Network Working Group                                       C. Allocchio
Request for Comments: 1664                                     A. Bonito
Category: Experimental                                        GARR-Italy
                                                                B. Cole
                                                     Cisco Systems Inc.
                                                            S. Giordano
                                    Centro Svizzero Calcolo Scientifico
                                                              R. Hagens
                                            Advanced Network & Services
                                                            August 1994


                Using the Internet DNS to Distribute
                 RFC1327 Mail Address Mapping Tables

Status of this Memo

  This memo defines an Experimental Protocol for the Internet
  community.  This memo does not specify an Internet standard of any
  kind.  Distribution of this memo is unlimited.

Abstract

  This memo defines how to store in the Internet Domain Name System the
  mapping information needed by e-mail gateways and other tools to map
  RFC822 domain names into X.400 O/R names and vice versa.  Mapping
  information can be managed in a distributed rather than a centralised
  way. Gateways located on Internet hosts can retrieve the mapping
  information querying the DNS instead of having fixed tables which
  need to be centrally updated and distributed.  This memo is a joint
  effort of X400 operation working group (x400ops) and RARE Mail and
  Messaging working group (WG-MSG).

1. Introduction

  The connectivity between the Internet SMTP mail and other mail
  services, including the Internet X.400 mail and the commercial X.400
  service providers, is assured by the Mail eXchanger (MX) record
  information distributed via the Internet Domain Name System (DNS). A
  number of documents then specify in details how to convert or encode
  addresses from/to RFC822 style to the other mail system syntax.
  However, only conversion methods provide, via some algorithm or a set
  of mapping rules, a smooth translation, resulting in addresses
  indistinguishable from the native ones in both RFC822 and foreign
  world.

  RFC1327 describes a set of mappings which will enable interworking
  between systems operating the CCITT X.400 (1984/88) Recommendations



Allocchio, Bonito, Cole, Giordano & Hagens                      [Page 1]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


  and systems using the RFC822 mail protocol, or protocols derived from
  RFC822. That document addresses conversion of services, addresses,
  message envelopes, and message bodies between the two mail systems.
  This document is concerned with one aspect of RFC1327: the mechanism
  for mapping between X.400 O/R addresses and RFC822 domain names. As
  described in Appendix F of RFC1327, implementation of the mappings
  requires a database which maps between X.400 O/R addresses and domain
  names, and this database is statically defined.

  This approach requires many efforts to maintain the correct mapping:
  all the gateways need to get coherent tables to apply the same
  mappings, the conversion tables must be distributed among all the
  operational gateways, and also every update needs to be distributed.
  This static mechanism requires quite a long time to be spent
  modifying and distributing the information, putting heavy constraints
  on the time schedule of every update.  In fact it does not appear
  efficient compared to the Internet Domain Name Service (DNS).  More
  over it does not look feasible to distribute the database to a large
  number of other useful applications, like local address converters,
  e-mail User Agents or any other tool requiring the mapping rules to
  produce correct results.

  A first proposal to use the Internet DNS to store, retrieve and
  maintain those mappings was introduced by two of the authors (B. Cole
  and R. Hagens) adopting two new DNS resource record (RR)  types: TO-
  X400 and TO-822. This new proposal adopts a more complete strategy,
  and requires one new RR only. The distribution of the RFC1327 mapping
  rules via DNS is in fact an important service for the whole Internet
  community: it completes the information given by MX resource record
  and it allows to produce clean addresses when messages are exchanged
  among the Internet RFC822 world and the X.400 one (both Internet and
  Public X.400 service providers).

  A first experiment in using the DNS without expanding the current set
  of RR and using available ones was in the mean time deployed by some
  of the authors. The existing PTR resource records were used to store
  the mapping rules, and a new DNS tree was created under the ".it" top
  level domain. The result of the experiment was positive, and a few
  test applications ran under this provisional set up. This test was
  also very useful in order to define a possible migration strategy
  during the deployment of the new DNS containing the new RR. The
  Internet DNS nameservers wishing to provide this mapping information
  need in fact to be modified to support the new RR type, and in the
  real Internet, due to the large number of different implementations,
  this takes some time.

  The basic idea is to adopt a new DNS RR to store the mapping
  information. The RFC822 to X.400 mapping rules (including the so



Allocchio, Bonito, Cole, Giordano & Hagens                      [Page 2]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


  called 'gate' rules) will be stored in the ordinary DNS tree, while
  the definition of a new branch of the name space defined under each
  national top level domain is envisaged in order to contain the X.400
  to RFC822 mappings. A "two-way" mapping resolution schema is thus
  fully implemented.

  The creation of the new domain name space representing the X.400 O/R
  names structure also provides the chance to use the DNS to distribute
  dynamically other X.400 related information, thus solving other
  efficiency problems currently affecting the X.400 MHS service.

  In this paper we will adopt the RFC1327 mapping rules syntax, showing
  how it can be stored into the Internet DNS.

1.1 Definitions syntax

  The definitions in this document is given in BNF-like syntax, using
  the following conventions:

     |   means choice
     \   is used for continuation of a definition over several lines
     []  means optional
     {}  means repeated one or more times

  The definitions, however, are detailed only until a certain level,
  and below it self-explaining character text strings will be used.

2. Motivation

  Implementations of RFC1327 gateways require that a database store
  address mapping information for X.400 and RFC822. This information
  must be disseminated to all RFC1327 gateways. In the Internet
  community, the DNS has proven to be a practical mean for providing a
  distributed name service. Advantages of using a DNS based system over
  a table based approach for mapping between O/R addresses and domain
  names are:

    - It avoids fetching and storing of entire mapping tables by every
      host that wishes to implement RFC1327 gateways and/or tools

    - Modifications to the DNS based mapping information can be made
      available in a more timely manner than with a table driven
      approach.

    - It allows full authority delegation, in agreement with the
      Internet regionalization process.





Allocchio, Bonito, Cole, Giordano & Hagens                      [Page 3]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


    - Table management is not necessarily required for DNS-based
      RFC1327 gateways.

    - One can determine the mappings in use by a remote gateway by
      querying the DNS (remote debugging).

  Also many other tools, like address converters and User Agents can
  take advantage of the real-time availability of RFC1327 tables,
  allowing a much easier maintenance of the information.

3. The domain space for X.400 O/R name addresses

  Usual domain names (the ones normally used as the global part of an
  RFC822 e-mail address) and their associated information, i.e., host
  IP addresses, mail exchanger names, etc., are stored in the DNS as a
  distributed database under a number of top-level domains. Some top-
  level domains are used for traditional categories or international
  organisations (EDU, COM, NET, ORG, INT, MIL...). On the other hand
  any country has its own two letter ISO country code as top-level
  domain (FR, DE, GB, IT, RU, ...), including "US" for USA.  The
  special top-level/second-level couple IN-ADDR.ARPA is used to store
  the IP address to domain name relationship. Our proposal defines in
  the above structure the appropriate way to locate the X.400 O/R name
  space, thus enabling us to store in DNS the RFC1327 mapping data.

  The RFC1327 mapping information is composed by three tables: 'table1'
  gives the translation from X.400 to RFC822 while 'table2' and 'gate'
  tables map RFC822 into X.400. Each mapping table is composed by
  mapping rules, and a single mapping rule is composed by a keyword
  (the argument of the mapping function derived from the address to be
  translated) and a translator (the mapping function parameter):

                         keyword#translator#

  the '#' sign is a delimiter enclosing the translator. An example:

               foo.bar.us#PRMD$foo\.bar.ADMD$intx.C$us#

  Local mappings are not intended for use outside their restricted
  environment, thus they should not be included in DNS. If local
  mappings are used, they should be stored using static local tables,
  exactly as local static host tables can be used with DNS.

  The keyword of a 'table2' and 'gate' table entry is a valid RFC822
  domain; thus the usual domain name space can be used without problems
  to store these entries.





Allocchio, Bonito, Cole, Giordano & Hagens                      [Page 4]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


  On the other hand, the keyword of a 'table1' entry belongs to the
  X.400 O/R name space. The X.400 O/R name space does not usually fit
  into the usual domain name space, although there are a number of
  similarities; a new name structure is thus needed to represent it.
  This new name structure contains the X.400 mail domains.

  To ensure the correct functioning of the DNS system, the new X.400
  name structure must be hooked to the existing domain name space in a
  way which respects the existing name hierarchy.

  A possible solution was to create another special branch, starting
  from the root of the DNS tree, somehow similar to the in-addr.arpa
  tree. This idea would have required to establish a central authority
  to coordinate at international level the management of each national
  X.400 name tree, including the X.400 public service providers. This
  coordination problem is a heavy burden if approached globally. More
  over the X.400 name structure is very 'country oriented': thus while
  it requires a coordination at national level, it does not have
  concepts like the international root. In fact the X.400 international
  service is based  on a large number of bilateral agreements, and only
  within some communities an international coordination service exists.

  The X.400 two letter ISO country codes, however, are the same used
  for the RFC822 country top-level domains and this gives us an
  appropriate hook to insert the new branches. Our proposal is, in
  fact, to create under each national top level ISO country code a new
  branch in the name space. This branch represents exactly the X.400
  O/R name structure as defined in each single country, following the
  ADMD, PRMD, O, OU hierarchy. A unique reserved label 'X42D' is placed
  under each country top-level domain, and hence the national X.400
  name space derives its own structure:




















Allocchio, Bonito, Cole, Giordano & Hagens                      [Page 5]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


                                   . (root)
                                   |
     +-----------------+-----------+--------+-----------------+...
     |                 |                    |                 |
    edu                it                   us                fr
     |                 |                    |                 |
 +---+---+...    +-----+-----+...     +-----+-----+...     +--+---+...
 |       |       |     |     |        |     |     |        |      |
...     ...     cnr   X42D  infn      va    ca   X42D     X42D  inria
                       |                    |     |        |
          +------------+------------+...   ...   ...  +----+-------+...
          |            |            |                 |            |
   ADMD-PtPostel  ADMD-garr  ADMD-Master400        ADMD-atlas  ADMD-red
                       |            |                 |            |
            +----------+----+...   ...        +-------+------+... ...
            |               |                 |              |
        PRMD-infn       PRMD-STET        PRMD-Telecom   PRMD-Renault
            |               |                 |              |
           ...             ...               ...            ...


  The creation of the X.400 new name tree at national level solves the
  problem of the international coordination. Actually the coordination
  problem is just moved at national level, but it thus becomes easier
  to solve. The coordination at national level between the X.400
  communities and the Internet world is already a requirement for the
  creation of the national static RFC1327 mapping tables; the use of
  the Internet DNS gives further motivations for this coordination.

  The coordination at national level also fits in the ongoing proposal
  intended to define exactly the RFC1327 Mapping Authorities. The DNS
  in fact allows a step by step authority distribution, up to a final
  complete delegation, which can be easily controlled at national level
  accordingly with national needs and situations. A further advantage
  of the national based solution is to allow each country to set up its
  own X.400 name structure in DNS and to deploy its own authority
  delegation according to its local time scale and requirements, with
  no loss of global service in the mean time. And last, placing the new
  X.400 name tree and coordination process at national level fits into
  the Internet regionalization and internationalisation process, as it
  requires local bodies to take care of local coordination problems.

  The DNS name space thus contains completely the information required
  by an e-mail gateway or tool to perform the X.400-RFC822 mapping: a
  simple query to the nearest nameserver provides it. Moreover there is
  no more any need to store, maintain and distribute manually any
  mapping table. The new X.400 name space can also contain further
  information about the X.400 community, as DNS allows for it a



Allocchio, Bonito, Cole, Giordano & Hagens                      [Page 6]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


  complete set of resource records, and thus it allows further
  developments. This set of RRs in the new X.400 name space must be
  considered 'reserved' and thus not used until further specifications.

  The construction of the new domain space trees will follow the same
  procedures used when organising at first the already existing DNS
  space: at first the information will be stored in a quite centralised
  way, and distribution of authority will be gradually achieved. A
  separate document will describe the implementation phase and the
  methods to assure a smooth introduction of the new service.

4. The new DNS resource record for RFC1327 mapping rules: PX

  The specification of the Internet DNS (RFC1035) provides a number of
  specific resource records (RRs) to contain specific pieces of
  information. In particular they contain the Mail eXchanger (MX) RR
  and the host Address (A) records which are used by the Internet SMTP
  mailers. As we will store the RFC822 to X.400 mapping information in
  the already existing DNS name tree, we need to define a new DNS RR in
  order to avoid any possible clash or misuse of already existing data
  structures. The same new RR will also be used to store the mappings
  from X.400 to RFC822. More over the mapping information, i.e., the
  RFC1327 mapping rules, has a specific format and syntax which require
  an appropriate data structure and processing. A further advantage of
  defining a new RR is the ability to include flexibility for some
  eventual future development.

  The definition of the new 'PX' DNS resource record is:

     class:        IN   (Internet)

     name:         PX   (pointer to X.400/RFC822 mapping information)

     value:        26

  The PX RDATA format is:

         +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
         |                  PREFERENCE                   |
         +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
         /                    MAP822                     /
         /                                               /
         +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
         /                    MAPX400                    /
         /                                               /
         +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

  where:



Allocchio, Bonito, Cole, Giordano & Hagens                      [Page 7]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


  PREFERENCE   A 16 bit integer which specifies the preference given to
               this RR among others at the same owner.  Lower values
               are preferred;

  MAP822       A <domain-name> element containing <rfc822-domain>, the
               RFC822 part of the RFC1327 mapping information;

  MAPX400      A <domain-name> element containing the value of
               <x400-in-domain-syntax> derived from the X.400 part of
               the RFC1327 mapping information (see sect. 4.2);

  PX records cause no additional section processing. The PX RR format
  is the usual one:

            <name> [<class>] [<TTL>] <type> <RDATA>

  When we store in DNS a 'table1' entry, then <name> will be an X.400
  mail domain name in DNS syntax (see sect. 4.2). When we store a
  'table2' or a 'gate' table entry, <name> will be an RFC822 mail
  domain name, including both fully qualified DNS domains and mail only
  domains (MX-only domains). All normal DNS conventions, like default
  values, wildcards, abbreviations and message compression, apply also
  for all the components of the PX RR. In particular <name>, MAP822 and
  MAPX400, as <domain-name> elements, must have the final "." (root)
  when they are fully qualified.

4.1 Additional features of the PX resource record

  The definition of the RDATA for the PX resource record, and the fact
  that DNS allows a distinction between an exact value and a wildcard
  match for the <name> parameter, represent an extension of the RFC1327
  specification for mapping rules. In fact, any RFC1327 mapping table
  entry is an implicit wildcard entry, i.e., the rule

     net2.it#PRMD$net2.ADMD$p400.C$it#

  covers any RFC822 domain ending with 'net2.it', unless more detailed
  rules for some subdomain in 'net2.it' are present. Thus there is no
  possibility to specify explicitly an RFC1327 entry as an exact match
  only rule. In DNS an entry like

     *.net2.it.   IN  PX  10   net2.it.  PRMD-net2.ADMD-p400.C-it.

  specify the usual wildcard match as for RFC1327 tables. However an
  entry like

     ab.net2.it.  IN  PX  10   ab.net2.it.  O-ab.PRMD-net2.ADMDb.C-it.




Allocchio, Bonito, Cole, Giordano & Hagens                      [Page 8]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


  is valid only for an exact match of 'ab.net2.it' RFC822 domain.

  Note also that in DNS syntax there is no '#' delimiter around MAP822
  and MAPX400 fields: the syntax defined in sect. 4.2 in fact does not
  allow the <blank> (ASCII decimal 32) character within these fields,
  making unneeded the use of an explicit delimiter as required in the
  RFC1327 original syntax.

  Another extension to the RFC1327 specifications is the PREFERENCE
  value defined as part of the PX RDATA section. This numeric value has
  exactly the same meaning than the similar one used for the MX RR. It
  is thus possible to specify more than one single mapping for a domain
  (both from RFC822 to X.400 and vice versa), giving as the preference
  order. In RFC1327 static tables, however, you cannot specify more
  than one mapping per each RFC822 domain, and the same restriction
  apply for any X.400 domain mapping to an RFC822 one.

  More over, in the X.400 recommendations a note suggests than an
  ADMD=<blank> should be reserved for some special cases. Various
  national functional profile specifications for an X.400 MHS states
  that if an X.400 PRMD is reachable via any of its national ADMDs,
  independently of its actual single or multiple connectivity with
  them, it should use ADMD=<blank> to advertise this fact. Again, if a
  PRMD has no connections to any ADMD it should use ADMD=0 to notify
  its status, etc. However, in most of the current real situations, the
  ADMD service providers do not accept messages coming from their
  subscribers if they have a blank ADMD, forcing them to have their own
  ADMD value. In such a situation there are problems in indicating
  properly the actually working mappings for domains with multiple
  connectivity. The PX RDATA 'PREFERENCE' extension was introduced to
  take in consideration these problems.

  However, as these extensions are not available with RFC1327 static
  tables, it is strongly discouraged to use them when interworking with
  any table based gateway or application. The extensions were in fact
  introduced just to add more flexibility, like the PREFERENCE value,
  or they were already implicit in the DNS mechanism, like the wildcard
  specification. They should be used very carefully or just considered
  'reserved for future use'. In particular, for current use, the
  PREFERENCE value in the PX record specification should be fixed to a
  value of 50, and only wildcard specifications should be used when
  specifying <name> values.

4.2 The DNS syntax for an X.400 'domain'

  The syntax definition of the RFC1327 mapping rules is defined in
  appendix F of that document. However that syntax is not very human
  oriented and contains a number of characters which have a special



Allocchio, Bonito, Cole, Giordano & Hagens                      [Page 9]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


  meaning in other fields of the Internet DNS. Thus in order to avoid
  any possible problem, especially due to some old DNS implementations
  still being used in the Internet, we define a syntax for the X.400
  part of any RFC1327 mapping rules (and hence for any X.400 O/R name)
  which makes it compatible with a <domain-name> element, i.e.,

  <domain-name>    ::= <subdomain> | " "
  <subdomain>      ::= <label> | <label> "." <subdomain>
  <label>          ::= <alphanum>|
                       <alphanum> {<alphanumhyphen>} <alphanum>
  <alphanum>       ::= "0".."9" | "A".."Z" | "a".."z"
  <alphanumhyphen> ::= "0".."9" | "A".."Z" | "a".."z" | "-"

  (see RFC1035, section 2.3.1, page 8).  The legal character set for
  <label> does not correspond to the IA5 Printablestring one used in
  RFC1327 to define mapping rules. However a very simple "escape
  mechanism" can be applied in order to bypass the problem. We can in
  fact simply describe the X.400 part of an RFC1327 mapping rule format
  as:

    <map-rule>   ::= <map-elem> | <map-elem> { "." <map-elem> }
    <map-elem>   ::= <attr-label> "$" <attr-value>
    <attr-label> ::= "C" | "ADMD" | "PRMD" | "O" | "OU"
    <attr-value> ::= " " | "@" | IA5-Printablestring

  As you can notice <domain-name> and <map-rule> look similar, and also
  <label> and <map-elem> look the same. If we define the correct method
  to transform a <map-elem> into a <label> and vice versa the problem
  to write an RFC1327 mapping rule in <domain-name> syntax is solved.

  The RFC822 domain part of any RFC1327 mapping rule is of course
  already in <domain-name> syntax, and thus remains unchanged.

  In particular, in a 'table1' mapping rule the 'keyword' value must be
  converted into <x400-in-domain-syntax> (X.400 mail DNS mail domain),
  while the 'translator' value is already a valid RFC822 domain.  Vice
  versa in a 'table2' or 'gate' mapping rule, the 'translator' must be
  converted into <x400-in-domain-syntax>, while the 'keyword' is
  already a valid RFC822 domain.

4.2.1 IA5-Printablestring to <alphanumhyphen> mappings

  The problem of unmatching IA5-Printablestring and <label> character
  set definition is solved by a simple character mapping rule: whenever
  an IA5 character does not belong to <alphanumhyphen>, then it is
  mapped using its 3 digit decimal ASCII code, enclosed in hyphens. A
  small set of special rules is also defined for the most frequent
  cases. Moreover some frequent characters combinations used in RFC1327



Allocchio, Bonito, Cole, Giordano & Hagens                     [Page 10]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


  rules are also mapped as special cases.

  Let's then define the following simple rules:

   RFC1327 rule          DNS store translation    conditions
   -----------------------------------------------------------------
   <attr-label>$@        <attr-label>             missing attribute
   <attr-label>$<blank>  <attr-label>"b"          blank attribute
   <attr-label>$xxx      <attr-label>-xxx         elsewhere

  Non <alphanumhyphen> characters in <attr-value>:

   RFC1327 rule          DNS store translation    conditions
   -----------------------------------------------------------------
   -                     -h-                      hyphen
   \.                    -d-                      quoted dot
   <blank>               -b-                      blank
   <non A/N character>   -<3digit-decimal>-       elsewhere

  If the DNS store translation of <attr-value> happens to end with an
  hyphen, then this last hyphen is omitted.

  Let's now have some examples:

   RFC1327 rule          DNS store translation    conditions
   -----------------------------------------------------------------
   PRMD$@                PRMD                     missing attribute
   ADMD$<blank>          ADMDb                    blank attribute
   ADMD$400-net          ADMD-400-h-net           hyphen mapping
   PRMD$UK\.BD           PRMD-UK-d-BD             quoted dot mapping
   O$ACME Inc\.          O-ACME-b-Inc-d           blank & final hyphen
   PRMD$main-400-a       PRMD-main-h-400-h-a      hyphen mapping
   O$-123-b              O--h-123-h-b             hyphen mapping
   OU$123-x              OU-123-h-x               hyphen mapping
   PRMD$Adis+co          PRMD-Adis-043-co         3digit mapping

  Thus, an X.400 part from an RFC1327 mapping rule like

    [email protected]$ppp\.rrr.ADMD$aaa ddd-mmm.C$cc

  translates to

    OU-uuu.O.PRMD-ppp-d-rrr.ADMD-aaa-b-ddd-h-mmm.C-cc

Another example:

    OU$sales dept\[email protected]$ACME.ADMD$ .C$GB




Allocchio, Bonito, Cole, Giordano & Hagens                     [Page 11]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


  translates to

    OU-sales-b-dept-d.O.PRMD-ACME.ADMDb.C-GB

4.2.2 Flow chart

  In order to achieve the proper DNS store translations of the X.400
  part of an RFC1327 mapping rules or any other X.400 O/R name, some
  software tools will be used. It is in fact evident that the above
  rules for converting mapping table from RFC1327 to DNS format (and
  vice versa) are not user friendly enough to think of a human made
  conversion.

  To help in designing such tools, we describe hereunder a small flow
  chart. The fundamental rule to be applied during translation is,
  however, the following:

     "A string must be parsed from left to right, moving appropriately
     the pointer in order not to consider again the already translated
     left section of the string in subsequent analysis."

  Flow chart 1 - Translation from RFC1327 to DNS format:


                parse  single attribute
             (enclosed in "." separators)
                          |
           (yes)  ---  <label>$@ ?  ---  (no)
             |                             |
       map to <label>        (no)  <label>$<blank> ?  (yes)
             |                 |                        |
             |           map to <label>-        map to <label>"b"
             |                 |                        |
             |           map "\." to -d-                |
             |                 |                        |
             |           map "-" to -h-                 |
             |                 |                        |
             |    map non A/N char to -<3digit>-        |
 restart     |                 |                        |
    ^        |      remove (if any) last "-"            |
    |        |                 |                        |
    |        \------->     add a  "."    <--------------/
    |                          |
    \----------  take  next  attribute  (if  any)







Allocchio, Bonito, Cole, Giordano & Hagens                     [Page 12]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


  Flow chart 2 - Translation from DNS to RFC1327 format:


               parse single attribute
           (enclosed in "." separators)
                         |
           (yes) ---- <label> ? ---- (no)
             |                          |
     map to <label>$@        (no) <label>"b" ? (yes)
             |                 |                 |
             |           map to <label>$    map to <label>$<blank>
             |                 |                 |
             |           map -d- to "\."         |
             |                 |                 |
             |           map -h- to "-"          |
             |                 |                 |
             |           map -b- to " "          |
 restart     |                 |                 |
    ^        |   map -<3digit>- to non A/N char  |
    |        |                 |                 |
    |        \-------->   add a "."   <----------/
    |                         |
    \------------- take next attribute (if any)


  Note that the above flow charts deal with the translation of the
  attributes syntax, only.

4.2.3 The Country Code convention in the <name> value.

  The RFC822 domain space and the X.400 O/R address space, as said in
  section 3, have one specific common feature: the X.400 ISO country
  codes are the same as the RFC822 ISO top level domains for countries.
  In the previous sections we have also defined a method to write in
  <domain-name> syntax any X.400 domain, while in section 3 we
  described the new name space starting at each country top level
  domain under the X42D.cc (where 'cc' is then two letter ISO country
  code).

  The <name> value for a 'table1' entry in DNS should thus be derived
  from the X.400 domain value, translated to <domain-name> syntax,
  adding the 'X42D.cc.' post-fix to it, i.e.,

     ADMD$acme.C$fr

  produces in <domain-name> syntax the key:

     ADMD-acme.C-fr



Allocchio, Bonito, Cole, Giordano & Hagens                     [Page 13]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


  which is post-fixed by 'X42D.fr.' resulting in:

     ADMD-acme.C-fr.X42D.fr.

  However, due to the identical encoding for X.400 country codes and
  RFC822 country top level domains, the string 'C-fr.X42D.fr.' is
  clearly redundant.

  We thus define the 'Country Code convention' for the <name> key,
  i.e.,

     "The C-cc section of an X.400 domain in <domain-name> syntax must
     be omitted when creating a <name> key, as it is identical to the
     top level country code used to identify the DNS zone where the
     information is stored".

  Thus we obtain the following <name> key examples:

  X.400 domain                       DNS <name> key
  --------------------------------------------------------------------
  ADMD$acme.C$fr                     ADMD-acme.X42D.fr.
  PRMD$ux\.av.ADMD$ .C$gb            PRMD-ux-d-av.ADMDb.X42D.gb.
  PRMD$ppb.ADMD$Dat 400.C$de         PRMD-ppb.ADMD-Dat-b-400.X42D.de.

4.3 Creating the appropriate DNS files

  Using RFC1327's assumption of an asymmetric mapping between X.400 and
  RFC822 addresses, two separate relations are required to store the
  mapping database: RFC1327 'table1' and RFC1327 'table2'; thus also in
  DNS we will maintain the two different sections, even if they will
  both use the PX resource record. More over RFC1327 also specify a
  third table: RFC1327 'gate' Table. This additional table, however,
  has the same syntax rules than RFC1327 'table2' and thus the same
  translation procedure as 'table2' will be applied; some details about
  the RFC1327 'gate' table are discussed in section 4.4.

  Let's now check how to create, from an RFC1327 mapping rule entry,
  the appropriate DNS entry in a DNS data file. We can again define an
  RFC1327 mapping rule entry as defined in appendix F of that document
  as:

    <x400-domain>#<rfc822-domain>#  (case A: 'table1' entry)

  and

    <rfc822-domain>#<x400-domain>#  (case B: 'table2' and 'gate' entry)

  The two cases must be considered separately. Let's consider case A.



Allocchio, Bonito, Cole, Giordano & Hagens                     [Page 14]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


   - take <x400-domain> and translate it into <domain-name> syntax,
     obtaining <x400-in-domain-syntax>;
   - create the <name> key from <x400-in-domain-syntax> i.e., apply
     the Country Code convention described in sect. 4.2.3;
   - construct the DNS PX record as:

     *.<name>  IN  PX  50  <rfc822-domain>  <x400-in-domain-syntax>

  Please note that within PX RDATA the <rfc822-domain> precedes the
  <x400-in-domain-syntax> also for a 'table1' entry.

  an example: from the rule

    PRMD$ab.ADMD$ac.C$fr#ab.fr#

  we obtain

    *.PRMD-ab.ADMD-ac.X42D.fr. IN PX 50  ab.fr.  PRMD-ab.ADMD-ac.C-fr.

  Note that <name>, <rfc822-domain> and <x400-in-domain-syntax> are
  fully qualified <domain-name> elements, thus ending with a ".".

  Let's now consider case B.

   - take <rfc822-domain> as <name> key;
   - translate <x400-domain> into <x400-in-domain-syntax>;
   - construct the DNS PX record as:

    *.<name>  IN  PX  50  <rfc822-domain>  <x400-in-domain-syntax>

  an example: from the rule

    ab.fr#PRMD$ab.ADMD$ac.C$fr#

  we obtain

    *.ab.fr.  IN  PX  50  ab.fr.  PRMD-ab.ADMD-ac.C-fr.

  Again note the fully qualified <domain-name> elements.












Allocchio, Bonito, Cole, Giordano & Hagens                     [Page 15]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


  A file containing the RFC1327 mapping rules and RFC1327 'gate' table
  written in DNS format will look like the following fictious example:

    !
    ! RFC1327 table 1: X.400 --> RFC822
    !
    *.ADMD-acme.X42D.it.               IN  PX  50  it. ADMD-acme.C-it.
    *.PRMD-accred.ADMD-tx400.X42D.it.  IN  PX  50   \
                               accred.it. PRMD-accred.ADMD-tx400.C-it.
    *.O-u-h-newcity.PRMD-x4net.ADMDb.X42D.it.  IN  PX  50   \
                      cs.ncty.it. O-u-h-newcity.PRMD-x4net.ADMDb.C-it.
    !
    ! RFC1327 table 2: RFC822 --> X.400
    !
    *.nrc.it.    IN  PX  50   nrc.it. PRMD-nrc.ADMD-acme.C-it.
    *.ninp.it.   IN  PX  50   ninp.it. O.PRMD-ninp.ADMD-acme.C-it.
    *.bd.it.     IN  PX  50   bd.it. PRMD-uk-d-bd.ADMDb.C-it.
    !
    ! RFC1327 Gate Table
    !
    my.it.  IN PX 50  my.it. OU-int-h-gw.O.PRMD-ninp.ADMD-acme.C-it.G.
    co.it.  IN PX 50  co.it. O-mhs-h-relay.PRMD-x4net.ADMDb.C-it.G.

  (here the "\" indicates continuation on the same line, as wrapping is
  done only due to typographical reasons).

  Note the special suffix ".G." on the right side of the 'gate' Table
  section whose aim is described in section 4.4. The corresponding
  RFC1327 tables are:


    #
    # RFC1327 table 1: X.400 --> RFC822
    #
    ADMD$acme.C$it#it#
    PRMD$accred.ADMD$tx400.C$it#accred.it#
    O$u-newcity.PRMD$x4net.ADMD$ .C$it#cs.ncty.it#
    #
    # RFC1327 table 2: RFC822 --> X.400
    #
    nrc.it#PRMD$nrc.ADMD$acme.C$it#
    ninp.it#O.PRMD$ninp.ADMD$acme.C$it#
    bd.it#PRMD$uk\.bd.ADMD$ .C$it#
    #
    # RFC1327 Gate Table
    #
    my.it#[email protected]$ninp.ADMD$acme.C$it#
    co.it#O$mhs-relay.PRMD$x4net.ADMD$ .C$t#



Allocchio, Bonito, Cole, Giordano & Hagens                     [Page 16]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


4.4 Storing the RFC1327 Gate table

  Section 4.3.4 of RFC1327 also specify how an address should be
  converted between RFC822 and X.400 in case a complete mapping is
  impossible. To allow the use of DDAs for non mappable domains, the
  RFC1327 'gate' table is thus introduced. DNS must store and
  distribute also these data.

  One of the major features of the DNS is the ability to distribute the
  authority: a certain site runs the "primary" nameserver for one
  determined sub-tree and thus it is also the only place allowed to
  update information regarding that sub-tree. This fact allows, in our
  case, a further additional feature to the table based approach. In
  fact we can avoid one possible ambiguity about the use of the 'gate'
  table (and thus of DDAs encoding).

  The authority maintaining a DNS entry in the usual RFC822 domain
  space is the only one allowed to decide if its domain should be
  mapped using Standard Attributes (SA) syntax or Domain Defined
  Attributes (DDA) one. If the authority decides that its RFC822 domain
  should be mapped using SA, then the PX RDATA will be a 'table2'
  entry, otherwise it will be a 'gate' table entry. Thus for an RFC822
  domain we cannot have any more two possible entries, one from 'table2
  and another one from 'gate' table, and the action for a gateway
  results clearly stated.

  The RFC1327 'gate' table syntax is actually identical to RFC1327
  'table2'. Thus the same syntax translation rules from RFC1327 to DNS
  format can be applied. However a gateway or any other application
  must know if the answer it got from DNS contains some 'table2' or
  some 'gate' table information. This is easily obtained flagging with
  an additional ".G." post-fix the PX RDATA value when it contains a
  'gate' table entry. The example in section 4.3 shows clearly the
  result. As any X.400 O/R domain must end with a country code ("C-xx"
  in our DNS syntax) the additional ".G." creates no conflicts or
  ambiguities at all. This postfix must obviously be removed before
  using the RFC1327 'gate' table data.

5. Finding RFC1327 mapping information from DNS

  The RFC1327 mapping information is stored in DNS both in the normal
  RFC822 domain name space, and in the newly defined X.400 name space.
  The information, stored in PX resource records, does not represent a
  full RFC822 or X.400 O/R address: it is a template which specifies
  the fields of the domain that are used by the mapping algorithm.

  When mapping information is stored in the DNS, queries to the DNS are
  issued whenever an iterative search through the mapping table would



Allocchio, Bonito, Cole, Giordano & Hagens                     [Page 17]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


  be performed (RFC1327: section 4.3.4, State I; section 4.3.5, mapping
  B). Due to the DNS search mechanism, DNS by itself returns the
  longest possible match in the stored mapping rule with a single
  query, thus no iteration and/or multiple queries are needed. As
  specified in RFC1327, a search of the mapping table will result in
  either success (mapping found) or failure (query failed, mapping not
  found).

  When a DNS query is issued, a third possible result is timeout. If
  the result is timeout, the gateway operation is delayed and then
  retried at a later time. A result of success or failure is processed
  according to the algorithms specified in RFC1327. If a DNS error code
  is returned, an error message should be logged and the gateway
  operation is delayed as for timeout. These pathological situations,
  however, should be avoided with a careful duplication and chaching
  mechanism which DNS itself provides.

  Searching the nameserver which can authoritatively solve the query is
  automatically performed by the DNS distributed name service.

5.1 A DNS query example

  An RFC1327 mail-gateway located in the Internet, when translating
  addresses from RFC822 to X.400, can get information about the RFC1327
  mapping rule asking the DNS. As an example, when translating the
  address SUN.CCE.NRC.IT, the gateway will just query DNS for the
  associated PX resource record. The DNS should contain a PX record
  like this:

  *.cce.nrc.it.  IN PX 50   cce.nrc.it.  O-cce.PRMD-nrc.ADMD-acme.C-it.

  The first query will return immediately the appropriate mapping rule
  in DNS store format.

  There is no ".G." at the end of the obtained PX RDATA value, thus
  applying the syntax translation specified in paragraph 4.2 the
  RFC1327 Table 2 mapping rule will be obtained.

  Let's now take another example where a 'gate' table rule is returned.
  If we are looking for an RFC822 domain ending with top level domain
  "MW", and the DNS contains a PX record like this,

     *.mw.   IN  PX  50  mw.  O-cce.PRMD-nrc.ADMD-acme.C-it.G.

  DNS will return 'mw.' and 'O-cce.PRMD-nrc.ADMD-acme.C-it.G.', i.e., a
  'gate' table entry in DNS store format. Dropping the final ".G." and
  applying the syntax translation specified in paragraph 4.2 the
  original rule will be available. More over, the ".G." flag also tells



Allocchio, Bonito, Cole, Giordano & Hagens                     [Page 18]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


  the gateway to use DDA encoding for the inquired RFC822 domain.

  On the other hand, translating from X.400 to RFC822 the address

     C=de; ADMD=pkz; PRMD=nfc; O=top;

  the mail gateway should convert the syntax according to paragraph
  4.2, apply the 'Country code convention' described in 4.2.3 to derive
  the appropriate DNS translation of the X.400 O/R name and then query
  DNS for the corresponding PX resource record. The obtained record for
  which the PX record must be queried is thus:

     O-top.PRMD-nfc.ADMD-pkz.X42D.de.

  The DNS could contain:

     *.ADMD-pkz.X42D.de.  IN  PX  50  pkz.de.  ADMD-pkz.C-de.

  Assuming that there are not more specific records in DNS, the
  wildcard mechanism will return the RFC1327 'table1' rule in encoded
  format.

6. Administration of mapping information

  The DNS, using the PX RR, will be able to distribute the mapping
  information to all RFC1327 gateways located on the Internet. However,
  not all RFC1327 gateways will be able to use the Internet DNS. It is
  expected that some gateways in a particular management domain will
  conform to one of the following models:

     (a) Table-based, (b) DNS-based, (c) X.500-based

  Table-based management domains will continue to submit and retrieve
  their mapping tables from the International Mapping Table coordinator
  manually or via some automated procedures. Their mapping information
  should be made available in DNS by the appropriate DNS authority
  using the same mechanism already in place for MX records: if a branch
  has not yet in place its own DNS server, some higher authority in the
  DNS tree will provide the service for it. A transition procedure
  similar to the one used to migrate from the 'hosts.txt' tables to DNS
  can be applied also to the deployment phase of this proposal. An
  informational document describing the implementation phase and the
  detailed coordination procedures is expected. The deployment phase
  must also follow the directives produced by the current work on
  RFC1327 mapping authorities, in order to insure consistency in the
  mapping information itself.





Allocchio, Bonito, Cole, Giordano & Hagens                     [Page 19]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


  Another distributed directory service which can distribute the
  RFC1327 mapping information is X.500. The coordination, alignment and
  uniqueness of mapping information between DNS and X.500 is an
  essential fact if it happens to have both systems in place. The ideal
  solution is a dynamic alignment mechanism which transparently makes
  the DNS mapping information available in X.500 and vice versa. Some
  work in this specific field is already being done [see Costa] which
  can result in a global transparent directory service, where the
  information is stored in DNS or in X.500, but is visible completely
  by any of the two systems.

7. Conclusion

  The introduction of the new PX resource record and the definition of
  the X.400 O/R name space in the DNS structure provide a good
  repository for mapping information. The mapping information is stored
  in the DNS tree structure so that it can be easily obtained using the
  DNS distributed name service. At the same time the definition of the
  appropriate DNS space for X.400 O/R names provide a repository where
  to store and distribute some other X.400 MHS information. The use of
  the DNS has many known advantages in storing, managing and updating
  the information. A successful number of tests have been performed
  under the provisional top level domain "X400.IT", and their results
  confirmed the advantages of the method.

  Software to query the DNS and then to convert between the textual
  representation of DNS resource records and the address format defined
  in RFC1327 needs to be developed. This software must also allow a
  smooth implementation and deployment period, eventually taking care
  of the transition phase. A further informational document describing
  operational and implementation of the service is expected.

8. Acknowledgements

  We wish to thanks all those who contributed to the discussion and
  revision of this document: many of their ideas and suggestions
  constitute essential parts of this work. In particular thanks to Jon
  Postel, Paul Mockapetris, Rob Austin and the whole IETF x400ops, RARE
  wg-msg and IETF namedroppers groups. A special mention to Christian
  Huitema for his fundamental contribution to this work.











Allocchio, Bonito, Cole, Giordano & Hagens                     [Page 20]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


9. References

  [CCITT] CCITT SG 5/VII, "Recommendation X.400, Message Handling
      Systems: System Model - Service Elements", October 1988.

  [RFC 1327] Kille, S., "Mapping between X.400(1988)/ISO 10021 and RFC
      822", RFC 1327, March 1992.

  [RFC 1034] Mockapetris, P., "Domain Names - Concepts and Facilities",
      STD 13, RFC 1034, USC/Information Sciences Institute, November
      1987.

  [RFC 1035] Mockapetris, P., "Domain names - Implementation and
      Specification", STD 13, RFC 1035, USC/Information Sciences
      Institute, November 1987.

  [RFC 1033] Lottor, M., "Domain Administrators Operation Guide", RFC
      1033, SRI International, November 1987.

  [Costa] Costa, A., Macedo, J., and V. Freitas, "Accessing and
      Managing DNS Information in the X.500 Directory", Proceeding of
      the 4th Joint European Networking Conference, Trondheim, NO, May
      1993.

  [Houttin] Houttin, J., Hansen, K., and S. Aumont, "Address Mapping
      Functions and Authorities", Internet-DRAFT, May 1993.

10. Security Considerations

  Security issues are not discussed in this memo.





















Allocchio, Bonito, Cole, Giordano & Hagens                     [Page 21]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


11. Authors' Addresses

  Claudio Allocchio
  Sincrotrone Trieste
  Padriciano 99
  I 34012 Trieste
  Italy

  RFC822: [email protected]
  X.400:  C=it;A=garr;P=Trieste;O=Elettra;
  S=Allocchio;G=Claudio;
  Phone:  +39 40 3758523
  Fax:    +39 40 226338


  Antonio Blasco Bonito
  CNUCE - CNR
  Reparto infr. reti
  Viale S. Maria 36
  I 56126 Pisa
  Italy

  RFC822: [email protected]
  X.400:  C=it;A=garr;P=cnr;O=cnuce;S=bonito;
  Phone:  +39 50 593246
  Fax:    +39 50 589354


  Bruce Cole
  Cisco Systems Inc.
  P.O. Box 3075
  1525 O'Brien Drive
  Menlo Park, CA 94026
  U.S.A.

  RFC822: [email protected]
  X.400:  C=us;A= ;P=Internet;
  DD.rfc-822=bcole(a)cisco.com;
  Phone:  +1 415 6888245
  Fax:    +1 415 6884575











Allocchio, Bonito, Cole, Giordano & Hagens                     [Page 22]

RFC 1664          Internet DNS for Mail Mapping Tables       August 1994


  Silvia Giordano
  Centro Svizzero di
  Calcolo Scientifico
  Via Cantonale
  CH 6928 Manno
  Switzerland

  RFC822: [email protected]
  X.400:  C=ch;A=arcom;P=switch;O=cscs;
  S=giordano;
  Phone:  +41 91 508213
  Fax:    +41 91 506711


  Robert Hagens
  Advanced Network and Services
  1875 Campus Commons Drive
  Reston, VA 22091
  U.S.A.

  RFC822: [email protected]
  X.400:  C=us;A= ;P=Internet;
  DD.rfc-822=hagens(a)ans.net;
  Phone:  +1 703 7587700



























Allocchio, Bonito, Cole, Giordano & Hagens                     [Page 23]