an
  ERROR message should be generated in response. Otherwise, no
  acknowledgment or response should be generated. Use of HELLO messages
  is discussed in Section 6.1.2.

  STATUS messages containing a syntax error should be answered with an
  ERROR message. Otherwise, a STATUS-RESPONSE message should be sent
  back in response. Use of STATUS and STATUS-RESPONSE are discussed in
  Section 8.4.

4.3  SCMP Reliability

  SCMP is made reliable through the use of retransmission when a
  response is not received in a timely manner. The ACCEPT, CHANGE,
  CONNECT, DISCONNECT, JOIN, JOIN-REJECT, NOTIFY, and REFUSE messages
  all must be answered with an ACK message, see Section 4.2. In
  general, when sending a SCMP message which requires an ACK response,
  the sending ST agent needs to set the Toxxxx timer (where xxxx is the
  SCMP message type, e.g., ToConnect). If it does not receive an ACK



Delgrossi & Berger, Editors   Experimental                     [Page 32]

RFC 1819              ST2+ Protocol Specification            August 1995


  before the Toxxxx timer expires, the ST agent should retransmit the
  SCMP message. If no ACK has been received within Nxxxx
  retransmissions, then a SCMP timeout condition occurs and the ST
  agent enters its SCMP timeout recovery state. The actions performed
  by the ST agent as the result of the SCMP timeout condition differ
  for different SCMP messages and are described in Section 5.2.

  For some SCMP messages (CONNECT, CHANGE, JOIN, and STATUS) the
  sending ST agent also expects a response back (ACCEPT/REFUSE,
  CONNECT/JOIN- REJECT) after ACK has been received. For these cases,
  the ST agent needs to set the ToxxxxResp timer after it receives the
  ACK. (As before, xxxx is the initiating SCMP message type, e.g.,
  ToConnectResp).  If it does not receive the appropriate response back
  when ToxxxxResp expires, the ST agent updates its state and performs
  appropriate recovery action as described in Section 5.2. Suggested
  constants are given in Section 10.5.4.

  The timeout and retransmission algorithm is implementation dependent
  and it is outside the scope of this document. Most existing
  algorithms are based on an estimation of the Round Trip Time (RTT)
  between two agents. Therefore, SCMP contains a mechanism, see Section
  8.5, to estimate this RTT. Note that the timeout related variable
  names described above are for reference purposes only, implementors
  may choose to combine certain variables.

4.4  Stream Options

  An application may select among some stream options. The desired
  options are indicated to the ST agent at the origin when a new stream
  is created. Options apply to single streams and are valid during the
  whole stream's lifetime. The options chosen by the application at the
  origin are included into the initial CONNECT message, see Section
  4.5.3. When a CONNECT message reaches a target, the application at
  the target is notified of the stream options that have been selected,
  see Section 4.5.5.

4.4.1  No Recovery

  When a stream failure is detected, an ST agent would normally attempt
  stream recovery, as described in Section 6.2. The NoRecovery option
  is used to indicate that ST agents should not attempt recovery for
  the stream. The protocol behavior in the case that the NoRecovery
  option has been selected is illustrated in Section 6.2. The
  NoRecovery option is specified by setting the S-bit in the CONNECT
  message, see Section 10.4.4. The S-bit can be set only by the origin
  and it is never modified by intermediate and target ST agents.





Delgrossi & Berger, Editors   Experimental                     [Page 33]

RFC 1819              ST2+ Protocol Specification            August 1995


4.4.2  Join Authorization Level

  When a new stream is created, it is necessary to define the join
  authorization level associated with the stream. This level determines
  the protocol behavior in case of stream joining, see Section 4.1 and
  Section 4.6.3. The join authorization level for a stream is defined
  by the J-bit and N-bit in the CONNECT message header, see Section
  10.4.4.  One of the following authorization levels has to be
  selected:

  o   Level 0 - Refuse Join (JN = 00): No targets are allowed to join this
      stream.

  o   Level 1 - OK, Notify Origin (JN = 01): Targets are allowed to join
      the stream. The origin is notified that the target has joined.

  o   Level 2 - OK (JN = 10): Targets are allowed to join the stream. No
      notification is sent to the stream origin.

  Some applications may choose to maintain tight control on their
  streams and will not permit any connections without the origin's
  permission. For such streams, target applications may request to be
  added by sending an out-of-band, i.e., via regular IP, request to the
  origin. The origin, if it so chooses, can then add the target
  following the process described in Section 4.6.1.

  The selected authorization level impacts stream handling and the
  state that is maintained for the stream, as described in Section 4.1.

4.4.3  Record Route

  The RecordRoute option can be used to request the route between the
  origin and a target be recorded and delivered to the application.
  This option may be used while connecting, accepting, changing, or
  refusing a stream. The results of a RecordRoute option requested by
  the origin, i.e., as part of the CONNECT or CHANGE messages, are
  delivered to the target. The results of a RecordRoute option
  requested by the target, i.e., as part of the ACCEPT or REFUSE
  messages, are delivered to the origin.

  The RecordRoute option is specified by adding the RecordRoute
  parameter to the mentioned SCMP messages. The format of the
  RecordRoute parameter is shown in Section 10.3.5. When adding this
  parameter, the ST agent at the origin must determine the number of
  entries that may be recorded as explained in Section 10.3.5.






Delgrossi & Berger, Editors   Experimental                     [Page 34]

RFC 1819              ST2+ Protocol Specification            August 1995


4.4.4  User Data

  The UserData option can be used by applications to transport
  application specific data along with some SCMP control messages. This
  option can be included with ACCEPT, CHANGE, CONNECT, DISCONNECT, and
  REFUSE messages. The format of the UserData parameter is shown in
  Section 10.3.7. This option may be included by the origin, or the
  target, by adding the UserData parameter to the mentioned SCMP
  messages. This option may only be included once per SCMP message.

4.5  Stream Setup

  This section presents a description of stream setup. For simplicity,
  we assume that everything succeeds, e.g., any required resources are
  available, messages are properly delivered, and the routing is
  correct. Possible failures in the setup phase are handled in Section
  5.2.

4.5.1  Information from the Application

  Before stream setup can be started, the application has to collect
  the necessary information to determine the characteristics for the
  connection. This includes identifying the participants and selecting
  the QoS parameters of the data flow. Information passed to the ST
  agent by the application includes:

o   the list of the stream's targets (Section 10.3.6). The list may be
   empty (Section 4.5.3.1),

o   the flow specification containing the desired quality of service for
   the stream (Section 9),

o   information on the groups in which the stream is a member, if any
   (Section 7),

o   information on the options selected for the stream (Section 4.4).

4.5.2  Initial Setup at the Origin

  The ST agent at the origin then performs the following operations:

o   allocates a stream ID (SID) for the stream (Section 8.1),

o   invokes the routing function to determine the set of next-hops for
   the stream (Section 4.5.2.1),

o   invokes the Local Resource Manager (LRM) to reserve resources
   (Section 4.5.2.2),



Delgrossi & Berger, Editors   Experimental                     [Page 35]

RFC 1819              ST2+ Protocol Specification            August 1995


o   creates local database entries to store information on the new
   stream,

o   propagates the stream creation request to the next-hops determined
   by the routing function (Section 4.5.3).

4.5.2.1  Invoking the Routing Function

  An ST agent that is setting up a stream invokes the routing function
  to find the next-hop to reach each of the targets specified by the
  target list provided by the application. This is similar to the
  routing decision in IP. However, in this case the route is to a
  multitude of targets with QoS requirements rather than to a single
  destination.

  The result of the routing function is a set of next-hop ST agents.
  The set of next-hops selected by the routing function is not
  necessarily the same as the set of next-hops that IP would select
  given a number of independent IP datagrams to the same destinations.
  The routing algorithm may attempt to optimize parameters other than
  the number of hops that the packets will take, such as delay, local
  network bandwidth consumption, or total internet bandwidth
  consumption.  Alternatively, the routing algorithm may use a simple
  route lookup for each target.

  Once a next-hop is selected by the routing function, it persists for
  the whole stream lifetime, unless a network failure occurs.

4.5.2.2  Reserving Resources

  The ST agent invokes the Local Resource Manager (LRM) to perform the
  appropriate reservations. The ST agent presents the LRM with
  information including:

o   the flow specification with the desired quality of service for the
   stream (Section 9),

o   the version number associated with the flow specification
   (Section 9).

o   information on the groups the stream is member in, if any
   (Section 7),

  The flow specification contains information needed by the LRM to
  allocate resources. The LRM updates the flow specification contents
  information before returning it to the ST agent. Section 9.2.3
  defines the fields of the flow specification to be updated by the
  LRM.



Delgrossi & Berger, Editors   Experimental                     [Page 36]

RFC 1819              ST2+ Protocol Specification            August 1995


  The membership of a stream in a group may affect the amount of
  resources that have to be allocated by the LRM, see Section 7.

4.5.3  Sending CONNECT Messages

  The ST agent sends a CONNECT message to each of the next-hop ST
  agents identified by the routing function. Each CONNECT message
  contains the SID, the selected stream options, the FlowSpec, and a
  TargetList. The format of the CONNECT message is defined by Section
  10.4.4. In general, the FlowSpec and TargetList depend on both the
  next-hop and the intervening network. Each TargetList is a subset of
  the original TargetList, identifying the targets that are to be
  reached through the next-hop to which the CONNECT message is being
  sent.

  The TargetList may be empty, see Section 4.5.3.1; if the TargetList
  causes a too long CONNECT message to be generated, the CONNECT
  message is partitioned as explained in Section 5.1.2. If multiple
  next-hops are to be reached through a network that supports network
  level multicast, a different CONNECT message must nevertheless be
  sent to each next-hop since each will have a different TargetList.

4.5.3.1  Empty Target List

  An application at the origin may request the local ST agent to create
  an empty stream. It does so by passing an empty TargetList to the
  local ST agent during the initial stream setup. When the local ST
  agent receives a request to create an empty stream, it allocates the
  stream ID (SID), updates its local database entries to store
  information on the new stream and notifies the application that
  stream setup is complete. The local ST agent does not generate any
  CONNECT message for streams with an empty TargetList. Targets may be
  later added by the origin, see Section 4.6.1, or they may
  autonomously join the stream, see Section 4.6.3.

4.5.4  CONNECT Processing by an Intermediate ST agent

  An ST agent receiving a CONNECT message, assuming no errors, responds
  to the previous-hop with an ACK. The ACK message must identify the
  CONNECT message to which it corresponds by including the reference
  number indicated by the Reference field of the CONNECT message. The
  intermediate ST agent calls the routing function, invokes the LRM to
  reserve resources, and then propagates the CONNECT messages to its
  next-hops, as described in the previous sections.







Delgrossi & Berger, Editors   Experimental                     [Page 37]

RFC 1819              ST2+ Protocol Specification            August 1995


4.5.5  CONNECT Processing at the Targets

  An ST agent that is the target of a CONNECT message, assuming no
  errors, responds to the previous-hop with an ACK. The ST agent
  invokes the LRM to reserve local resources and then queries the
  specified application process whether or not it is willing to accept
  the connection.

  The application is presented with parameters from the CONNECT message
  including the SID, the selected stream options, Origin, FlowSpec,
  TargetList, and Group, if any, to be used as a basis for its
  decision.  The application is identified by a combination of the
  NextPcol field, from the Origin parameter, and the service access
  point, or SAP, field included in the correspondent (usually single
  remaining) Target of the TargetList. The contents of the SAP field
  may specify the port or other local identifier for use by the
  protocol layer above the host ST layer. Subsequently received data
  packets will carry the SID, that can be mapped into this information
  and be used for their delivery.

  Finally, based on the application's decision, the ST agent sends to
  the previous-hop from which the CONNECT message was received either
  an ACCEPT or REFUSE message. Since the ACCEPT (or REFUSE) message has
  to be acknowledged by the previous-hop, it is assigned a new
  Reference number that will be returned in the ACK. The CONNECT
  message to which ACCEPT (or REFUSE) is a reply is identified by
  placing the CONNECT's Reference number in the LnkReference field of
  ACCEPT (or REFUSE). The ACCEPT message contains the FlowSpec as
  accepted by the application at the target.

4.5.6  ACCEPT Processing by an Intermediate ST agent

  When an intermediate ST agent receives an ACCEPT, it first verifies
  that the message is a response to an earlier CONNECT. If not, it
  responds to the next-hop ST agent with an ERROR message, with
  ReasonCode (LnkRefUnknown). Otherwise, it responds to the next-hop ST
  agent with an ACK, and propagates the individual ACCEPT message to
  the previous-hop along the same path traced by the CONNECT but in the
  reverse direction toward the origin.

  The FlowSpec is included in the ACCEPT message so that the origin and
  intermediate ST agents can gain access to the information that was
  accumulated as the CONNECT traversed the internet. Note that the
  resources, as specified in the FlowSpec in the ACCEPT message, may
  differ from the resources that were reserved when the CONNECT was
  originally processed. Therefore, the ST agent presents the LRM with
  the FlowSpec included in the ACCEPT message. It is expected that each
  LRM adjusts local reservations releasing any excess resources. The



Delgrossi & Berger, Editors   Experimental                     [Page 38]

RFC 1819              ST2+ Protocol Specification            August 1995


  LRM may choose not to adjust local reservations when that adjustment
  may result in the loss of needed resources. It may also choose to
  wait to adjust allocated resources until all targets in transition
  have been accepted or refused.

  In the case where the intermediate ST agent is acting as the origin
  with respect to this target, see Section 4.6.3.1, the ACCEPT message
  is not propagated upstream.

4.5.7  ACCEPT Processing by the Origin

  The origin will eventually receive an ACCEPT (or REFUSE) message from
  each of the targets. As each ACCEPT is received, the application is
  notified of the target and the resources that were successfully
  allocated along the path to it, as specified in the FlowSpec
  contained in the ACCEPT message. The application may then use the
  information to either adopt or terminate the portion of the stream to
  each target.

  When an ACCEPT is received by the origin, the path to the target is
  considered to be established and the ST agent is allowed to forward
  the data along this path as explained in Section 2 and in Section
  3.1.

4.5.8  REFUSE Processing by the Intermediate ST agent

  If an application at a target does not wish to participate in the
  stream, it sends a REFUSE message back to the origin with ReasonCode
  (ApplDisconnect). An intermediate ST agent that receives a REFUSE
  message with ReasonCode (ApplDisconnect) acknowledges it by sending
  an ACK to the next-hop, invokes the LRM to adjusts reservations as
  appropriate, deletes the target entry from the internal database, and
  propagates the REFUSE message back to the previous-hop ST agent.

  In the case where the intermediate ST agent is acting as the origin
  with respect to this target, see Section 4.6.3.1, the REFUSE message
  is only propagated upstream when there are no more downstream agents
  participating in the stream. In this case, the agent indicates that
  the agent is to be removed from the stream propagating the REFUSE
  message with the G-bit set (1).

4.5.9  REFUSE Processing by the Origin

  When the REFUSE message reaches the origin, the ST agent at the
  origin sends an ACK and notifies the application that the target is
  no longer part of the stream and also if the stream has no remaining
  targets. If there are no remaining targets, the application may wish
  to terminate the stream, or keep the stream active to allow addition



Delgrossi & Berger, Editors   Experimental                     [Page 39]

RFC 1819              ST2+ Protocol Specification            August 1995


  of targets or stream joining as described in Section 4.6.3.

4.5.10  Other Functions during Stream Setup

  Some other functions have to be accomplished by an ST agent as
  CONNECT messages travel downstream and ACCEPT (or REFUSE) messages
  travel upstream during the stream setup phase. They were not
  mentioned in the previous sections to keep the discussion as simple
  as possible. These functions include:

  o   computing the smallest Maximum Transmission Unit size over the path
      to the targets, as part of the MTU discovery mechanism presented in
      Section 8.6. This is done by updating the MaxMsgSize field of the
      CONNECT message, see Section 10.4.4. This value is carried back to
      origin in the MaxMsgSize field of the ACCEPT message, see Section
      10.4.1.

  o   counting the number of IP clouds to be traversed to reach the
      targets, if any. IP clouds are traversed when the IP encapsulation
      mechanism is used. This mechanism described in Section 8.7.
      Encapsulating agents update the IPHops field of the CONNECT message,
      see Section 10.4.4. The resulting value is carried back to origin in
      the IPHops field of the ACCEPT message, see Section 10.4.1.

  o   updating the RecoveryTimeout value for the stream based on what can
      the agent can support. This is part of the stream recovery
      mechanism, in Section 6.2. This is done by updating the
      RecoveryTimeout field of the CONNECT message, see Section 10.4.4.
      This value is carried back to origin in the RecoveryTimeout field of
      the ACCEPT message, see Section 10.4.1.

4.6  Modifying an Existing Stream

  Some applications may wish to modify a stream after it has been
  created. Possible changes include expanding a stream, reducing it,
  and changing its FlowSpec. The origin may add or remove targets as
  described in Section 4.6.1 and Section 4.6.2. Targets may request to
  join the stream as described in Section 4.6.3 or, they may decide to
  leave a stream as described in Section 4.6.4. Section 4.6.5 explains
  how to change a stream's FlowSpec.

  As defined by Section 2, an ST agent can handle only one stream
  modification at a time. If a stream modification operation is already
  underway, further requests are queued and handled when the previous
  operation has been completed. This also applies to two subsequent
  requests of the same kind, e.g., two subsequent changes to the
  FlowSpec.




Delgrossi & Berger, Editors   Experimental                     [Page 40]

RFC 1819              ST2+ Protocol Specification            August 1995


4.6.1  The Origin Adding New Targets

  It is possible for an application at the origin to add new targets to
  an existing stream any time after the stream has been established.
  Before new targets are added, the application has to collect the
  necessary information on the new targets. Such information is passed
  to the ST agent at the origin.

  The ST agent at the origin issues a CONNECT message that contains the
  SID, the FlowSpec, and the TargetList specifying the new targets.
  This is similar to sending a CONNECT message during stream
  establishment, with the following exceptions: the origin checks that
  a) the SID is valid, b) the targets are not already members of the
  stream, c) that the LRM evaluates the FlowSpec of the new target to
  be the same as the FlowSpec of the existing stream, i.e., it requires
  an equal or smaller amount of resources to be allocated. If the
  FlowSpec of the new target does not match the FlowSpec of the
  existing stream, an error is generated with ReasonCode
  (FlowSpecMismatch). Functions to compare flow specifications are
  provided by the LRM, see Section 1.4.5.

  An intermediate ST agent that is already a participant in the stream
  looks at the SID and StreamCreationTime, and verifies that the stream
  is the same. It then checks if the intersection of the TargetList and
  the targets of the established stream is empty. If this is not the
  case, it responds with a REFUSE message with ReasonCode
  (TargetExists) that contains a TargetList of those targets that were
  duplicates. To indicate that the stream exists, and includes the
  listed targets, the ST agent sets to one (1) the E-bit of the REFUSE
  message, see Section 10.4.11.  The agent then proceeds processing
  each new target in the TargetList.

  For each new target in the TargetList, processing is much the same as
  for the original CONNECT. The CONNECT is acknowledged, propagated,
  and network resources are reserved. Intermediate or target ST agents
  that are not already participants in the stream behave as in the case
  of stream setup (see Section 4.5.4 and Section 4.5.5).

4.6.2  The Origin Removing a Target

  It is possible for an application at the origin to remove existing
  targets of a stream any time after the targets have accepted the
  stream. The application at the origin specifies the set of targets
  that are to be removed and informs the local ST agent. Based on this
  information, the ST agent sends DISCONNECT messages with the
  ReasonCode (ApplDisconnect) to the next-hops relative to the targets.





Delgrossi & Berger, Editors   Experimental                     [Page 41]

RFC 1819              ST2+ Protocol Specification            August 1995


  An ST agent that receives a DISCONNECT message must acknowledge it by
  sending an ACK to the previous-hop. The ST agent updates its state
  and notifies the LRM of the target deletion so that the LRM can
  modify reservations as appropriate. When the DISCONNECT message
  reaches the target, the ST agent also notifies the application that
  the target is no longer part of the stream. When there are no
  remaining targets that can be reached through a particular next-hop,
  the ST agent informs the LRM and it deletes the next-hop from its
  next-hops set.

  SCMP also provides a flooding mechanism to delete targets that joined
  the stream without notifying the origin. The special case of target
  deletion via flooding is described in Section 5.7.

4.6.3  A Target Joining a Stream

  An application may request to join an existing stream. It has to
  collect information on the stream including the stream ID (SID) and
  the IP address of the stream's origin. This can be done out-of-band,
  e.g., via regular IP. The information is then passed to the local ST
  agent. The ST agent generates a JOIN message containing the
  application's request to join the stream and sends it toward the
  stream origin.

  An ST agent receiving a JOIN message, assuming no errors, responds
  with an ACK. The ACK message must identify the JOIN message to which
  it corresponds by including the Reference number indicated by the
  Reference field of the JOIN message. If the ST agent is not traversed
  by the stream that has to be joined, it propagates the JOIN message
  toward the stream's origin. Once a JOIN message has been
  acknowledged, ST agents do not retain any state information related
  to the JOIN message.

  Eventually, an ST agent traversed by the stream or the stream's
  origin itself is reached. This agent must respond to a received JOIN
  first with an ACK to the ST agent from which the message was
  received, then, it issues either a CONNECT or a JOIN-REJECT message
  and sends it toward the target. The response to the join request is
  based on the join authorization level associated with the stream, see
  Section 4.4.2:

o   If the stream has authorization level #0 (refuse join):
   The ST agent sends a JOIN-REJECT message toward the target with
   ReasonCode (JoinAuthFailure).

o   If the stream has authorization level #1 (ok, notify origin):
   The ST agent sends a CONNECT message toward the target with a
   TargetList including the target that requested to join the stream.



Delgrossi & Berger, Editors   Experimental                     [Page 42]

RFC 1819              ST2+ Protocol Specification            August 1995


   This eventually results in adding the target to the stream. When
   the ST agent receives the ACCEPT message indicating that the new
   target has been added, it does not propagate the ACCEPT message
   backwards (Section 4.5.6). Instead, it issues a NOTIFY message
   with ReasonCode (TargetJoined) so that upstream agents, including
   the origin, may add the new target to maintained state
   information. The NOTIFY message includes all target specific
   information.

o   If the stream has authorization level #2 (ok):
   The ST agent sends a CONNECT message toward the target with a
   TargetList including the target that requested to join the stream.
   This eventually results in adding the target to the stream. When
   the ST agent receives the ACCEPT message indicating that the new
   target has been added, it does not propagate the ACCEPT message
   backwards (Section 4.5.6), nor does it notify the origin. A NOTIFY
   message is generated with ReasonCode (TargetJoined) if the target
   specific information needs to be propagated back to the origin. An
   example of such information is change in MTU, see Section 8.6.

4.6.3.1  Intermediate Agent (Router) as Origin

  When a stream has join authorization level #2, see Section 4.4.2, it
  is possible that the stream origin is unaware of some targets
  participating in the stream. In this case, the ST intermediate agent
  that first sent a CONNECT message to this target has to act as the
  stream origin for the given target. This includes:

o   if the whole stream is deleted, the intermediate agent must
   disconnect the target.

o   if the stream FlowSpec is changed, the intermediate agent must
   change the FlowSpec for the target as appropriate.

o   proper handling of ACCEPT and REFUSE messages, without propagation
   to upstream ST agents.

o   generation of NOTIFY messages when needed. (As described above.)

  The intermediate agent behaves normally for all other targets added
  to the stream as a consequence of a CONNECT message issued by the
  origin.

4.6.4  A Target Deleting Itself

  The application at the target may inform the local ST agent that it
  wants to be removed from the stream. The ST agent then forms a REFUSE
  message with the target itself as the only entry in the TargetList



Delgrossi & Berger, Editors   Experimental                     [Page 43]

RFC 1819              ST2+ Protocol Specification            August 1995


  and with ReasonCode (ApplDisconnect). The REFUSE message is sent back
  to the origin via the previous-hop. If a stream has multiple targets
  and one target leaves the stream using this REFUSE mechanism, the
  stream to the other targets is not affected; the stream continues to
  exist.

  An ST agent that receives a REFUSE message acknowledges it by sending
  an ACK to the next-hop. The target is deleted and the LRM is notified
  so that it adjusts reservations as appropriate. The REFUSE message is
  also propagated back to the previous-hop ST agent except in the case
  where the agent is acting as the origin. In this case a NOTIFY may be
  propagated instead, see Section 4.6.3.

  When the REFUSE reaches the origin, the origin sends an ACK and
  notifies the application that the target is no longer part of the
  stream.

4.6.5  Changing a Stream's FlowSpec

  The application at the origin may wish to change the FlowSpec of an
  established stream. Changing the FlowSpec is a critical operation and
  it may even lead in some cases to the deletion of the affected
  targets. Possible problems with FlowSpec changes are discussed in
  Section 5.6.

  To change the stream's FlowSpec, the application informs the ST agent
  at the origin of the new FlowSpec and of the list of targets relative
  to the change. The ST agent at the origin then issues one CHANGE
  message per next-hop including the new FlowSpec and sends it to the
  relevant next-hop ST agents. If the G-bit field of the CHANGE message
  is set (1), the change affects all targets in the stream.

  The CHANGE message contains a bit called I-bit, see Section 10.4.3.
  By default, the I-bit is set to zero (0) to indicate that the LRM is
  expected to try and perform the requested FlowSpec change without
  risking to tear down the stream. Applications that desire a higher
  probability of success and are willing to take the risk of breaking
  the stream can indicate this by setting the I-bit to one (1).
  Applications that require the requested modification in order to
  continue operating are expected to set this bit.

  An intermediate ST agent that receives a CHANGE message first sends
  an ACK to the previous-hop and then provides the FlowSpec to the LRM.
  If the LRM can perform the change, the ST agent propagates the CHANGE
  messages along the established paths.






Delgrossi & Berger, Editors   Experimental                     [Page 44]

RFC 1819              ST2+ Protocol Specification            August 1995


  If the whole process succeeds, the CHANGE messages will eventually
  reach the targets. Targets respond with an ACCEPT (or REFUSE) message
  that is propagated back to the origin. In processing the ACCEPT
  message on the way back to the origin, excess resources may be
  released by the LRM as described in Section 4.5.6. The REFUSE message
  must have the ReasonCode (ApplRefused).

  SCMP also provides a flooding mechanism to change targets that joined
  the stream without notifying the origin. The special case of target
  change via flooding is described in Section 5.7.

4.7  Stream Tear Down

  A stream is usually terminated by the origin when it has no further
  data to send. A stream is also torn down if the application should
  terminate abnormally or if certain network failures are encountered.
  Processing in this case is identical to the previous descriptions
  except that the ReasonCode (ApplAbort, NetworkFailure, etc.) is
  different.

  When all targets have left a stream, the origin notifies the
  application of that fact, and the application is then responsible for
  terminating the stream. Note, however, that the application may
  decide to add targets to the stream instead of terminating it, or may
  just leave the stream open with no targets in order to permit stream
  joins.

5.  Exceptional Cases

  The previous descriptions covered the simple cases where everything
  worked. We now discuss what happens when things do not succeed.
  Included are situations where messages exceed a network MTU, are
  lost, the requested resources are not available, the routing fails or
  is inconsistent.

5.1  Long ST Messages

  It is possible that an ST agent, or an application, will need to send
  a message that exceeds a network's Maximum Transmission Unit (MTU).
  This case must be handled but not via generic fragmentation, since
  ST2 does not support generic fragmentation of either data or control
  messages.

5.1.1  Handling of Long Data Packets

  ST agents discard data packets that exceed the MTU of the next-hop
  network. No error message is generated. Applications should avoid
  sending data packets larger than the minimum MTU supported by a given



Delgrossi & Berger, Editors   Experimental                     [Page 45]

RFC 1819              ST2+ Protocol Specification            August 1995


  stream. The application, both at the origin and targets, can learn
  the stream minimum MTU through the MTU discovery mechanism described
  in Section 8.6.

5.1.2  Handling of Long Control Packets

  Each ST agent knows the MTU of the networks to which it is connected,
  and those MTUs restrict the size of the SCMP message it can send. An
  SCMP message size can exceed the MTU of a given network for a number
  of reasons:

o   the TargetList parameter (Section 10.3.6) may be too long;

o   the RecordRoute parameter (Section 10.3.5) may be too long.

o   the UserData parameter (Section 10.3.7) may be too long;

o   the PDUInError field of the ERROR message (Section 10.4.6) may be
   too long;

  An ST agent receiving or generating a too long SCMP message should:

o   break the message into multiple messages, each carrying part of the
   TargetList. Any RecordRoute and UserData parameters are replicated
   in each message for delivery to all targets. Applications that
   support a large number of targets may avoid using long TargetList
   parameters, and are expected to do so, by exploiting the stream
   joining functions, see Section 4.6.3. One exception to this rule
   exists. In the case of a long TargetList parameter to be included in
   a STATUS-RESPONSE message, the TargetList parameter is just
   truncated to the point where the list can fit in a single message,
   see Section 8.4.

o   for down stream agents: if the TargetList parameter contains a
   single Target element and the message size is still too long, the ST
   agent should issue a REFUSE message with ReasonCode
   (RecordRouteSize) if the size of the RecordRoute parameter causes
   the SCMP message size to exceed the network MTU, or with ReasonCode
   (UserDataSize) if the size of the UserData parameter causes the SCMP
   message size to exceed the network MTU. If both RecordRoute and
   UserData parameters are present the ReasonCode (UserDataSize) should
   be sent. For messages generated at the target: the target ST agent
   must check for SCMP messages that may exceed the MTU on the complete
   target-to-origin path, and inform the application that a too long
   SCMP messages has been generated. The format for the error reporting
   is a local implementation issue. The error codes are the same as
   previously stated.




Delgrossi & Berger, Editors   Experimental                     [Page 46]

RFC 1819              ST2+ Protocol Specification            August 1995


  ST agents generating too long ERROR messages, simply truncate the
  PDUInError field to the point where the message is smaller than the
  network MTU.

5.2  Timeout Failures

  As described in Section 4.3, SCMP message delivery is made reliable
  through the use of acknowledgments, timeouts, and retransmission. The
  ACCEPT, CHANGE, CONNECT, DISCONNECT, JOIN, JOIN-REJECT, NOTIFY, and
  REFUSE messages must always be acknowledged, see Section 4.2. In
  addition, for some SCMP messages (CHANGE, CONNECT, JOIN) the sending
  ST agent also expects a response back (ACCEPT/REFUSE, CONNECT/JOIN-
  REJECT) after an ACK has been received. Also, the STATUS message must
  be answered with a STATUS-RESPONSE message.

  The following sections describe the handling of each of the possible
  failure cases due to timeout situations while waiting for an
  acknowledgment or a response. The timeout related variables, and
  their names, used in the next sections are for reference purposes
  only. They may be implementation specific. Different implementations
  are not required to share variable names, or even the mechanism by
  which the timeout and retransmission behavior is implemented.

5.2.1  Failure due to ACCEPT Acknowledgment Timeout

  An ST agent that sends an ACCEPT message upstream expects an ACK from
  the previous-hop ST agent. If no ACK is received before the ToAccept
  timeout expires, the ST agent should retry and send the ACCEPT
  message again. After NAccept unsuccessful retries, the ST agent sends
  a REFUSE message toward the origin, and a DISCONNECT message toward
  the targets. Both REFUSE and DISCONNECT must identify the affected
  targets and specify the ReasonCode (RetransTimeout).

5.2.2  Failure due to CHANGE Acknowledgment Timeout

  An ST agent that sends a CHANGE message downstream expects an ACK
  from the next-hop ST agent. If no ACK is received before the ToChange
  timeout expires, the ST agent should retry and send the CHANGE
  message again. After NChange unsuccessful retries, the ST agent
  aborts the change attempt by sending a REFUSE message toward the
  origin, and a DISCONNECT message toward the targets. Both REFUSE and
  DISCONNECT must identify the affected targets and specify the
  ReasonCode (RetransTimeout).








Delgrossi & Berger, Editors   Experimental                     [Page 47]

RFC 1819              ST2+ Protocol Specification            August 1995


5.2.3  Failure due to CHANGE Response Timeout

  Only the origin ST agent implements this timeout. After correctly
  receiving the ACK to a CHANGE message, an ST agent expects to receive
  an ACCEPT, or REFUSE message in response. If one of these messages is
  not received before the ToChangeResp timer expires, the ST agent at
  the origin aborts the change attempt, and behaves as if a REFUSE
  message with the E-bit set and with ReasonCode (ResponseTimeout) is
  received.

5.2.4  Failure due to CONNECT Acknowledgment Timeout

  An ST agent that sends a CONNECT message downstream expects an ACK
  from the next-hop ST agent. If no ACK is received before the
  ToConnect timeout expires, the ST agent should retry and send the
  CONNECT message again. After NConnect unsuccessful retries, the ST
  agent sends a REFUSE message toward the origin, and a DISCONNECT
  message toward the targets. Both REFUSE and DISCONNECT must identify
  the affected targets and specify the ReasonCode (RetransTimeout).

5.2.5  Failure due to CONNECT Response Timeout

  Only the origin ST agent implements this timeout. After correctly
  receiving the ACK to a CONNECT message, an ST agent expects to
  receive an ACCEPT or REFUSE message in response. If one of these
  messages is not received before the ToConnectResp timer expires, the
  origin ST agent aborts the connection setup attempt, acts as if a
  REFUSE message is received, and it sends a DISCONNECT message toward
  the targets.  Both REFUSE and DISCONNECT must identify the affected
  targets and specify the ReasonCode (ResponseTimeout).

5.2.6  Failure due to DISCONNECT Acknowledgment Timeout

  An ST agent that sends a DISCONNECT message downstream expects an ACK
  from the next-hop ST agent. If no ACK is received before the
  ToDisconnect timeout expires, the ST agent should retry and send the
  DISCONNECT message again. After NDisconnect unsuccessful retries, the
  ST agent simply gives up and it assumes the next-hop ST agent is not
  part in the stream any more.

5.2.7  Failure due to JOIN Acknowledgment Timeout

  An ST agent that sends a JOIN message toward the origin expects an
  ACK from a neighbor ST agent. If no ACK is received before the ToJoin
  timeout expires, the ST agent should retry and send the JOIN message
  again. After NJoin unsuccessful retries, the ST agent sends a JOIN-
  REJECT message back in the direction of the target with ReasonCode
  (RetransTimeout).



Delgrossi & Berger, Editors   Experimental                     [Page 48]

RFC 1819              ST2+ Protocol Specification            August 1995


5.2.8  Failure due to JOIN Response Timeout

  Only the target agent implements this timeout. After correctly
  receiving the ACK to a JOIN message, the ST agent at the target
  expects to receive a CONNECT or JOIN-REJECT message in response. If
  one of these message is not received before the ToJoinResp timer
  expires, the ST agent aborts the stream join attempt and returns an
  error corresponding with ReasonCode (RetransTimeout) to the
  application.

  Note that, after correctly receiving the ACK to a JOIN message,
  intermediate ST agents do not maintain any state on the stream
  joining attempt. As a consequence, they do not set the ToJoinResp
  timer and do not wait for a CONNECT or JOIN-REJECT message. This is
  described in Section 4.6.3.

5.2.9  Failure due to JOIN-REJECT Acknowledgment Timeout

  An ST agent that sends a JOIN-REJECT message toward the target
  expects an ACK from a neighbor ST agent. If no ACK is received before
  the ToJoinReject timeout expires, the ST agent should retry and send
  the JOIN-REJECT message again. After NJoinReject unsuccessful
  retries, the ST agent simply gives up.

5.2.10  Failure due to NOTIFY Acknowledgment Timeout

  An ST agent that sends a NOTIFY message to a neighbor ST agent
  expects an ACK from that neighbor ST agent. If no ACK is received
  before the ToNotify timeout expires, the ST agent should retry and
  send the NOTIFY message again. After NNotify unsuccessful retries,
  the ST agent simply gives up and behaves as if the ACK message was
  received.

5.2.11  Failure due to REFUSE Acknowledgment Timeout

  An ST agent that sends a REFUSE message upstream expects an ACK from
  the previous-hop ST agent. If no ACK is received before the ToRefuse
  timeout expires, the ST agent should retry and send the REFUSE
  message again. After NRefuse unsuccessful retries, the ST agent gives
  up and it assumes it is not part in the stream any more.

5.2.12  Failure due to STATUS Response Timeout

  After sending a STATUS message to a neighbor ST agent, an ST agent
  expects to receive a STATUS-RESPONSE message in response. If this
  message is not received before the ToStatusResp timer expires, the ST
  agent sends the STATUS message again. After NStatus unsuccessful
  retries, the ST agent gives up and assumes that the neighbor ST agent



Delgrossi & Berger, Editors   Experimental                     [Page 49]

RFC 1819              ST2+ Protocol Specification            August 1995


  is not active.

5.3  Setup Failures due to Routing Failures

  It is possible for an ST agent to receive a CONNECT message that
  contains a known SID, but from an ST agent other than the previous-
  hop ST agent of the stream with that SID. This may be:

  1.  that two branches of the tree forming the stream have joined
      back together,

  2.  the result of an attempted recovery of a partially failed
      stream, or

  3.  a routing loop.

  The TargetList contained in the CONNECT is used to distinguish the
  different cases by comparing each newly received target with those of
  the previously existing stream:

o   if the IP address of the target(s) differ, it is case #1;

o   if the target matches a target in the existing stream, it may be
   case #2 or #3.

  Case #1 is handled in Section 5.3.1, while the other cases are
  handled in Section 5.3.2.

5.3.1  Path Convergence

  It is possible for an ST agent to receive a CONNECT message that
  contains a known SID, but from an ST agent other than the previous-
  hop ST agent of the stream with that SID. This might be the result of
  two branches of the tree forming the stream have joined back
  together.  Detection of this case and other possible sources was
  discussed in Section 5.2.

  SCMP does not allow for streams which have converged paths, i.e.,
  streams are always tree-shaped and not graph-like. At the point of
  convergence, the ST agent which detects the condition generates a
  REFUSE message with ReasonCode (PathConvergence). Also, as a help to
  the upstream ST agent, the detecting agent places the IP address of
  one of the stream's connected targets in the ValidTargetIPAddress
  field of the REFUSE message. This IP address will be used by upstream
  ST agents to avoid splitting the stream.

  An upstream ST agent that receives the REFUSE with ReasonCode
  (PathConvergence) will check to see if the listed IP address is one



Delgrossi & Berger, Editors   Experimental                     [Page 50]

RFC 1819              ST2+ Protocol Specification            August 1995


  of the known stream targets. If it is not, the REFUSE is propagated
  to the previous-hop agent. If the listed IP address is known by the
  upstream ST agent, this ST agent is the ST agent that caused the
  split in the stream. (This agent may even be the origin.) This agent
  then avoids splitting the stream by using the next-hop of that known
  target as the next-hop for the refused targets. It sends a CONNECT
  with the affected targets to the existing valid next-hop.

  The above process will proceed, hop by hop, until the
  ValidTargetIPAddress matches the IP address of a known target. The
  only case where this process will fail is when the known target is
  deleted prior to the REFUSE propagating to the origin. In this case
  the origin can just reissue the CONNECT and start the whole process
  over again.

5.3.2  Other Cases

  The remaining cases including a partially failed stream and a routing
  loop, are not easily distinguishable. In attempting recovery of a
  failed stream, an ST agent may issue new CONNECT messages to the
  affected targets. Such a CONNECT may reach an ST agent downstream of
  the failure before that ST agent has received a DISCONNECT from the
  neighborhood of the failure. Until that ST agent receives the
  DISCONNECT, it cannot distinguish between a failure recovery and an
  erroneous routing loop. That ST agent must therefore respond to the
  CONNECT with a REFUSE message with the affected targets specified in
  the TargetList and an appropriate ReasonCode (StreamExists).

  The ST agent immediately preceding that point, i.e., the latest ST
  agent to send the CONNECT message, will receive the REFUSE message.
  It must release any resources reserved exclusively for traffic to the
  listed targets. If this ST agent was not the one attempting the
  stream recovery, then it cannot distinguish between a failure
  recovery and an erroneous routing loop. It should repeat the CONNECT
  after a ToConnect timeout, see Section 5.2.4. If after NConnect
  retransmissions it continues to receive REFUSE messages, it should
  propagate the REFUSE message toward the origin, with the TargetList
  that specifies the affected targets, but with a different ReasonCode
  (RouteLoop).

  The REFUSE message with this ReasonCode (RouteLoop) is propagated by
  each ST agent without retransmitting any CONNECT messages. At each ST
  agent, it causes any resources reserved exclusively for the listed
  targets to be released. The REFUSE will be propagated to the origin
  in the case of an erroneous routing loop. In the case of stream
  recovery, it will be propagated to the ST agent that is attempting
  the recovery, which may be an intermediate ST agent or the origin
  itself. In the case of a stream recovery, the ST agent attempting the



Delgrossi & Berger, Editors   Experimental                     [Page 51]

RFC 1819              ST2+ Protocol Specification            August 1995


  recovery may issue new CONNECT messages to the same or to different
  next-hops.

  If an ST agent receives both a REFUSE message and a DISCONNECT
  message with a target in common then it can, for the each target in
  common, release the relevant resources and propagate neither the
  REFUSE nor the DISCONNECT.

  If the origin receives such a REFUSE message, it should attempt to
  send a new CONNECT to all the affected targets. Since routing errors
  in an internet are assumed to be temporary, the new CONNECTs will
  eventually find acceptable routes to the targets, if one exists. If
  no further routes exist after NRetryRoute tries, the application
  should be informed so that it may take whatever action it seems
  necessary.

5.4  Problems due to Routing Inconsistency

  When an intermediate ST agent receives a CONNECT, it invokes the
  routing algorithm to select the next-hop ST agents based on the
  TargetList and the networks to which it is connected. If the
  resulting next-hop to any of the targets is across the same network
  from which it received the CONNECT (but not the previous-hop itself),
  there may be a routing problem. However, the routing algorithm at the
  previous- hop may be optimizing differently than the local algorithm
  would in the same situation. Since the local ST agent cannot
  distinguish the two cases, it should permit the setup but send back
  to the previous- hop ST agent an informative NOTIFY message with the
  appropriate ReasonCode (RouteBack), pertinent TargetList, and in the
  NextHopIPAddress element the address of the next-hop ST agent
  returned by its routing algorithm.

  The ST agent that receives such a NOTIFY should ACK it. If the ST
  agent is using an algorithm that would produce such behavior, no
  further action is taken; if not, the ST agent should send a
  DISCONNECT to the next-hop ST agent to correct the problem.

  Alternatively, if the next-hop returned by the routing function is in
  fact the previous-hop, a routing inconsistency has been detected. In
  this case, a REFUSE is sent back to the previous-hop ST agent
  containing an appropriate ReasonCode (RouteInconsist), pertinent
  TargetList, and in the NextHopIPAddress element the address of the
  previous-hop. When the previous-hop receives the REFUSE, it will
  recompute the next-hop for the affected targets. If there is a
  difference in the routing databases in the two ST agents, they may
  exchange CONNECT and REFUSE messages again. Since such routing errors
  in the internet are assumed to be temporary, the situation should
  eventually stabilize.



Delgrossi & Berger, Editors   Experimental                     [Page 52]

RFC 1819              ST2+ Protocol Specification            August 1995


5.5  Problems in Reserving Resources

  As mentioned in Section 1.4.5, resource reservation is handled by the
  LRM. The LRM may not be able to satisfy a particular request during
  stream setup or modification for a number of reasons, including a
  mismatched FlowSpec, an unknown FlowSpec version, an error in
  processing a FlowSpec, and an inability to allocate the requested
  resource. This section discusses these cases and specifies the
  ReasonCodes that should be used when these error cases are
  encountered.

5.5.1  Mismatched FlowSpecs

  In some cases the LRM may require a requested FlowSpec to match an
  existing FlowSpec, e.g., when adding new targets to an existing
  stream, see Section 4.6.1. In case of FlowSpec mismatch the LRM
  notifies the processing ST agent which should respond with ReasonCode
  (FlowSpecMismatch).

5.5.2  Unknown FlowSpec Version

  When the LRM is invoked, it is passed information including the
  version of the FlowSpec, see Section 4.5.2.2. If this version is not
  known by the LRM, the LRM notifies the ST agent. The ST agent should
  respond with a REFUSE message with ReasonCode (FlowVerUnknown).

5.5.3  LRM Unable to Process FlowSpec

  The LRM may encounter an LRM or FlowSpec specific error while
  attempting to satisfy a request. An example of such an error is given
  in Section 9.2.1. These errors are implementation specific and will
  not be enumerated with ST ReasonCodes. They are covered by a single,
  generic ReasonCode. When an LRM encounters such an error, it should
  notify the ST agent which should respond with the generic ReasonCode
  (FlowSpecError).

5.5.4  Insufficient Resources

  If the LRM cannot make the necessary reservations because sufficient
  resources are not available, an ST agent may:

o   try alternative paths to the targets: the ST agent calls the routing
   function to find a different path to the targets. If an alternative
   path is found, stream connection setup continues in the usual way,
   as described in Section 4.5.






Delgrossi & Berger, Editors   Experimental                     [Page 53]

RFC 1819              ST2+ Protocol Specification            August 1995


o   refuse to establish the stream along this path: the origin ST agent
   informs the application of the stream setup failure; intermediate
   and target ST agents issue a REFUSE message (as described in Section
   4.5.8) with ReasonCode (CantGetResrc).

  It depends on the local implementations whether an ST agent tries
  alternative paths or refuses to establish the stream. In any case, if
  enough resources cannot be found over different paths, the ST agent
  has to explicitly refuse to establish the stream.

5.6  Problems Caused by CHANGE Messages

  A CHANGE might fail for several reasons, including:

o   insufficient resources: the request may be for a larger amount of
   network resources when those resources are not available, ReasonCode
   (CantGetResrc);

o   a target application not agreeing to the change, ReasonCode
   (ApplRefused);

  The affected stream can be left in one of two states as a result of
  change failures: a) the stream can revert back to the state it was in
  prior to the CHANGE message being processed, or b) the stream may be
  torn down.

  The expected common case of failure will be when the requested change
  cannot be satisfied, but the pre-change resources remain allocated
  and available for use by the stream. In this case, the ST agent at
  the point where the failure occurred must inform upstream ST agents
  of the failure. (In the case where this ST agent is the target, there
  may not actually be a failure, the application may merely have not
  agreed to the change). The ST agent informs upstream ST agents by
  sending a REFUSE message with ReasonCode (CantGetResrc or
  ApplRefused). To indicate that the pre-change FlowSpec is still
  available and that the stream still exists, the ST agent sets the E-
  bit of the REFUSE message to one (1), see Section 10.4.11. Upstream
  ST agents receiving the REFUSE message inform the LRM so that it can
  attempt to revert back to the pre-change FlowSpec. It is permissible,
  but not desirable, for excess resources to remain allocated.

  For the case when the attempt to change the stream results in the
  loss of previously reserved resources, the stream is torn down. This
  can happen, for instance, when the I-bit is set (Section 4.6.5) and
  the LRM releases pre-change stream resources before the new ones are
  reserved, and neither new nor former resources are available. In this
  case, the ST agent where the failure occurs must inform other ST
  agents of the break in the affected portion of the stream. This is



Delgrossi & Berger, Editors   Experimental                     [Page 54]

RFC 1819              ST2+ Protocol Specification            August 1995


  done by the ST agent by sending a REFUSE message upstream and a
  DISCONNECT message downstream, both with the ReasonCode
  (CantGetResrc). To indicate that pre-change stream resources have
  been lost, the E-bit of the REFUSE message is set to zero (0).

  Note that a failure to change the resources requested for specific
  targets should not cause other targets in the stream to be deleted.

5.7  Unknown Targets in DISCONNECT and CHANGE

  The handling of unknown targets listed in a DISCONNECT or CHANGE
  message is dependent on a stream's join authorization level, see
  Section 4.4.2. For streams with join authorization levels #0 and #1,
  see Section 4.4.2, all targets must be known. In this case, when
  processing a CHANGE message, the agent should generate a REFUSE
  message with ReasonCode (TargetUnknown). When processing a DISCONNECT
  message, it is possible that the DISCONNECT is a duplicate of an old
  request so the agent should respond as if it has successfully
  disconnected the target. That is, it should respond with an ACK
  message.

  For streams with join authorization level #2, it is possible that the
  origin is not aware of some targets that participate in the stream.
  The origin may delete or change these targets via the following
  flooding mechanism.

  If no next-hop ST agent can be associated with a target, the CHANGE/
  DISCONNECT message including the target is replicated to all known
  next-hop ST agents. This has the effect of propagating the CHANGE/
  DISCONNECT message to all downstream ST agents. Eventually, the ST
  agent that acts as the origin for the target (Section 4.6.3.1) is
  reached and the target is deleted.

  Target deletion/change via flooding is not expected to be the normal
  case. It is included to present the applications with uniform
  capabilities for all stream types. Flooding only applies to streams
  with join authorization level #2.

6.  Failure Detection and Recovery

6.1  Failure Detection

  The SCMP failure detection mechanism is based on two assumptions:

1.  If a neighbor of an ST agent is up, and has been up without a
   disruption, and has not notified the ST agent of a problem with
   streams that pass through both, then the ST agent can assume that
   there has not been any problem with those streams.



Delgrossi & Berger, Editors   Experimental                     [Page 55]

RFC 1819              ST2+ Protocol Specification            August 1995


2.  A network through which an ST agent has routed a stream will notify
   the ST agent if there is a problem that affects the stream data
   packets but does not affect the control packets.

  The purpose of the robustness protocol defined here is for ST agents
  to determine that the streams through a neighbor have been broken by
  the failure of the neighbor or the intervening network. This protocol
  should detect the overwhelming majority of failures that can occur.
  Once a failure is detected, the recovery procedures described in
  Section 6.2 are initiated by the ST agents.

6.1.1  Network Failures

  An ST agent can detect network failures by two mechanisms:

  o   the network can report a failure, or

  o   the ST agent can discover a failure by itself.

  They differ in the amount of information that an ST agent has
  available to it in order to make a recovery decision. For example, a
  network may be able to report that reserved bandwidth has been lost
  and the reason for the loss and may also report that connectivity to
  the neighboring ST agent remains intact. On the other hand, an ST
  agent may discover that communication with a neighboring ST agent has
  ceased because it has not received any traffic from that neighbor in
  some time period. If an ST agent detects a failure, it may not be
  able to determine if the failure was in the network while the
  neighbor remains available, or the neighbor has failed while the
  network remains intact.

6.1.2  Detecting ST Agents Failures

  Each ST agent periodically sends each neighbor with which it shares
  one or more streams a HELLO message. This message exchange is between
  ST agents, not entities representing streams or applications. That
  is, an ST agent need only send a single HELLO message to a neighbor
  regardless of the number of streams that flow between them. All ST
  agents (host as well as intermediate) must participate in this
  exchange. However, only ST agents that share active streams can
  participate in this exchange and it is an error to send a HELLO
  message to a neighbor ST agent with no streams in common, e.g., to
  check whether it is active. STATUS messages can be used to poll the
  status of neighbor ST agents, see Section 8.4.

  For the purpose of HELLO message exchange, stream existence is
  bounded by ACCEPT and DISCONNECT/REFUSE processing and is defined for
  both the upstream and downstream case. A stream to a previous-hop is



Delgrossi & Berger, Editors   Experimental                     [Page 56]

RFC 1819              ST2+ Protocol Specification            August 1995


  defined to start once an ACCEPT message has been forwarded upstream.
  A stream to a next-hop is defined to start once the received ACCEPT
  message has been acknowledged. A stream is defined to terminate once
  an acknowledgment is sent for a received DISCONNECT or REFUSE
  message, and an acknowledgment for a sent DISCONNECT or REFUSE
  message has been received.

  The HELLO message has two fields:

  o   a HelloTimer field that is in units of milliseconds modulo the
      maximum for the field size, and

  o   a Restarted-bit specifying that the ST agent has been restarted
      recently.

  The HelloTimer must appear to be incremented every millisecond
  whether a HELLO message is sent or not. The HelloTimer wraps around
  to zero after reaching the maximum value. Whenever an ST agent
  suffers a catastrophic event that may result in it losing ST state
  information, it must reset its HelloTimer to zero and must set the
  Restarted-bit in all HELLO messages sent in the following
  HelloTimerHoldDown seconds.

  If an ST agent receives a HELLO message that contains the Restarted-
  bit set, it must assume that the sending ST agent has lost its state.
  If it shares streams with that neighbor, it must initiate stream
  recovery activity, see Section 6.2. If it does not share streams with
  that neighbor, it should not attempt to create one until that bit is
  no longer set. If an ST agent receives a CONNECT message from a
  neighbor whose Restarted-bit is still set, the agent must respond
  with an ERROR message with the appropriate ReasonCode
  (RestartRemote). If an agent receives a CONNECT message while the
  agent's own Restarted- bit is set, the agent must respond with an
  ERROR message with the appropriate ReasonCode (RestartLocal).

  Each ST stream has an associated RecoveryTimeout value. This value is
  assigned by the origin and carried in the CONNECT message, see
  Section 4.5.10. Each agent checks to see if it can support the
  requested value. If it can not, it updates the value to the smallest
  timeout interval it can support. The RecoveryTimeout used by a
  particular stream is obtained from the ACCEPT message, see Section
  4.5.10, and is the smallest value seen across all ACCEPT messages
  from participating targets.

  An ST agent must send HELLO messages to its neighbor with a period
  shorter than the smallest RecoveryTimeout of all the active streams
  that pass between the two ST agents, regardless of direction. This
  period must be smaller by a factor, called HelloLossFactor, which is



Delgrossi & Berger, Editors   Experimental                     [Page 57]

RFC 1819              ST2+ Protocol Specification            August 1995


  at least as large as the greatest number of consecutive HELLO
  messages that could credibly be lost while the communication between
  the two ST agents is still viable.

  An ST agent may send simultaneous HELLO messages to all its neighbors
  at the rate necessary to support the smallest RecoveryTimeout of any
  active stream. Alternately, it may send HELLO messages to different
  neighbors independently at different rates corresponding to
  RecoveryTimeouts of individual streams.

  An ST agent must expect to receive at least one new HELLO message
  from each neighbor at least as frequently as the smallest
  RecoveryTimeout of any active stream in common with that neighbor.
  The agent can detect duplicate or delayed HELLO messages by comparing
  the HelloTimer field of the most recent valid HELLO message from that
  neighbor with the HelloTimer field of an incoming HELLO message.
  Valid incoming HELLO messages will have a HelloTimer field that is
  greater than the field contained in the previously received valid
  HELLO message by the time elapsed since the previous message was
  received. Actual evaluation of the elapsed time interval should take
  into account the maximum likely delay variance from that neighbor.

  If the ST agent does not receive a valid HELLO message within the
  RecoveryTimeout period of a stream, it must assume that the
  neighboring ST agent or the communication link between the two has
  failed and it must initiate stream recovery activity, as described
  below in Section 6.2.

6.2  Failure Recovery

  If an intermediate ST agent fails or a network or part of a network
  fails, the previous-hop ST agent and the various next-hop ST agents
  will discover the fact by the failure detection mechanism described
  in Section 6.1.

  The recovery of an ST stream is a relatively complex and time
  consuming effort because it is designed in a general manner to
  operate across a large number of networks with diverse
  characteristics.  Therefore, it may require information to be
  distributed widely, and may require relatively long timers. On the
  other hand, since a network is typically a homogeneous system,
  failure recovery in the network may be a relatively faster and
  simpler operation. Therefore an ST agent that detects a failure
  should attempt to fix the network failure before attempting recovery
  of the ST stream. If the stream that existed between two ST agents
  before the failure cannot be reconstructed by network recovery
  mechanisms alone, then the ST stream recovery mechanism must be
  invoked.



Delgrossi & Berger, Editors   Experimental                     [Page 58]

RFC 1819              ST2+ Protocol Specification            August 1995


  If stream recovery is necessary, the different ST agents will need to
  perform different functions, depending on their relation to the
  failure:

o   An ST agent that is a next-hop from a failure should first verify
   that there was a failure. It can do this using STATUS messages to
   query its upstream neighbor. If it cannot communicate with that
   neighbor, then for each active stream from that neighbor it should
   first send a REFUSE message upstream with the appropriate ReasonCode
   (STAgentFailure). This is done to the neighbor to speed up the
   failure recovery in case the hop is unidirectional, i.e., the
   neighbor can hear the ST agent but the ST agent cannot hear the
   neighbor. The ST agent detecting the failure must then, for each
   active stream from that neighbor, send DISCONNECT messages with the
   same ReasonCode toward the targets. All downstream ST agents process
   this DISCONNECT message just like the DISCONNECT that tears down the
   stream. If recovery is successful, targets will receive new CONNECT
   messages.

o   An ST agent that is the previous-hop before the failed component
   first verifies that there was a failure by querying the downstream
   neighbor using STATUS messages. If the neighbor has lost its state
   but is available, then the ST agent may try and reconstruct
   (explained below) the affected streams, for those streams that do
   not have the NoRecovery option selected. If it cannot communicate
   with the next-hop, then the ST agent detecting the failure sends a
   DISCONNECT message, for each affected stream, with the appropriate
   ReasonCode (STAgentFailure) toward the affected targets. It does so
   to speed up failure recovery in case the communication may be
   unidirectional and this message might be delivered successfully.

  Based on the NoRecovery option, the ST agent that is the previous-hop
  before the failed component takes the following actions:

o   If the NoRecovery option is selected, then the ST agent sends, per
   affected stream, a REFUSE message with the appropriate ReasonCode
   (STAgentFailure) to the previous-hop. The TargetList in these
   messages contains all the targets that were reached through the
   broken branch. As discussed in Section 5.1.2, multiple REFUSE
   messages may be required if the PDU is too long for the MTU of the
   intervening network. The REFUSE message is propagated all the way to
   the origin. The application at the origin can attempt recovery of
   the stream by sending a new CONNECT to the affected targets. For
   established streams, the new CONNECT will be treated by intermediate
   ST agents as an addition of new targets into the established stream.






Delgrossi & Berger, Editors   Experimental                     [Page 59]

RFC 1819              ST2+ Protocol Specification            August 1995


o   If the NoRecovery option is not selected, the ST agent can attempt
   recovery of the affected streams. It does so one a stream by stream
   basis by issuing a new CONNECT message to the affected targets. If
   the ST agent cannot find new routes to some targets, or if the only
   route to some targets is through the previous-hop, then it sends one
   or more REFUSE messages to the previous-hop with the appropriate
   ReasonCode (CantRecover) specifying the affected targets in the
   TargetList. The previous-hop can then attempt recovery of the stream
   by issuing a CONNECT to those targets. If it cannot find an
   appropriate route, it will propagate the REFUSE message toward the
   origin.

  Regardless of which ST agent attempts recovery of a damaged stream,
  it will issue one or more CONNECT messages to the affected targets.
  These CONNECT messages are treated by intermediate ST agents as
  additions of new targets into the established stream. The FlowSpecs
  of the new CONNECT messages are the same as the ones contained in the
  most recent CONNECT or CHANGE messages that the ST agent had sent
  toward the affected targets when the stream was operational.

  Upon receiving an ACCEPT during the a stream recovery, the agent
  reconstructing the stream must ensure that the FlowSpec and other
  stream attributes (e.g., MaxMsgSize and RecoveryTimeout) of the re-
  established stream are equal to, or are less restrictive, than the
  pre-failure stream. If they are more restrictive, the recovery
  attempt must be aborted. If they are equal, or are less restrictive,
  then the recovery attempt is successful. When the attempt is a
  success, failure recovery related ACCEPTs are not forwarded upstream
  by the recovering agent.

  Any ST agent that decides that enough recovery attempts have been
  made, or that recovery attempts have no chance of succeeding, may
  indicate that no further attempts at recovery should be made. This is
  done by setting the N-bit in the REFUSE message, see Section 10.4.11.
  This bit must be set by agents, including the target, that know that
  there is no chance of recovery succeeding. An ST agent that receives
  a REFUSE message with the N-bit set (1) will not attempt recovery,
  regardless of the NoRecovery option, and it will set the N-bit when
  propagating the REFUSE message upstream.

6.2.1  Problems in Stream Recovery

  The reconstruction of a broken stream may not proceed smoothly. Since
  there may be some delay while the information concerning the failure
  is propagated throughout an internet, routing errors may occur for
  some time after a failure. As a result, the ST agent attempting the
  recovery may receive ERROR messages for the new CONNECTs that are
  caused by internet routing errors. The ST agent attempting the



Delgrossi & Berger, Editors   Experimental                     [Page 60]

RFC 1819              ST2+ Protocol Specification            August 1995


  recovery should be prepared to resend CONNECTs before it succeeds in
  reconstructing the stream. If the failure partitions the internet and
  a new set of routes cannot be found to the targets, the REFUSE
  messages will eventually be propagated to the origin, which can then
  inform the application so it can decide whether to terminate or to
  continue to attempt recovery of the stream.

  The new CONNECT may at some point reach an ST agent downstream of the
  failure before the DISCONNECT does. In this case, the ST agent that
  receives the CONNECT is not yet aware that the stream has suffered a
  failure, and will interpret the new CONNECT as resulting from a
  routing failure. It will respond with an ERROR message with the
  appropriate ReasonCode (StreamExists). Since the timeout that the ST
  agents immediately preceding the failure and immediately following
  the failure are approximately the same, it is very likely that the
  remnants of the broken stream will soon be torn down by a DISCONNECT
  message. Therefore, the ST agent that receives the ERROR message with
  ReasonCode (StreamExists) should retransmit the CONNECT message after
  the ToConnect timeout expires. If this fails again, the request will
  be retried for NConnect times. Only if it still fails will the ST
  agent send a REFUSE message with the appropriate ReasonCode
  (RouteLoop) to its previous-hop. This message will be propagated back
  to the ST agent that is attempting recovery of the damaged stream.
  That ST agent can issue a new CONNECT message if it so chooses. The
  REFUSE is matched to a CONNECT message created by a recovery
  operation through the LnkReference field in the CONNECT.

  ST agents that have propagated a CONNECT message and have received a
  REFUSE message should maintain this information for some period of
  time. If an ST agent receives a second CONNECT message for a target
  that recently resulted in a REFUSE, that ST agent may respond with a
  REFUSE immediately rather than attempting to propagate the CONNECT.
  This has the effect of pruning the tree that is formed by the
  propagation of CONNECT messages to a target that is not reachable by
  the routes that are selected first. The tree will pass through any
  given ST agent only once, and the stream setup phase will be
  completed faster.

  If a CONNECT message reaches a target, the target should as
  efficiently as possible use the state that it has saved from before
  the stream failed during recovery of the stream. It will then issue
  an ACCEPT message toward the origin. The ACCEPT message will be
  intercepted by the ST agent that is attempting recovery of the
  damaged stream, if not the origin. If the FlowSpec contained in the
  ACCEPT specifies the same selection of parameters as were in effect
  before the failure, then the ST agent that is attempting recovery
  will not propagate the ACCEPT. FlowSpec comparison is done by the
  LRM. If the selections of the parameters are different, then the ST



Delgrossi & Berger, Editors   Experimental                     [Page 61]

RFC 1819              ST2+ Protocol Specification            August 1995


  agent that is attempting recovery will send the origin a NOTIFY
  message with the appropriate ReasonCode (FailureRecovery) that
  contains a FlowSpec that specifies the new parameter values. The
  origin may then have to change its data generation characteristics
  and the stream's parameters with a CHANGE message to use the newly
  recovered subtree.

6.3  Stream Preemption

  As mentioned in Section 1.4.5, it is possible that the LRM decides to
  break a stream intentionally. This is called stream preemption.
  Streams are expected to be preempted in order to free resources for a
  new stream which has a higher priority.

  If the LRM decides that it is necessary to preempt one or more of the
  stream traversing it, the decision on which streams have to be
  preempted has to be made. There are two ways for an application to
  influence such decision:

  1.  based on FlowSpec information. For instance, with the ST2+
      FlowSpec, streams can be assigned a precedence value from 0
      (least important) to 256 (most important). This value is
      carried in the FlowSpec when the stream is setup, see Section
      9.2, so that the LRM is informed about it.

  2.  with the group mechanism. An application may specify that a set
      of streams are related to each other and that they are all
      candidate for preemption if one of them gets preempted. It can
      be done by using the fate-sharing relationship defined in
      Section 7.1.2. This helps the LRM making a good choice when
      more than one stream have to be preempted, because it leads to
      breaking a single application as opposed to as many
      applications as the number of preempted streams.

  If the LRM preempts a stream, it must notify the local ST agent. The
  following actions are performed by the ST agent:

o   The ST agent at the host where the stream was preempted sends
   DISCONNECT messages with the appropriate ReasonCode
   (StreamPreempted) toward the affected targets. It sends a REFUSE
   message with the appropriate ReasonCode (StreamPreempted) to the
   previous-hop.

o   A previous-hop ST agent of the preempted stream acts as in case of
   failure recovery, see Section 6.2.

o   A next-hop ST agent of the preempted stream acts as in case of
   failure recovery, see Section 6.2.



Delgrossi & Berger, Editors   Experimental                     [Page 62]

RFC 1819              ST2+ Protocol Specification            August 1995


  Note that, as opposite to failure recovery, there is no need to
  verify that the failure actually occurred, because this is explicitly
  indicated by the ReasonCode (StreamPreempted).

7.  A Group of Streams

  There may be need to associate related streams. The group mechanism
  is simply an association technique that allows ST agents to identify
  the different streams that are to be associated.

  A group consists of a set of streams and a relationship. The set of
  streams may be empty. The relationship applies to all group members.
  Each group is identified by a group name. The group name must be
  globally unique.

  Streams belong to the same group if they have the same GroupName in
  the GroupName field of the Group parameter, see Section 10.3.2. The
  relationship is defined by the Relationship field. Group membership
  must be specified at stream creation time and persists for the whole
  stream lifetime. A single stream may belong to multiple groups.

  The ST agent that creates a new group is called group initiator. Any
  ST agent can be a group initiator. The initiator allocates the
  GroupName and the Relationship among group members. The initiator may
  or may not be the origin of a stream belonging to the group.
  GroupName generation is described in Section 8.2.

7.1  Basic Group Relationships

  This version of ST defines four basic group relationships. An ST2+
  implementation must support all four basic relationships. Adherence
  to specified relationships are usually best effort. The basic
  relationships are described in detail below in Section 7.1.1 -
  Section 7.1.4.

7.1.1  Bandwidth Sharing

  Streams associated with the same group share the same network
  bandwidth. The intent is to support applications such as audio
  conferences where, of all participants, only some are allowed to
  speak at one time. In such a scenario, global bandwidth utilization
  can be lowered by allocating only those resources that can be used at
  once, e.g., it is sufficient to reserve bandwidth for a small set of
  audio streams.

  The basic concept of a shared bandwidth group is that the LRM will
  allocate up to some specified multiplier of the most demanding stream
  that it knows about in the group. The LRM will allocate resources



Delgrossi & Berger, Editors   Experimental                     [Page 63]

RFC 1819              ST2+ Protocol Specification            August 1995


  incrementally, as stream setup requests are received, until the total
  group requirements are satisfied. Subsequent setup requests will
  share the group's resources and will not need any additional
  resources allocated. The procedure will result in standard allocation
  where only one stream in a group traverses an agent, and shared
  allocations where multiple streams traverse an agent.

  To illustrate, let's call the multiplier mentioned above "N", and the
  most demanding stream that an agent knows about in a group Bmax. For
  an application that intends to allow three participants to speak at
  the same time, N has a value of three and each LRM will allocate for
  the group an amount of bandwidth up to 3*Bmax even when there are
  many more steams in the group. The LRM will reserve resources
  incrementally, per stream request, until N*Bmax resources are
  allocated. Each agent may be traversed by a different set and number
  of streams all belonging to the same group.

  An ST agent receiving a stream request presents the LRM with all
  necessary group information, see Section 4.5.2.2. If maximum
  bandwidth, N*Bmax, for the group has already been allocated and a new
  stream with a bandwidth demand less than Bmax is being established,
  the LRM won't allocate any further bandwidth.

  If there is less than N*Bmax resources allocated, the LRM will expand
  the resources allocated to the group by the amount requested in the
  new FlowSpec, up to N*Bmax resources. The LRM will update the
  FlowSpec based on what resources are available to the stream, but not
  the total resources allocated for the group.

  It should be noted that ST agents and LRMs become aware of a group's
  requirements only when the streams belonging to the group are
  created.  In case of the bandwidth sharing relationship, an
  application should attempt to establish the most demanding streams
  first to minimize stream setup efforts. If on the contrary the less
  demanding streams are built first, it will be always necessary to
  allocate additional bandwidth in consecutive steps as the most
  demanding streams are built. It is also up to the applications to
  coordinate their different FlowSpecs and decide upon an appropriate
  value for N.

7.1.2  Fate Sharing

  Streams belonging to this group share the same fate. If a stream is
  deleted, the other members of the group are also deleted. This is
  intended to support stream preemption by indicating which streams are
  mutually related. If preemption of multiple streams is necessary,
  this information can be used by the LRM to delete a set of related
  streams, e.g., with impact on a single application, instead of making



Delgrossi & Berger, Editors   Experimental                     [Page 64]

RFC 1819              ST2+ Protocol Specification            August 1995


  a random choice with the possible effect of interrupting several
  different applications. This attribute does not apply to normal
  stream shut down, i.e., ReasonCode (ApplDisconnect). On normal
  disconnect, other streams belonging to such groups remain active.

  This relationship provides a hint on which streams should be
  preempted. Still, the LRM responsible for the preemption is not
  forced to behave accordingly, and other streams could be preempted
  first based on different criteria.

7.1.3  Route Sharing

  Streams belonging to this group share the same paths as much as is
  possible. This can be desirable for several reasons, e.g., to exploit
  the same allocated resources or in the attempt to maintain the
  transmission order. An ST agent attempts to select the same path
  although the way this is implemented depends heavily on the routing
  algorithm which is used.

  If the routing algorithm is sophisticated enough, an ST agent can
  suggest that a stream is routed over an already established path.
  Otherwise, it can ask the routing algorithm for a set of legal routes
  to the destination and check whether the desired path is included in
  those feasible.

  Route sharing is a hint to the routing algorithm used by ST. Failing
  to route a stream through a shared path should not prevent the
  creation of a new stream or result in the deletion of an existing
  stream.

7.1.4  Subnet Resources Sharing

  This relationship provides a hint to the data link layer functions.
  Streams belonging to this group may share the same MAC layer
  resources. As an example, the same MAC layer multicast address may be
  used for all the streams in a given group. This mechanism allows for
  a better utilization of MAC layer multicast addresses and it is
  especially useful when used with network adapters that offer a very
  small number of MAC layer multicast addresses.

7.2  Relationships Orthogonality

  The four basic relationships, as they have been defined, are
  orthogonal. This means, any combinations of the basic relationships
  are allowed. For instance, let's consider an application that
  requires full-duplex service for a stream with multiple targets.
  Also, let's suppose that only N targets are allowed to send data back
  to the origin at the same time. In this scenario, all the reverse



Delgrossi & Berger, Editors   Experimental                     [Page 65]

RFC 1819              ST2+ Protocol Specification            August 1995


  streams could belong to the same group. They could be sharing both
  the paths and the bandwidth attributes. The Path&Bandwidth sharing
  relationship is obtained from the basic set of relationships. This
  example is important because it shows how full-duplex service can be
  efficiently obtained in ST.

8.  Ancillary Functions

  Certain functions are required by ST host and intermediate agent
  implementations. Such functions are described in this section.

8.1  Stream ID Generation

  The stream ID, or SID, is composed of 16-bit unique identifier and
  the stream origin's 32-bit IP address. Stream IDs must be globally
  unique.  The specific definition and format of the 16 -bit field is
  left to the implementor. This field is expected to have only local
  significance.

  An ST implementation has to provide a stream ID generator facility,
  so that an application or higher layer protocol can obtain a unique
  IDs from the ST layer. This is a mechanism for the application to
  request the allocation of stream ID that is independent of the
  request to create a stream. The Stream ID is used by the application
  or higher layer protocol when creating the streams.

  For instance, the following two functions could be made available:

  o   AllocateStreamID() -> result, StreamID

  o   ReleaseStreamID(StreamID) -> result

  An implementation may also provide a StreamID deletion function.

8.2  Group Name Generator

  GroupName generation is similar to Stream ID generation. The
  GroupName includes a 16-bit unique identifier, a 32-bit creation
  timestamp, and a 32-bit IP address. Group names are globally unique.
  A GroupName includes the creator's IP address, so this reduces a
  global uniqueness problem to a simple local problem. The specific
  definitions and formats of the 16-bit field and the 32-bit creation
  timestamp are left to the implementor. These fields must be locally
  unique, and only have local significance.

  An ST implementation has to provide a group name generator facility,
  so that an application or higher layer protocol can obtain a unique
  GroupName from the ST layer. This is a mechanism for the application



Delgrossi & Berger, Editors   Experimental                     [Page 66]

RFC 1819              ST2+ Protocol Specification            August 1995


  to request the allocation of a GroupName that is independent of the
  request to create a stream. The GroupName is used by the application
  or higher layer protocol when creating the streams that are to be
  part of the group.

  For instance, the following two functions could be made available:

  o   AllocateGroupName() -> result, GroupName

  o   ReleaseGroupName(GroupName) -> result

  An implementation may also provide a GroupName deletion function.

8.3  Checksum Computation

  The standard Internet checksum algorithm is used for ST: "The
  checksum field is the 16-bit one's complement of the one's complement
  sum of all 16-bit words in the header. For purposes of computing the
  checksum, the value of the checksum field is zero (0)." See
  [RFC1071], [RFC1141], and [RFC791] for suggestions for efficient
  checksum algorithms.

8.4  Neighbor ST Agent Identification and Information Collection

  The STATUS message can be used to collect information about neighbor
  ST agents, streams the neighbor supports, and specific targets of
  streams the neighbor supports. An agent receiving a STATUS message
  provides the requested information via a STATUS-RESPONSE message.

  The STATUS message can be used to collect different information from
  a neighbor. It can be used to:

o   identify ST capable neighbors. If an ST agent wishes to check if
   a neighbor is ST capable, it should generate a STATUS message with
   an SID which has all its fields set to zero. An agent receiving a
   STATUS message with such SID should answer with a STATUS-RESPONSE
   containing the same SID, and no other stream information. The
   receiving ST agent must answer as soon as possible to aid in Round
   Trip Time estimation, see Section 8.5;

o   obtain information on a particular stream. If an ST agent wishes to
   check a neighbor's general information related to a specific
   stream, it should generate a STATUS message containing the stream's
   SID. An ST agent receiving such a message, will first check to see
   if the stream is known. If not known, the receiving ST agent sends a
   STATUS-RESPONSE containing the same SID, and no other stream
   information. If the stream is known, the receiving ST agent sends a
   STATUS-RESPONSE containing the stream's SID, IPHops, FlowSpec, group



Delgrossi & Berger, Editors   Experimental                     [Page 67]

RFC 1819              ST2+ Protocol Specification            August 1995


   membership (if any), and as many targets as can be included in a
   single message as limited by MTU, see Section 5.1.2. Note that all
   targets may not be included in a response to a request for general
   stream information. If information on a specific target in a stream
   is desired, the mechanism described next should be used.

o   obtain information on particular targets in a stream. If an ST agent
   wishes to check a neighbor's information related to one or more
   specific targets of a specific stream, it should generate a STATUS
   message containing the stream's SID and a TargetList parameter
   listing the relevant targets. An ST agent receiving such a message,
   will first check to see if the stream and target are known. If the
   stream is not known, the agent follows the process described above.
   If both the stream and targets are known, the agent responds with
   STATUS-RESPONSE containing the stream's SID, IPHops, FlowSpec, group
   membership (if any), and the requested targets that are known. If
   the stream is known but the target is not, the agent responds with a
   STATUS-RESPONSE containing the stream's SID, IPHops, FlowSpec, group
   membership (if any), but no targets.

  The specific formats for STATUS and STATUS-RESPONSE messages are
  defined in Section 10.4.12 and Section 10.4.13.

8.5  Round Trip Time Estimation

  SCMP is made reliable through use of retransmission when an expected
  acknowledgment is not received in a timely manner. Timeout and
  retransmission algorithms are implementation dependent and are
  outside the scope of this document. However, it must be reasonable
  enough not to cause excessive retransmission of SCMP messages while
  maintaining the robustness of the protocol. Algorithms on this
  subject are described in [WoHD95], [Jaco88], [KaPa87].

  Most existing algorithms are based on an estimation of the Round Trip
  Time (RTT) between two hosts. With SCMP, if an ST agent wishes to
  have an estimate of the RTT to and from a neighbor, it should
  generate a STATUS message with an SID which has all its fields set to
  zero. An ST agent receiving a STATUS message with such SID should
  answer as rapidly as possible with a STATUS-RESPONSE message
  containing the same SID, and no other stream information. The time
  interval between the send and receive operations can be used as an
  estimate of the RTT to and from the neighbor.

8.6  Network MTU Discovery

  At connection setup, the application at the origin asks the local ST
  agent to create streams with certain QoS requirements. The local ST
  agent fills out its network MTU value in the MaxMsgSize parameter in



Delgrossi & Berger, Editors   Experimental                     [Page 68]

RFC 1819              ST2+ Protocol Specification            August 1995


  the CONNECT message and forwards it to the next-hop ST agents. Each
  ST agent in the path checks to see if it's network MTU is smaller
  than the one specified in the CONNECT message and, if it is, the ST
  agent updates the MaxMsgSize in the CONNECT message to it's network
  MTU. If the target application decides to accept the stream, the ST
  agent at the target copies the MTU value in the CONNECT message to
  the MaxMsgSize field in the ACCEPT message and sends it back to the
  application at the origin. The MaxMsgSize field in the ACCEPT message
  is the minimum MTU of the intervening networks to that target. If the
  application has multiple targets then the minimum MTU of the stream
  is the smallest MaxMsgSize received from all the ACCEPT messages. It
  is the responsibility of the application to segment its PDUs
  according to the minimum MaxMsgSize of the stream since no data
  fragmentation is supported during the data transfer phase. If a
  particular target's MaxMsgSize is unacceptable to an application, it
  may disconnect the target from the stream and assume that the target
  cannot be supported.  When evaluating a particular target's
  MaxMsgSize, the application or the application interface will need to
  take into account the size of the ST data header.

8.7  IP Encapsulation of ST

  ST packets may be encapsulated in IP to allow them to pass through
  routers that don't support the ST Protocol. Of course, ST resource
  management is precluded over such a path, and packet overhead is
  increased by encapsulation, but if the performance is reasonably
  predictable this may be better than not communicating at all.

  IP-encapsulated ST packets begin with a normal IP header. Most fields
  of the IP header should be filled in according to the same rules that
  apply to any other IP packet. Three fields of special interest are:

o   Protocol is 5, see [RFC1700], to indicate an ST packet is enclosed,
   as opposed to TCP or UDP, for example.

o   Destination Address is that of the next-hop ST agent. This may or
   may not be the target of the ST stream. There may be an intermediate
   ST agent to which the packet should be routed to take advantage of
   service guarantees on the path past that agent. Such an intermediate
   agent would not be on a directly-connected network (or else IP
   encapsulation wouldn't be needed), so it would probably not be
   listed in the normal routing table. Additional routing mechanisms,
   not defined here, will be required to learn about such agents.

o   Type-of-Service may be set to an appropriate value for the service
   being requested, see [RFC1700]. This feature is not implemented
   uniformly in the Internet, so its use can't be precisely defined
   here.



Delgrossi & Berger, Editors   Experimental                     [Page 69]

RFC 1819              ST2+ Protocol Specification            August 1995


  IP encapsulation adds little difficulty for the ST agent that
  receives the packet. However, when IP encapsulation is performed it
  must be done in both directions. To process the encapsulated IP
  message, the ST agents simply remove the IP header and proceed with
  ST header as usual.

  The more difficult part is during setup, when the ST agent must
  decide whether or not to encapsulate. If the next-hop ST agent is on
  a remote network and the route to that network is through a router
  that supports IP but not ST, then encapsulation is required. The
  routing function provides ST agents with the route and capability
  information needed to support encapsulation.

  On forwarding, the (mostly constant) IP Header must be inserted and
  the IP checksum appropriately updated.

  Applications are informed about the number of IP hops traversed on
  the path to each target. The IPHops field of the CONNECT message, see
  Section 10.4.4, carries the number of traversed IP hops to the target
  application. The field is incremented by each ST agent when IP
  encapsulation will be used to reach the next-hop ST agent. The number
  of IP hops traversed is returned to the origin in the IPHops field of
  the ACCEPT message, Section 10.4.1.

  When using IP Encapsulation, the MaxMsgSize field will not reflect
  the MTU of the IP encapsulated segments. This means that IP
  fragmentation and reassembly may be needed in the IP cloud to support
  a message of MaxMsgSize. IP fragmentation can only occur when the MTU
  of the IP cloud, less IP header length, is the smallest MTU in a
  stream's network path.

8.8  IP Multicasting

  If an ST agent must use IP encapsulation to reach multiple next-hops
  toward different targets, then either the packet must be replicated
  for transmission to each next-hop, or IP multicasting may be used if
  it is implemented in the next-hop ST agents and in the intervening IP
  routers.

  When the stream is established, the collection of next-hop ST agents
  must be set up as an IP multicast group. The ST agent must allocate
  an appropriate IP multicast address (see Section 10.3.3) and fill
  that address in the IPMulticastAddress field of the CONNECT message.
  The IP multicast address in the CONNECT message is used to inform the
  next-hop ST agents that they should join the multicast group to
  receive subsequent PDUs. Obviously, the CONNECT message itself must
  be sent using unicast. The next-hop ST agents must be able to receive
  on the specified multicast address in order to accept the connection.



Delgrossi & Berger, Editors   Experimental                     [Page 70]

RFC 1819              ST2+ Protocol Specification            August 1995


  If the next-hop ST agent can not receive on the specified multicast
  address, it sends a REFUSE message with ReasonCode (BadMcastAddress).
  Upon receiving the REFUSE, the upstream agent can choose to retry
  with a different multicast address. Alternatively, it can choose to
  lose the efficiency of multicast and use unicast delivery.

  The following permanent IP multicast addresses have been assigned to
  ST:

          224.0.0.7 All ST routers (intermediate agents)
          224.0.0.8 All ST hosts (agents)

  In addition, a block of transient IP multicast addresses, 224.1.0.0 -
  224.1.255.255, has been allocated for ST multicast groups. For
  instance, the following two functions could be made available:

  o   AllocateMcastAddr() -> result, McastAddr

  o   ListenMcastAddr(McastAddr) -> result

  o   ReleaseMcastAddr(McastAddr) -> result

9.  The ST2+ Flow Specification

  This section defines the ST2+ flow specification. The flow
  specification contains the user application requirements in terms of
  quality of service. Its contents are LRM dependent and are
  transparent to the ST2 setup protocol. ST2 carries the flow
  specification as part of the FlowSpec parameter, which is described
  in Section 10.3.1. The required ST2+ flow specification is included
  in the protocol only to support interoperability. ST2+ also defines a
  "null" flow specification to be used only to support testing.

  ST2 is not dependent on a particular flow specification format and it
  is expected that other versions of the flow specification will be
  needed in the future. Different flow specification formats are
  distinguished by the value of the Version field of the FlowSpec
  parameter, see Section 10.3.1. A single stream is always associated
  with a single flow specification format, i.e., the Version field is
  consistent throughout the whole stream. The following Version field
  values are defined:










Delgrossi & Berger, Editors   Experimental                     [Page 71]

RFC 1819              ST2+ Protocol Specification            August 1995


  0 - Null FlowSpec       /* must be supported */
  1 - ST Version 1
  2 - ST Version 1.5
  3 - RFC 1190 FlowSpec
  4 - HeiTS FlowSpec
  5 - BerKom FlowSpec
  6 - RFC 1363 FlowSpec
  7 - ST2+ FlowSpec       /* must be supported */

  FlowSpecs version #0 and #7 must be supported by ST2+
  implementations.  Version numbers in the range 1-6 indicate flow
  specifications are currently used in existing ST2 implementations.
  Values in the 128-255 range are reserved for private and experimental
  use.

  In general, a flow specification may support sophisticated flow
  descriptions. For example, a flow specification could represent sub-
  flows of a particular stream. This could then be used to by a
  cooperating application and LRM to forward designated packets to
  specific targets based on the different sub-flows. The reserved bits
  in the ST2 Data PDU, see Section 10.1, may be used with such a flow
  specification to designate packets associated with different sub-
  flows. The ST2+ FlowSpec is not so sophisticated, and is intended for
  use with applications that generate traffic at a single rate for
  uniform delivery to all targets.

9.1  FlowSpec Version #0 - (Null FlowSpec)

  The flow specification identified by a #0 value of the Version field
  is called the Null FlowSpec. This flow specification causes no
  resources to be allocated. It is ignored by the LRMs. Its contents
  are never updated. Stream setup takes place in the usual way leading
  to successful stream establishment, but no resources are actually
  reserved.

  The purpose of the Null FlowSpec is that of facilitating
  interoperability tests by allowing streams to be built without
  actually allocating the correspondent amount of resources. The Null
  FlowSpec may also be used for testing and debugging purposes.

  The Null FlowSpec comprises the 4-byte FlowSpec parameter only, see
  Section 10.3.1. The third byte (Version field) must be set to 0.

9.2  FlowSpec Version #7 - ST2+ FlowSpec

  The flow specification identified by a #7 value of the Version field
  is the ST2+ FlowSpec, to be used by all ST2+ implementations. It
  allows the user applications to express their real-time requirements



Delgrossi & Berger, Editors   Experimental                     [Page 72]

RFC 1819              ST2+ Protocol Specification            August 1995


  in the form of a QoS class, precedence, and three basic QoS
  parameters:

  o   message size,

  o   message rate,

  o   end-to-end delay.

  The QoS class indicates what kind of QoS guarantees are expected by
  the application, e.g., strict guarantees or predictive, see Section
  9.2.1. QoS parameters are expressed via a set of values:

o   the "desired" values indicate the QoS desired by the application.
   These values are assigned by the application and never modified by
   the LRM.

o   the "limit" values indicate the lowest QoS the application is
   willing to accept. These values are also assigned by the application
   and never modified by the LRM.

o   the "actual" values indicate the QoS that the system is able to
   provide. They are updated by the LRM at each node. The "actual"
   values are always bounded by the "limit" and "desired" values.

9.2.1  QoS Classes

  Two QoS classes are defined:

  1 - QOS_PREDICTIVE      /* QoSClass field value = 0x01, must be
                             supported*/
  2 - QOS_GUARANTEED      /* QoSClass field value = 0x10, optional */

o   The QOS_PREDICTIVE class implies that the negotiated QoS may be
   violated for short time intervals during the data transfer. An
   application has to provide values that take into account the
   "normal" case, e.g., the "desired" message rate is the allocated rate
   for the transmission. Reservations are done for the "normal" case as
   opposite to the peak case required by the QOS_GUARANTEED service
   class. This QoS class must be supported by all implementations.

o   The QOS_GUARANTEED class implies that the negotiated QoS for the
   stream is never violated during the data transfer. An application
   has to provide values that take into account the worst possible
   case, e.g., the "desired" message rate is the peak rate for the
   transmission. As a result, sufficient resources to handle the peak
   rate are reserved. This strategy may lead to overbooking of
   resources, but it provides strict real-time guarantees. Support of



Delgrossi & Berger, Editors   Experimental                     [Page 73]

RFC 1819              ST2+ Protocol Specification            August 1995


   this QoS class is optional.

  If a LRM that doesn't support class QOS_GUARANTEED receives a
  FlowSpec containing QOS_GUARANTEED class, it informs the local ST
  agent. The ST agent may try different paths or delete the
  correspondent portion of the stream as described in Section 5.5.3,
  i.e., ReasonCode (FlowSpecError).

9.2.2  Precedence

  Precedence is the importance of the connection being established.
  Zero represents the lowest precedence. The lowest level is expected
  to be used by default. In general, the distinction between precedence
  and priority is that precedence specifies streams that are permitted
  to take previously committed resources from another stream, while
  priority identifies those PDUs that a stream is most willing to have
  dropped.

9.2.3  Maximum Data Size

  This parameter is expressed in bytes. It represents the maximum
  amount of data, excluding ST and other headers, allowed to be sent in
  a messages as part of the stream. The LRM first checks whether it is
  possible to get the value desired by the application (DesMaxSize). If
  not, it updates the actual value (ActMaxSize) with the available size
  unless this value is inferior to the minimum allowed by the
  application (LimitMaxSize), in which case it informs the local ST
  agent that it is not possible to build the stream along this path.

9.2.4  Message Rate

  This parameter is expressed in messages/second. It represents the
  transmission rate for the stream. The LRM first checks whether it is
  possible to get the value desired by the application (DesRate). If
  not, it updates the actual value (ActRate) with the available rate
  unless this value is inferior to the minimum allowed by the
  application (LimitRate), in which case it informs the local ST agent
  that it is not possible to build the stream along this path.

9.2.5  Delay and Delay Jitter

  The delay parameter is expressed in milliseconds. It represents the
  maximum end-to-end delay for the stream. The LRM first checks whether
  it is possible to get the value desired by the application
  (DesMaxDelay). If not, it updates the actual value (ActMaxDelay) with
  the available delay unless this value is greater than the maximum
  delay allowed by the application (LimitMaxDelay), in which case it
  informs the local ST agent that it is not possible to build the



Delgrossi & Berger, Editors   Experimental                     [Page 74]

RFC 1819              ST2+ Protocol Specification            August 1995


  stream along this path.

  The LRM also updates at each node the MinDelay field by incrementing
  it by the minimum possible delay to the next-hop. Information on the
  minimum possible delay allows to calculate the maximum end-to-end
  delay range, i.e., the time interval in which a data packet can be
  received. This interval should not exceed the DesMaxDelayRange value
  indicated by the application. The maximum end-to-end delay range is
  an upper bound of the delay jitter.

9.2.6  ST2+ FlowSpec Format

  The ST2+ FlowSpec has the following format:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |    QosClass   |  Precedence   |            0(unused)          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                             DesRate                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                            LimitRate                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                             ActRate                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            DesMaxSize         |           LimitMaxSize        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            ActMaxSize         |           DesMaxDelay         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            LimitMaxDelay      |           ActMaxDelay         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            DesMaxDelayRange   |           ActMinDelay         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 9: The ST2+ FlowSpec.

  The LRM modifies only "actual" fields, i.e., those beginning with
  "Act". The user application assigns values to all other fields.

o   QoSClass indicates which of the two defined classes of service
   applies. The two classes are: QOS_PREDICTIVE (QoSClass = 1) and
   QOS_GUARANTEED (QoSClass = 2).

o   Precedence indicates the stream's precedence. Zero represents the
   lowest precedence, and should be the default value.

o   DesRate is the desired transmission rate for the stream in messages/
   second. This field is set by the origin and is not modified by



Delgrossi & Berger, Editors   Experimental                     [Page 75]

RFC 1819              ST2+ Protocol Specification            August 1995


   intermediate agents.

o   LimitRate is the minimum acceptable transmission rate in messages/
   second. This field is set by the origin and is not modified by
   intermediate agents.

o   ActRate is the actual transmission rate allocated for the stream in
   messages/second. Each agent updates this field with the available
   rate unless this value is less than LimitRate, in which case a
   REFUSE is generated.

o   DesMaxSize is the desired maximum data size in bytes that will be
   sent in a message in the stream. This field is set by the origin.

o   LimitMaxSize is the minimum acceptable data size in bytes. This
   field is set by the origin

o   ActMaxSize is the actual maximum data size that may be sent in a
   message in the stream. This field is updated by each agent based on
   MTU and available resources. If available maximum size is less than
   LimitMaxSize, the connection must be refused with ReasonCode
   (CantGetResrc).

o   DesMaxDelay is the desired maximum end-to-end delay for the stream
   in milliseconds. This field is set by the origin.

o   LimitMaxDelay is the upper-bound of acceptable end-to-end delay for
   the stream in milliseconds. This field is set by the origin.

o   ActMaxDelay is the maximum end-to-end delay that will be seen by
   data in the stream. Each ST agent adds to this field the maximum
   delay that will be introduced by the agent, including transmission
   time to the next-hop ST agent. If the actual maximum exceeds
   LimitMaxDelay, then the connection is refused with ReasonCode
   (CantGetResrc).

o   DesMaxDelayRange is the desired maximum delay range that may be
   encountered end-to-end by stream data in milliseconds. This value is
   set by the application at the origin.

o   ActMinDelay is the actual minimum end-to-end delay that will be
   encountered by stream data in milliseconds. Each ST agent adds to
   this field the minimum delay that will be introduced by the agent,
   including transmission time to the next-hop ST agent. Each agent
   must add at least 1 millisecond. The delay range for the stream can
   be calculated from the actual maximum and minimum delay fields. It
   is expected that the range will be important to some applications.




Delgrossi & Berger, Editors   Experimental                     [Page 76]

RFC 1819              ST2+ Protocol Specification            August 1995


10.  ST2 Protocol Data Units Specification

10.1  Data PDU

  IP and ST packets can be distinguished by the IP Version Number
  field, i.e., the first four (4) bits of the packet; ST has been
  assigned the value 5 (see [RFC1700]). There is no requirement for
  compatibility between IP and ST packet headers beyond the first four
  bits. (IP uses value 4.)

  The ST PDUs sent between ST agents consist of an ST Header
  encapsulating either a higher layer PDU or an ST Control Message.
  Data packets are distinguished from control messages via the D-bit
  (bit 8) in the ST header.

  The ST Header also includes an ST Version Number, a total length
  field, a header checksum, a unique id, and the stream origin 32-bit
  IP address. The unique id and the stream origin 32-bit IP address
  form the stream id (SID). This is shown in Figure 10. Please refer to
  Section 10.6 for an explanation of the notation.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  ST=5 | Ver=3 |D| Pri |   0   |            TotalBytes         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          HeaderChecksum       |            UniqueID           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         OriginIPAddress                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                           Figure 10: ST Header

o   ST is the IP Version Number assigned to identify ST packets. The
   value for ST is 5.

o   Ver is the ST Version Number. The value for the current ST2+ version
   is 3.

o   D (bit 8) is set to 1 in all ST data packets and to 0 in all SCMP
   control messages.

o   Pri (bits 9-11) is the packet-drop priority field with zero (0)
   being lowest priority and seven the highest. The field is to be used
   as described in Section 3.2.2.






Delgrossi & Berger, Editors   Experimental                     [Page 77]

RFC 1819              ST2+ Protocol Specification            August 1995


o   TotalBytes is the length, in bytes, of the entire ST packet, it
   includes the ST Header but does not include any local network
   headers or trailers. In general, all length fields in the ST
   Protocol are in units of bytes.

o   HeaderChecksum covers only the ST Header (12 bytes). The ST Protocol
   uses 16-bit checksums here in the ST Header and in each Control
   Message. For checksum computation, see Section 8.3.

o   UniqueID is the first element of the stream ID (SID). It is locally
   unique at the stream origin, see Section 8.1.

o   OriginIPAddress is the second element of the SID. It is the 32-bit
   IP address of the stream origin, see Section 8.1.

  Bits 12-15 must be set to zero (0) when using the flow specifications
  defined in this document, see Section 9. They may be set accordingly
  when other flow specifications are used, e.g., as described in
  [WoHD95].

10.1.1  ST Data Packets

  ST packets whose D-bit is non-zero are data packets. Their
  interpretation is a matter for the higher layer protocols and
  consequently is not specified here. The data packets are not
  protected by an ST checksum and will be delivered to the higher layer
  protocol even with errors. ST agents will not pass data packets over
  a new hop whose setup is not complete.

10.2  Control PDUs

  SCMP control messages are exchanged between neighbor ST agents using
  a D-bit of zero (0). The control protocol follows a request-response
  model with all requests expecting responses. Retransmission after
  timeout (see Section 4.3) is used to allow for lost or ignored
  messages. Control messages do not extend across packet boundaries; if
  a control message is too large for the MTU of a hop, its information
  is partitioned and a control message per partition is sent (see
  Section 5.1.2). All control messages have the following format












Delgrossi & Berger, Editors   Experimental                     [Page 78]

RFC 1819              ST2+ Protocol Specification            August 1995


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  OpCode       |     Options   |           TotalBytes          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          Reference            |          LnkReference         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         SenderIPAddress                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Checksum           |            ReasonCode         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                      OpCodeSpecificData                       :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 11: ST Control Message Format

o   OpCode identifies the type of control message.

o   Options is used to convey OpCode-specific variations for a control
   message.

o   TotalBytes is the length of the control message, in bytes, including
   all OpCode specific fields and optional parameters. The value is
   always divisible by four (4).

o   Reference is a transaction number. Each sender of a request control
   message assigns a Reference number to the message that is unique
   with respect to the stream. The Reference number is used by the
   receiver to detect and discard duplicates. Each acknowledgment
   carries the Reference number of the request being acknowledged.
   Reference zero (0) is never used, and Reference numbers are assumed
   to be monotonically increasing with wraparound so that the older-
   than and more-recent-than relations are well defined.

o   LnkReference contains the Reference field of the request control
   message that caused this request control message to be created. It
   is used in situations where a single request leads to multiple
   responses from the same ST agent. Examples are CONNECT and CHANGE
   messages that are first acknowledged hop-by-hop and then lead to an
   ACCEPT or REFUSE response from each target.

o   SenderIPAddress is the 32-bit IP address of the network interface
   that the ST agent used to send the control message. This value
   changes each time the packet is forwarded by an ST agent (hop-by-
   hop).





Delgrossi & Berger, Editors   Experimental                     [Page 79]

RFC 1819              ST2+ Protocol Specification            August 1995


o   Checksum is the checksum of the control message. Because the control
   messages are sent in packets that may be delivered with bits in
   error, each control message must be checked to be error free before
   it is acted upon.

o   ReasonCode is set to zero (0 = NoError) in most SCMP messages.
   Otherwise, it can be set to an appropriate value to indicate an
   error situation as defined in Section 10.5.3.

o   OpCodeSpecificData contains any additional information that is
   associated with the control message. It depends on the specific
   control message and is explained further below. In some response
   control messages, fields of zero (0) are included to allow the
   format to match that of the corresponding request message. The
   OpCodeSpecificData may also contain optional parameters. The
   specifics of OpCodeSpecificData are defined in Section 10.3.

10.3  Common SCMP Elements

  Several fields and parameters (referred to generically as elements)
  are common to two or more PDUs. They are described in detail here
  instead of repeating their description several times. In many cases,
  the presence of a parameter is optional. To permit the parameters to
  be easily defined and parsed, each is identified with a PCode byte
  that is followed by a PBytes byte indicating the length of the
  parameter in bytes (including the PCode, PByte, and any padding
  bytes). If the length of the information is not a multiple of four
  (4) bytes, the parameter is padded with one to three zero (0) bytes.
  PBytes is thus always a multiple of four (4). Parameters can be
  present in any order.

10.3.1  FlowSpec

  The FlowSpec parameter (PCode = 1) is used in several SCMP messages
  to convey the ST2 flow specification. The FlowSpec parameter has the
  following format:

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   PCode = 1   |    PBytes     |   Version     |       0       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                        FlowSpec detail                        :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 12: FlowSpec Parameter




Delgrossi & Berger, Editors   Experimental                     [Page 80]

RFC 1819              ST2+ Protocol Specification            August 1995


o   the Version field contains the FlowSpec version.

o   the FlowSpec detail field contains the flow specification and is
   transparent to the ST agent. It is the data structure to be passed
   to the LRM. It must be 4-byte aligned.

  The Null FlowSpec, see Section 9.1, has no FlowSpec detail field.
  PBytes is set to four (4), and Version is set to zero (0). The ST2+
  FlowSpec, see Section 9.2, is a 32-byte data structure. PBytes is set
  to 36, and Version is set to seven (7).

10.3.2  Group

  The Group parameter (PCode = 2) is an optional argument used to
  indicate that the stream is a member in the specified group.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  PCode = 2    |   PBytes = 16 |           GroupUniqueID       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        GroupCreationTime                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                     GroupInitiatorIPAddress                   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Relationship       |                 N             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        Figure 13: Group Parameter

o   GroupUniqueID, GroupInitiatorIPAddress, and GroupCreationTime
   together form the GroupName field. They are allocated by the group
   name generator function, see Section 8.2. GroupUniqueID and
   GroupCreationTime are implementation specific and have only local
   definitions.

o   Relationship has the following format:

                                           0
                       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
                      |    0 (unused)         |S|P|F|B|
                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 14: Relationship Field






Delgrossi & Berger, Editors   Experimental                     [Page 81]

RFC 1819              ST2+ Protocol Specification            August 1995


  The B, F, P, S bits correspond to Bandwidth, Fate, Path, and Subnet
  resources sharing, see Section 7. A value of 1 indicates that the
  relationship exists for this group. All combinations of the four bits
  are allowed. Bits 0-11 of the Relationship field are reserved for
  future use and must be set to 0.

o   N contains a legal value only if the B-bit is set. It is the value
   of the N parameter to be used as explained in Section 7.1.1.

10.3.3  MulticastAddress

  The MulticastAddress parameter (PCode = 3) is an optional parameter
  that is used when using IP encapsulation and setting up an IP
  multicast group. This parameter is used to communicate the desired IP
  multicast address to next-hop ST agents that should become members of
  the group, see Section 8.8.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  PCode = 3    |   PBytes = 8  |                0              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        IPMulticastAddress                     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 15:  MulticastAddress

o   IPMulticastAddress is the 32-bit IP multicast address to be used to
   receive data packets for the stream.

10.3.4  Origin

  The Origin parameter (PCode = 4) is used to identify the next higher
  protocol, and the SAP being used in conjunction with that protocol.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  PCode = 5    |   PBytes      | NextPcol      |OriginSAPBytes |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                OriginSAP                      :     Padding   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                            Figure 16: Origin







Delgrossi & Berger, Editors   Experimental                     [Page 82]

RFC 1819              ST2+ Protocol Specification            August 1995


o   NextPcol is an 8-bit field used in demultiplexing operations to
   identify the protocol to be used above ST. The values of NextPcol
   are in the same number space as the IP header's Protocol field and
   are consequently defined in the Assigned Numbers RFC [RFC1700].

o   OriginSAPBytes specifies the length of the OriginSAP, exclusive of
   any padding required to maintain 32-bit alignment.

o   OriginSAP identifies the origin's SAP associated with the NextPcol
   protocol.

  Note that the 32-bit IP address of the stream origin is not included
  in this parameter because it is always available as part of the ST
  header.

10.3.5  RecordRoute

  The RecordRoute parameter (PCode = 5) is used to request that the
  route between the origin and a target be recorded and delivered to
  the user application. The ST agent at the origin (or target)
  including this parameter, has to determine the parameter's length,
  indicated by the PBytes field. ST agents processing messages
  containing this parameter add their receiving IP address in the
  position indicated by the FreeOffset field, space permitting. If no
  space is available, the parameter is passed unchanged. When included
  by the origin, all agents between the origin and the target add their
  IP addresses and this information is made available to the
  application at the target. When included by the target, all agents
  between the target and the origin, inclusive, add their IP addresses
  and this information is made available to the application at the
  origin.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   PCode = 5   |     PBytes    |       0       |  FreeOffset   |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          IP Address 1                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                              ...                              :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          IP Address N                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                          Figure 17: RecordRoute

o   PBytes is the length of the parameter in bytes. Length is determined
   by the agent (target or origin) that first introduces the parameter.



Delgrossi & Berger, Editors   Experimental                     [Page 83]

RFC 1819              ST2+ Protocol Specification            August 1995


   Once set, the length of the parameter remains unchanged.

o   FreeOffset indicates the offset, relative to the start of the
   parameter, for the next IP address to be recorded. When the
   FreeOffset is greater than, or equal to, PBytes the RecordRoute
   parameter is full.

o   IP Address is filled in, space permitting, by each ST agent
   processing this parameter.

10.3.6  Target and TargetList

  Several control messages use a parameter called TargetList (PCode =
  6), which contains information about the targets to which the message
  pertains. For each Target in the TargetList, the information includes
  the 32-bit IP address of the target, the SAP applicable to the next
  higher layer protocol, and the length of the SAP (SAPBytes).
  Consequently, a Target structure can be of variable length. Each
  entry has the format shown in Figure 18.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Target IP Address                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  TargetBytes  |  SAPBytes     |     SAP       :    Padding    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                            Figure 18: Target

o   TargetIPAddress is the 32-bit IP Address of the Target.

o   TargetBytes is the length of the Target structure, beginning with
   the TargetIPAddress.

o   SAPBytes is the length of the SAP, excluding any padding required to
   maintain 32-bit alignment.

o   SAP may be longer than 2 bytes and it includes a padding when
   required. There would be no padding required for SAPs with lengths
   of 2, 6, 10, etc., bytes.










Delgrossi & Berger, Editors   Experimental                     [Page 84]

RFC 1819              ST2+ Protocol Specification            August 1995


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  PCode = 6    |   PBytes      |           TargetCount = N     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Target 1                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                               :                               :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                           Target N                            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                          Figure 19: TargetList
10.3.7  UserData

  The UserData parameter (PCode = 7) is an optional parameter that may
  be used by the next higher protocol or an application to convey
  arbitrary information to its peers. This parameter is propagated in
  some control messages and its contents have no significance to ST
  agents. Note that since the size of control messages is limited by
  the smallest MTU in the path to the targets, the maximum size of this
  parameter cannot be specified a priori. If the size of this parameter
  causes a message to exceed the network MTU, an ST agent behaves as
  described in Section 5.1.2. The parameter must be padded to a
  multiple of 32 bits.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  PCode = 7    |   PBytes      |           UserBytes           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                      UserInfo                 :   Padding     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                           Figure 20:  UserData

o   UserBytes specifies the number of valid UserInfo bytes.

o   UserInfo is arbitrary data meaningful to the next higher protocol
   layer or application.











Delgrossi & Berger, Editors   Experimental                     [Page 85]

RFC 1819              ST2+ Protocol Specification            August 1995


10.3.8  Handling of Undefined Parameters

  An ST agent must be able to handle all parameters listed above. To
  support possible future uses, parameters with unknown PCodes must
  also be supported. If an agent receives a message containing a
  parameter with an unknown Pcode value, the agent should handle the
  parameter as if it was a UserData parameter. That is, the contents of
  the parameter should be ignored, and the message should be
  propagated, as appropriate, along with the related control message.

10.4  ST Control Message PDUs

  ST Control messages are described in the following section. Please
  refer to Section 10.6 for an explanation of the notation.

10.4.1  ACCEPT

  ACCEPT (OpCode = 1) is issued by a target as a positive response to a
  CONNECT message. It implies that the target is prepared to accept
  data from the origin along the stream that was established by the
  CONNECT.  ACCEPT is also issued as a positive response to a CHANGE
  message. It implies that the target accepts the proposed stream
  modification.

  ACCEPT is relayed by the ST agents from the target to the origin
  along the path established by CONNECT (or CHANGE) but in the reverse
  direction. ACCEPT must be acknowledged with ACK at each hop.
























Delgrossi & Berger, Editors   Experimental                     [Page 86]

RFC 1819              ST2+ Protocol Specification            August 1995


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  OpCode = 1   |      0        |           TotalBytes          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Reference                |         LnkReference          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         SenderIPAddress                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Checksum           |          ReasonCode = 0       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          MaxMsgSize           |          RecoveryTimeout      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      StreamCreationTime                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   IPHops      |                        0                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                           FlowSpec                            :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                           TargetList                          :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                           RecordRoute                         :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                           UserData                            :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 21: ACCEPT Control Message

o   Reference contains a number assigned by the ST agent sending ACCEPT
   for use in the acknowledging ACK.

o   LnkReference is the Reference number from the corresponding CONNECT
   (or CHANGE)

o   MaxMsgSize indicates the smallest MTU along the path traversed by
   the stream. This field is only set when responding to a CONNECT
   request.

o   RecoveryTimeout reflects the nominal number of milliseconds that the
   application is willing to wait for a failed system component to be
   detected and any corrective action to be taken. This field
   represents what can actually be supported by each participating
   agent, and is only set when responding to a CONNECT request.

o   StreamCreationTime is the 32- bits system dependent timestamp copied
   from the corresponding CONNECT request.



Delgrossi & Berger, Editors   Experimental                     [Page 87]

RFC 1819              ST2+ Protocol Specification            August 1995


o   IPHops is the number of IP encapsulated hops traversed by the
   stream. This field is set to zero by the origin, and is incremented
   at each IP encapsulating agent.

10.4.2  ACK

  ACK (OpCode = 2) is used to acknowledge a request. The ACK message is
  not propagated beyond the previous-hop or next-hop ST agent.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  OpCode = 2   |     0         |           TotalBytes          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       Reference               |           LnkReference = 0    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         SenderIPAddress                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       Checksum                |           ReasonCode          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 22: ACK Control Message

o   Reference is the Reference number of the control message being
   acknowledged.

o   ReasonCode is usually NoError, but other possibilities exist, e.g.,
   DuplicateIgn.























Delgrossi & Berger, Editors   Experimental                     [Page 88]

RFC 1819              ST2+ Protocol Specification            August 1995


10.4.3  CHANGE

  CHANGE (OpCode = 3) is used to change the FlowSpec of an established
  stream. The CHANGE message is processed similarly to CONNECT, except
  that it travels along the path of an established stream. CHANGE must
  be propagated until it reaches the related stream's targets. CHANGE
  must be acknowledged with ACK at each hop.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  OpCode = 3   |G|I|     0     |           TotalBytes          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Reference           |          LnkReference = 0     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        SenderIPAddress                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Checksum           |          ReasonCode = 0       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                            FlowSpec                           :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                           TargetList                          :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                           RecordRoute                         :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                            UserData                           :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 23: CHANGE Control Message

o   G (bit 8) is used to request a global, stream-wide change; the
   TargetList parameter should be omitted when the G bit is specified.

o   I (bit 7) is used to indicate that the LRM is permitted to interrupt
   and, if needed, break the stream in the process of trying to satisfy
   the requested change.

o   Reference contains a number assigned by the ST agent sending CHANGE
   for use in the acknowledging ACK.

10.4.4  CONNECT

  CONNECT (OpCode = 4) requests the setup of a new stream or an
  addition to or recovery of an existing stream. Only the origin can
  issue the initial set of CONNECTs to setup a stream, and the first



Delgrossi & Berger, Editors   Experimental                     [Page 89]

RFC 1819              ST2+ Protocol Specification            August 1995


  CONNECT to each next-hop is used to convey the SID.

  The next-hop initially responds with an ACK, which implies that the
  CONNECT was valid and is being processed. The next-hop will later
  relay back either an ACCEPT or REFUSE from each target. An
  intermediate ST agent that receives a CONNECT behaves as explained in
  Section 4.5.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  OpCode = 4   |J N|S|    0    |           TotalBytes          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Reference           |          LnkReference = 0     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         SenderIPAddress                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Checksum            |          ReasonCode = 0       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           MaxMsgSize          |          RecoveryTimeout      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        StreamCreationTime                     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   IPHops      |                        0                      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                             Origin                            :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                           FlowSpec                            :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                          TargetList                           :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                          RecordRoute                          :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                             Group                             :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                        MulticastAddress                       :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                            UserData                           :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 24: CONNECT Control Message





Delgrossi & Berger, Editors   Experimental                     [Page 90]

RFC 1819              ST2+ Protocol Specification            August 1995


o   JN (bits 8 and 9) indicate the join authorization level for the
   stream, see Section 4.4.2.

o   S (bit 10) indicates the NoRecovery option (Section 4.4.1). When the
   S-bit is set (1), the NoRecovery option is specified for the stream.

o   Reference contains a number assigned by the ST agent sending CONNECT
   for use in the acknowledging ACK.

o   MaxMsgSize indicates the smallest MTU along the path traversed by
   the stream. This field is initially set to the network MTU of the
   agent issues the CONNECT.

o   RecoveryTimeout is the nominal number of milliseconds that the
   application is willing to wait for failed system component to be
   detected and any corrective action to be taken.

o   StreamCreationTime is the 32- bits system dependent timestamp
   generated by the ST agent issuing the CONNECT.

o   IPHops is the number of IP encapsulated hops traversed by the
   stream. This field is set to zero by the origin, and is incremented
   at each IP encapsulating agent.




























Delgrossi & Berger, Editors   Experimental                     [Page 91]

RFC 1819              ST2+ Protocol Specification            August 1995


10.4.5  DISCONNECT

  DISCONNECT (OpCode = 5) is used by an origin to tear down an
  established stream or part of a stream, or by an intermediate ST
  agent that detects a failure between itself and its previous-hop, as
  distinguished by the ReasonCode. The DISCONNECT message specifies the
  list of targets that are to be disconnected. An ACK is required in
  response to a DISCONNECT message. The DISCONNECT message is
  propagated all the way to the specified targets. The targets are
  expected to terminate their participation in the stream.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  OpCode = 5   |G|    0        |           TotalBytes          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Reference                |     LnkReference = 0          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         SenderIPAddress                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Checksum           |          ReasonCode           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      GeneratorIPAddress                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                           TargetList                          :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                            UserData                           :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 25: DISCONNECT Control Message

o   G (bit 8) is used to request a DISCONNECT of all the stream's
   targets. TargetList should be omitted when the G-bit is set (1). If
   TargetList is present, it is ignored.

o   Reference contains a number assigned by the ST agent sending
   DISCONNECT for use in the acknowledging ACK.

o   ReasonCode reflects the event that initiated the message.

o   GeneratorIPAddress is the 32-bit IP address of the host that first
   generated the DISCONNECT message.







Delgrossi & Berger, Editors   Experimental                     [Page 92]

RFC 1819              ST2+ Protocol Specification            August 1995


10.4.6  ERROR

  ERROR (OpCode = 6) is sent in acknowledgment to a request in which an
  error is detected. No action is taken on the erroneous request. No
  ACK is expected. The ERROR message is not propagated beyond the
  previous-hop or next-hop ST agent. An ERROR is never sent in response
  to another ERROR. The receiver of an ERROR is encouraged to try again
  without waiting for a retransmission timeout.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  OpCode = 6   |       0       |           TotalBytes          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Reference                |     LnkReference = 0          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         SenderIPAddress                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Checksum           |        ReasonCode             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                           PDUInError                          :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 26: ERROR Control Message

o   Reference is the Reference number of the erroneous request.

o   ReasonCode indicates the error that triggered the message.

o   PDUInError is the PDU in error, beginning with the ST Header. This
   parameter is optional. Its length is limited by network MTU, and may
   be truncated when too long.



















Delgrossi & Berger, Editors   Experimental                     [Page 93]

RFC 1819              ST2+ Protocol Specification            August 1995


10.4.7  HELLO

  HELLO (OpCode = 7) is used as part of the ST failure detection
  mechanism, see Section 6.1.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  OpCode = 7   |R|    0        |           TotalBytes          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       Reference = 0           |        LnkReference = 0       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         SenderIPAddress                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         Checksum              |          ReasonCode = 0       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          HelloTimer                           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 27: HELLO Control Message

o   R (bit 8) is used for the Restarted-bit.

o   HelloTimer represents the time in millisecond since the agent was
   restarted, modulo the precision of the field. It is used to detect
   duplicate or delayed HELLO messages.

























Delgrossi & Berger, Editors   Experimental                     [Page 94]

RFC 1819              ST2+ Protocol Specification            August 1995


10.4.8  JOIN

  JOIN (OpCode = 8) is used as part of the ST steam joining mechanism,
  see Section 4.6.3.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  OpCode = 8   |      0        |           TotalBytes          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Reference                |         LnkReference = 0      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         SenderIPAddress                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Checksum           |          ReasonCode = 0       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      GeneratorIPAddress                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                          TargetList                           :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 28: JOIN Control Message

o   Reference contains a number assigned by the ST agent sending JOIN
   for use in the acknowledging ACK.

o   GeneratorIPAddress is the 32-bit IP address of the host that
   generated the JOIN message.

o   TargetList is the information associated with the target to be added
   to the stream.




















Delgrossi & Berger, Editors   Experimental                     [Page 95]

RFC 1819              ST2+ Protocol Specification            August 1995


10.4.9  JOIN-REJECT

  JOIN-REJECT (OpCode = 9) is used as part of the ST steam joining
  mechanism, see Section 4.6.3.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  OpCode = 9   |      0        |           TotalBytes          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Reference                |          LnkReference         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         SenderIPAddress                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Checksum           |          ReasonCode           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      GeneratorIPAddress                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 29: JOIN-REJECT Control Message

o   Reference contains a number assigned by the ST agent sending the
   REFUSE for use in the acknowledging ACK.

o   LnkReference is the Reference number from the corresponding JOIN
   message.

o   ReasonCode reflects the reason why the JOIN request was rejected.

o   GeneratorIPAddress is the 32-bit IP address of the host that first
   generated the JOIN-REJECT message.




















Delgrossi & Berger, Editors   Experimental                     [Page 96]

RFC 1819              ST2+ Protocol Specification            August 1995


10.4.10  NOTIFY

  NOTIFY (OpCode = 10) is issued by an ST agent to inform other ST
  agents of events that may be significant. NOTIFY may be propagated
  beyond the previous-hop or next-hop ST agent depending on the
  ReasonCode, see Section 10.5.3; NOTIFY must be acknowledged with an
  ACK.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  OpCode = 10  |      0        |           TotalBytes          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Reference                |         LnkReference = 0      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         SenderIPAddress                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Checksum           |          ReasonCode           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      DetectorIPAddress                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |          MaxMsgSize           |          RecoveryTimeout      |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                           FlowSpec                            :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                           TargetList                          :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                           UserData                            :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 30: NOTIFY Control Message

o   Reference contains a number assigned by the ST agent sending the
   NOTIFY for use in the acknowledging ACK.

o   ReasonCode identifies the reason for the notification.

o   DetectorIPAddress is the 32-bit IP address of the ST agent that
   detects the event.

o   MaxMsgSize is set when the MTU of the listed targets has changed
   (e.g., due to recovery), or when the notification is generated after
   a successful JOIN. Otherwise it is set to zero (0).





Delgrossi & Berger, Editors   Experimental                     [Page 97]

RFC 1819              ST2+ Protocol Specification            August 1995


o   RecoveryTimeout is set when the notification is generated after a
   successful JOIN. Otherwise it is set to zero (0).

o   FlowSpec is present when the notification is generated after a
   successful JOIN.

o   TargetList is present when the notification is related to one or
   more targets, or when MaxMsgSize is set

o   UserData is present if the notification is generated after a
   successful JOIN and the UserData parameter was set in the ACCEPT
   message.

10.4.11  REFUSE

  REFUSE (OpCode = 11) is issued by a target that either does not wish
  to accept a CONNECT message or wishes to remove itself from an
  established stream. It might also be issued by an intermediate ST
  agent in response to a CONNECT or CHANGE either to terminate a
  routing loop, or when a satisfactory next-hop to a target cannot be
  found. It may also be a separate command when an existing stream has
  been preempted by a higher precedence stream or an ST agent detects
  the failure of a previous-hop, next-hop, or the network between them.
  In all cases, the TargetList specifies the targets that are affected
  by the condition. Each REFUSE must be acknowledged by an ACK.

  The REFUSE is relayed back by the ST agents to the origin (or
  intermediate ST agent that created the CONNECT or CHANGE) along the
  path traced by the CONNECT. The ST agent receiving the REFUSE will
  process it differently depending on the condition that caused it, as
  specified in the ReasonCode field. No special effort is made to
  combine multiple REFUSE messages since it is considered most unlikely
  that separate REFUSEs will happen to both pass through an ST agent at
  the same time and be easily combined, e.g., have identical
  ReasonCodes and parameters.
















Delgrossi & Berger, Editors   Experimental                     [Page 98]

RFC 1819              ST2+ Protocol Specification            August 1995


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  OpCode = 11  |G|E|N|    0    |           TotalBytes          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Reference                |         LnkReference          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         SenderIPAddress                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Checksum           |          ReasonCode           |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       DetectorIPAddress                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                       ValidTargetIPAddress                    |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                          TargetList                           :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                         RecordRoute                           :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                            UserData                           :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 31: REFUSE Control Message

o   G (bit 8) is used to indicate that all targets down stream from the
   sender are refusing. It is expected that this will be set most
   commonly due to network failures. The TargetList parameter is
   ignored or not present when this bit is set, and must be included
   when not set.

o   E (bit 9) is set by an ST agent to indicate that the request failed
   and that the pre-change stream attributes, including resources, and
   the stream itself still exist.

o   N (bit 10) is used to indicate that no further attempts to recover
   the stream should be made. This bit must be set when stream recovery
   should not be attempted, even in the case where the target
   application has shut down normally (ApplDisconnect).

o   Reference contains a number assigned by the ST agent sending the
   REFUSE for use in the acknowledging ACK.

o   LnkReference is either the Reference number from the corresponding
   CONNECT or CHANGE, if it is the result of such a message, or zero
   when the REFUSE was originated as a separate command.



Delgrossi & Berger, Editors   Experimental                     [Page 99]

RFC 1819              ST2+ Protocol Specification            August 1995


o   DetectorIPAddress is the 32-bit IP address of the host that first
   generated the REFUSE message.

o   ValidTargetIPAddress is the 32-bit IP address of a host that is
   properly connected as part of the stream. This parameter is only
   used when recovering from stream convergence, otherwise it is set to
   zero (0).

10.4.12  STATUS

  STATUS (OpCode = 12) is used to inquire about the existence of a
  particular stream identified by the SID. Use of STATUS is intended
  for collecting information from an neighbor ST agent, including
  general and specific stream information, and round trip time
  estimation. The use of this message type is described in Section 8.4.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | OpCode = 12   |       0       |           TotalBytes          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Reference                |       LnkReference = 0        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         SenderIPAddress                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Checksum           |          ReasonCode = 0       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                          TargetList                           :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 32: STATUS Control Message

o   Reference contains a number assigned by the ST agent sending STATUS
   for use in the replying STATUS-RESPONSE.

o   TargetList is an optional parameter that when present indicates that
   only information related to the specific targets should be relayed
   in the STATUS-RESPONSE.

10.4.13  STATUS-RESPONSE

  STATUS-RESPONSE (OpCode = 13) is the reply to a STATUS message. If
  the stream specified in the STATUS message is not known, the STATUS-
  RESPONSE will contain the specified SID but no other parameters. It
  will otherwise contain the current SID, FlowSpec, TargetList, and
  possibly Groups of the stream. It the full target list can not fit in
  a single message, only those targets that can be included in one



Delgrossi & Berger, Editors   Experimental                    [Page 100]

RFC 1819              ST2+ Protocol Specification            August 1995


  message will be included. As mentioned in Section 10.4.12, it is
  possible to request information on a specific target.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  OpCode = 13  |    0          |           TotalBytes          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |      Reference                |       LnkReference = 0        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         SenderIPAddress                       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |            Checksum           |       ReasonCode = 0          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                           FlowSpec                            :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                           Groups                              :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      :                          TargetList                           :
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 33: STATUS-RESPONSE Control Message

o   Reference contains a number assigned by the ST agent sending the
   STATUS.

10.5  Suggested Protocol Constants

  The ST Protocol uses several fields that must have specific values
  for the protocol to work, and also several values that an
  implementation must select. This section specifies the required
  values and suggests initial values for others. It is recommended that
  the latter be implemented as variables so that they may be easily
  changed when experience indicates better values. Eventually, they
  should be managed via the normal network management facilities.

  ST uses IP Version Number 5.

  When encapsulated in IP, ST uses IP Protocol Number 5.









Delgrossi & Berger, Editors   Experimental                    [Page 101]

RFC 1819              ST2+ Protocol Specification            August 1995


10.5.1  SCMP Messages

  1)      ACCEPT
  2)      ACK
  3)      CHANGE
  4)      CONNECT
  5)      DISCONNECT
  6)      ERROR
  7)      HELLO
  8)      JOIN
  9)      JOIN-REJECT
  10)     NOTIFY
  11)     REFUSE
  12)     STATUS
  13)     STATUS-RESPONSE

10.5.2  SCMP Parameters

  1)      FlowSpec
  2)      Group
  3)      MulticastAddress
  4)      Origin
  5)      RecordRoute
  6)      TargetList
  7)      UserData

10.5.3  ReasonCode

  Several errors may occur during protocol processing. All ST error
  codes are taken from a single number space. The currently defined
  values and their meaning is presented in the list below. Note that
  new error codes may be defined from time to time. All implementations
  are expected to handle new codes in a graceful manner. If an unknown
  ReasonCode is encountered, it should be assumed to be fatal. The
  ReasonCode is an 8-bit field. Following values are defined:

1       NoError         No error has occurred.
2       ErrorUnknown    An error not contained in this list has been
                       detected.
3       AccessDenied    Access denied.
4       AckUnexpected   An unexpected ACK was received.
5       ApplAbort       The application aborted the stream abnormally.
6       ApplDisconnect  The application closed the stream normally.
7       ApplRefused     Applications refused requested connection or
                       change.
8       AuthentFailed   The authentication function failed.
9       BadMcastAddress IP Multicast address is unacceptable in CONNECT
10      CantGetResrc    Unable to acquire (additional) resources.



Delgrossi & Berger, Editors   Experimental                    [Page 102]

RFC 1819              ST2+ Protocol Specification            August 1995


11      CantRelResrc    Unable to release excess resources.
12      CantRecover     Unable to recover failed stream.
13      CksumBadCtl     Control PDU has a bad message checksum.
14      CksumBadST      PDU has a bad ST Header checksum.
15      DuplicateIgn    Control PDU is a duplicate and is being
                       acknowledged.
16      DuplicateTarget Control PDU contains a duplicate target, or an
                       attempt to add an existing target.
17      FlowSpecMismatch        FlowSpec in request does not match
                               existing FlowSpec.
18      FlowSpecError   An error occurred while processing the FlowSpec
19      FlowVerUnknown  Control PDU has a FlowSpec Version Number that
                       is not supported.
20      GroupUnknown    Control PDU contains an unknown Group Name.
21      InconsistGroup  An inconsistency has been detected with the
                       streams forming a group.
22      IntfcFailure    A network interface failure has been detected.
23      InvalidSender   Control PDU has an invalid SenderIPAddress
                       field.
24      InvalidTotByt   Control PDU has an invalid TotalBytes field.
25      JoinAuthFailure Join failed due to stream authorization level.
26      LnkRefUnknown   Control PDU contains an unknown LnkReference.
27      NetworkFailure  A network failure has been detected.
28      NoRouteToAgent  Cannot find a route to an ST agent.
29      NoRouteToHost   Cannot find a route to a host.
30      NoRouteToNet    Cannot find a route to a network.
31      OpCodeUnknown   Control PDU has an invalid OpCode field.
32      PCodeUnknown    Control PDU has a parameter with an invalid
                       PCode.
33      ParmValueBad    Control PDU contains an invalid parameter value.
34      PathConvergence Two branches of the stream join during the
                       CONNECT setup.
35      ProtocolUnknown Control PDU contains an unknown next-higher
                       layer protocol identifier.
36      RecordRouteSize RecordRoute parameter is too long to permit
                       message to fit a network's MTU.
37      RefUnknown      Control PDU contains an unknown Reference.
38      ResponseTimeout Control message has been acknowledged but not
                       answered by an appropriate control message.
39      RestartLocal    The local ST agent has recently restarted.
40      RestartRemote   The remote ST agent has recently restarted.
41      RetransTimeout  An acknowledgment has not been received after
                       several retransmissions.
42      RouteBack       Route to next-hop through same interface as
                       previous-hop and is not previous-hop.
43      RouteInconsist  A routing inconsistency has been detected.
44      RouteLoop       A routing loop has been detected.




Delgrossi & Berger, Editors   Experimental                    [Page 103]

RFC 1819              ST2+ Protocol Specification            August 1995


45      SAPUnknown      Control PDU contains an unknown next-higher
                       layer SAP (port).
46      SIDUnknown      Control PDU contains an unknown SID.
47      STAgentFailure  An ST agent failure has been detected.
48      STVer3Bad       A received PDU is not ST Version 3.
49      StreamExists    A stream with the given SID already exists.
50      StreamPreempted The stream has been preempted by one with a
                       higher precedence.
51      TargetExists    A CONNECT was received that specified an
                       existing target.
52      TargetUnknown   A target is not a member of the specified
                       stream.
53      TargetMissing   A target parameter was expected and is not
                       included, or is empty.
54      TruncatedCtl    Control PDU is shorter than expected.
55      TruncatedPDU    A received ST PDU is shorter than the ST Header
                       indicates.
56      UserDataSize    UserData parameter too large to permit a
                       message to fit into a network's MTU.

10.5.4  Timeouts and Other Constants

  SCMP uses retransmission to effect reliability and thus has several
  "retransmission timers". Each "timer" is modeled by an initial time
  interval (ToXxx), which may get updated dynamically through
  measurement of control traffic, and a number of times (NXxx) to
  retransmit a message before declaring a failure. All time intervals
  are in units of milliseconds. Note that the variables are described
  for reference purposes only, different implementations may not
  include the identical variables.

Value   Timeout Name    Meaning
------------------------------------------------------------------------
 500   ToAccept        Initial hop-by-hop timeout for acknowledgment of
                       ACCEPT
   3   NAccept         ACCEPT retries before failure
 500   ToChange        Initial hop-by-hop timeout for acknowledgment of
                       CHANGE
   3   NChange         CHANGE retries before failure
5000   ToChangeResp    End-to-End CHANGE timeout for receipt of ACCEPT
                       or REFUSE
 500   ToConnect       Initial hop-by-hop timeout for acknowledgment of
                       CONNECT
   5   NConnect        CONNECT retries before failure
5000   ToConnectResp   End-to-End CONNECT timeout for receipt of ACCEPT
                       or REFUSE from targets by origin
 500   ToDisconnect    Initial hop-by-hop timeout for acknowledgment of
                       DISCONNECT



Delgrossi & Berger, Editors   Experimental                    [Page 104]

RFC 1819              ST2+ Protocol Specification            August 1995


   3   NDisconnect     DISCONNECT retries before failure
 500   ToJoin          Initial hop-by-hop timeout for acknowledgment of
                       JOIN
   3   NJoin           JOIN retries before failure
 500   ToJoinReject    Initial hop-by-hop timeout for acknowledgment of
                       JOIN-REJECT
   3   NJoinReject     JOIN-REJECT retries before failure
5000   ToJoinResp      Timeout for receipt of CONNECT or JOIN-REJECT
                       from origin or intermediate hop
 500   ToNotify        Initial hop-by-hop timeout for acknowledgment of
                       NOTIFY
   3   NNotify         NOTIFY retries before failure
 500   ToRefuse        Initial hop-by-hop timeout for acknowledgment of
                       REFUSE
   3   NRefuse         REFUSE retries before failure
 500   ToRetryRoute    Timeout for receipt of ACCEPT or REFUSE from
                       targets during failure recovery
   5   NRetryRoute     CONNECT retries before failure
1000   ToStatusResp    Timeout for receipt of STATUS-RESPONSE
   3   NStatus         STATUS retries before failure
10000   HelloTimerHoldDown      Interval that Restarted bit must be set
                               after ST restart
   5   HelloLossFactor         Number of consecutively missed HELLO
                               messages before declaring link failure
2000   DefaultRecoveryTimeout  Interval between successive HELLOs
                               to/from active neighbors

10.6  Data Notations

  The convention in the documentation of Internet Protocols is to
  express numbers in decimal and to picture data with the most
  significant octet on the left and the least significant octet on the
  right.

  The order of transmission of the header and data described in this
  document is resolved to the octet level. Whenever a diagram shows a
  group of octets, the order of transmission of those octets is the
  normal order in which they are read in English. For example, in the
  following diagram the octets are transmitted in the order they are
  numbered.











Delgrossi & Berger, Editors   Experimental                    [Page 105]

RFC 1819              ST2+ Protocol Specification            August 1995


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       1       |       2       |       3       |       4       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       5       |       6       |       7       |       8       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |       9       |      10       |      11       |      12       |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 34:  Transmission Order of Bytes

  Whenever an octet represents a numeric quantity the left most bit in
  the diagram is the high order or most significant bit. That is, the
  bit labeled 0 is the most significant bit. For example, the following
  diagram represents the value 170 (decimal).

                               0 1 2 3 4 5 6 7
                              +-+-+-+-+-+-+-+-+
                              |1 0 1 0 1 0 1 0|
                              +-+-+-+-+-+-+-+-+

                     Figure 35: Significance of Bits

  Similarly, whenever a multi-octet field represents a numeric quantity
  the left most bit of the whole field is the most significant bit.
  When a multi-octet quantity is transmitted the most significant octet
  is transmitted first.

  Fields whose length is fixed and fully illustrated are shown with a
  vertical bar (|) at the end; fixed fields whose contents are
  abbreviated are shown with an exclamation point (!); variable fields
  are shown with colons (:). Optional parameters are separated from
  control messages with a blank line. The order of parameters is not
  meaningful.

11.  References

[RFC1071]       Braden, R., Borman, D., and C. Partridge,
               "Computing the Internet Checksum", RFC 1071,
               USC/Information Sciences Institute,
               Cray Research, BBN Laboratories, September 1988.

[RFC1112]       Deering, S., "Host Extensions for IP Multicasting",
               STD 5, RFC 1112, Stanford University, August 1989.






Delgrossi & Berger, Editors   Experimental                    [Page 106]

RFC 1819              ST2+ Protocol Specification            August 1995


[WoHD95]        L. Wolf, R. G. Herrtwich, L. Delgrossi: Filtering
               Multimedia Data in Reservation-based Networks,
               Kommunikation in Verteilten Systemen 1995 (KiVS),
               Chemnitz-Zwickau, Germany, February 1995.

[RFC1122]       Braden, R., "Requirements for Internet Hosts --
               Communication Layers", STD 3, RFC 1122,
               USC/Information Sciences Institute, October 1989.

[Jaco88]        Jacobson, V.: Congestion Avoidance and Control, ACM
               SIGCOMM-88, August 1988.

[KaPa87]        Karn, P. and C. Partridge: Round Trip Time Estimation,
               ACM SIGCOMM-87, August 1987.

[RFC1141]       Mallory, T., and A. Kullberg, "Incremental Updating
               of the Internet Checksum", RFC 1141, BBN, January 1990.

[RFC1363]       Partridge, C., "A Proposal Flow Specification",
               RFC 1363, BBN, September 1992.

[RFC791]        Postel, J., "Internet Protocol", STD 5, RFC 791,
               DARPA, September 1981.

[RFC1700]       Reynolds, J., and J. Postel, "Assigned Numbers",
               STD 2, RFC 1700, USC/Information Sciences Institute,
               October 1994.

[RFC1190]       Topolcic C., "Internet Stream Protocol Version 2
               (ST-II)", RFC 1190, CIP Working Group, October 1990.

[RFC1633]       Braden, R., Clark, D., and S. Shenker, "Integrated
               Services in the Internet Architecture: an Overview",
               RFC 1633, USC/Information Sciences Institute,
               MIT, Xerox PARC, June 1994.

[VoHN93]        C. Vogt, R. G. Herrtwich, R. Nagarajan: HeiRAT: the
               Heidelberg Resource Administration Technique - Design
               Philosophy and Goals, Kommunikation In Verteilten
               Systemen, Munich, Informatik Aktuell, Springer-Verlag,
               Heidelberg, 1993.

[Cohe81]        D. Cohen: A Network Voice Protocol NVP-II, University of
               Southern California, Los Angeles, 1981.

[Cole81]        R. Cole: PVP - A Packet Video Protocol, University of
               Southern California, Los Angeles, 1981.




Delgrossi & Berger, Editors   Experimental                    [Page 107]

RFC 1819              ST2+ Protocol Specification            August 1995


[DeAl92]        L. Delgrossi (Ed.) The BERKOM-II Multimedia Transport
               System, Version 1, BERKOM Working Document, October,
               1992.

[DHHS92]        L. Delgrossi, C. Halstrick, R. G. Herrtwich, H.
               Stuettgen: HeiTP: a Transport Protocol for ST-II,
               GLOBECOM'92, Orlando (Florida), December 1992.

[Schu94]        H. Schulzrinne: RTP: A Transport Protocol for Real-Time
               Applications. Work in Progress, 1994.


12.  Security Considerations

  Security issues are not discussed in this memo.

13.  Acknowledgments and Authors' Addresses

  Many individuals have contributed to the work described in this memo.
  We thank the participants in the ST Working Group for their input,
  review, and constructive comments. George Mason University C3I Center
  for hosting an interim meeting. Murali Rajagopal for his efforts on
  ST2+ state machines. Special thanks are due to Steve DeJarnett, who
  served as working group co-chair until summer 1993.

  We would also like to acknowledge the authors of [RFC1190]. All
  authors of [RFC1190] should be considered authors of this document
  since this document contains much of their text and ideas.























Delgrossi & Berger, Editors   Experimental                    [Page 108]

RFC 1819              ST2+ Protocol Specification            August 1995


  Louis Berger
  BBN Systems and Technologies
  1300 North 17th Street, Suite 1200
  Arlington, VA 22209

  Phone: 703-284-4651
  EMail: [email protected]


  Luca Delgrossi
  Andersen Consulting Technology Park
  449, Route des Cretes
  06902 Sophia Antipolis, France

  Phone: +33.92.94.80.92
  EMail: [email protected]


  Dat Duong
  BBN Systems and Technologies
  1300 North 17th Street, Suite 1200
  Arlington, VA 22209

  Phone: 703-284-4760
  EMail: [email protected]


  Steve Jackowski
  Syzygy Communications Incorporated
  269 Mt. Hermon Road
  Scotts Valley, CA 95066

  Phone: 408-439-6834
  EMail: [email protected]


  Sibylle Schaller
  IBM ENC
  Broadband Multimedia Communications
  Vangerowstr. 18
  D69020 Heidelberg, Germany

  Phone: +49-6221-5944553
  EMail: [email protected]







Delgrossi & Berger, Editors   Experimental                    [Page 109]