Network Working Group                                       Bob Anderson
Request for Comments: 166                                           Rand
NIC 6780                                                       Vint Cerf
                                                                   UCLA
                                                           Eric Harslem
                                                           John Haefner
                                                                   Rand
                                                             Jim Madden
                                                         U. of Illinois
                                                           Bob Metcalfe
                                                                    MIT
                                                          Arie Shoshani
                                                                    SDC
                                                              Jim White
                                                                   UCSB
                                                             David Wood
                                                                  Mitre
                                                            25 May 1971

   DATA RECONFIGURATION SERVICE -- AN IMPLEMENTATION SPECIFICATION

                                CONTENTS

    I.  INTRODUCTION ...................................  2

        Purpose of this RFC ............................  2
        Motivation .....................................  2

   II.  OVERVIEW OF THE DATA RECONFIGURATION SERVICE ...  3

        Elements of the Data Reconfiguration SERVICE ...  3
        Conceptual Network Connections .................  3
        Conception Protocols and Message Formats .......  4
        Example Connection Configurations ..............  7

  III.  THE FORM MACHINE ...............................  8

        Input/Output Streams and Forms .................  8
        Form Machine BNF Syntax ........................  8
        Alternate Specification of Form Machine Syntax .  9
        Forms .......................................... 10
        Rules .......................................... 10
        Terms .......................................... 11

          Term Format 1 ................................ 11
          Term Format 2 ................................ 11
          Term Format 3 ................................ 14
          Term Format 4 ................................ 14



Anderson, et al.                                                [Page 1]

RFC 166               Data Reconfiguration Service              May 1971


          The Application of a Term .................... 14
          Restrictions and Interpretations of Term
            Functions .................................. 15

          Term and Rule Sequencing ..................... 16

   IV.  EXAMPLES ....................................... 17

        Remarks ........................................ 17
        Field Insertion ................................ 17
        Deletion ....................................... 17
        Variable Length Records ........................ 18
        String Length Computation ...................... 18
        Transposition .................................. 18
        Character Packing and Unpacking ................ 18


                            I.  INTRODUCTION

PURPOSE OF THIS RFC

  The Purpose of this RFC is to specify the Data Reconfiguration
  Service (DRS.)

  The DRS experiment involves a software mechanism to reformat Network
  data streams.  The mechanism can be adapted to numerous Network
  application programs.  We hope that the result of the experiment will
  lead to a future standard service that embodies the principles
  described in this RFC.


MOTIVATION

  Application programs require specific data I/O formats yet the
  formats are different from program to program.  We take the position
  that the Network should adapt to the individual program requirements
  rather than changing each program to comply with a standard.  This
  position doesn't preclude the use of standards that describe the
  formats of regular message contents; it is merely an interpretation
  of a standard as being a desirable mode of operation but not a
  necessary one.

  In addition to differing program requirements, a format mismatch
  problem occurs where users wish to employ many different kinds of
  consoles to attach to a single service program.  It is desirable to
  have the Network adapt to individual console configurations rather
  than requiring unique software packages for each console
  transformation.



Anderson, et al.                                                [Page 2]

RFC 166               Data Reconfiguration Service              May 1971


  One approach to providing adaptation is for those sites with
  substantial computing power to offer a data reconfiguration service;
  this document is a specification of such a service.

  The envisioned modus operandi of the service is that an applications
  programmer defines _forms_ that describe data reconfigurations.  The
  service stores the forms by name.  At a later time, a user (perhaps a
  non-programmer) employs the service to accomplish a particular
  transformation of a Network data stream, simply by calling the form
  by name.

  We have attempted to provide a notation tailored to some specifically
  needed instances of data reformatting while keeping the notation and
  its underlying implementation within some utility range that is
  bounded on the lower end by a notation expressive enough to make the
  experimental service useful, and that is bounded on the upper end by
  a notation short of a general purpose programming language.


            II.  OVERVIEW OF THE DATA RECONFIGURATION SERVICE

ELEMENTS OF THE DATA RECONFIGURATION SERVICE

  An implementation of the Data Reconfiguration Service (DRS) includes
  modules for connection protocols, a handler of some requests that can
  be made of the service, a compiler and/or interpreter (called the
  Form Machine) to act on those requests, and a file storage module for
  saving and retrieving definitions of data reconfigurations (forms).

  This section describes connection protocols and requests.  The next
  section covers the Form Machine language in some detail.  File
  storage is not described in this document because it is transparent
  to the use of the service an its implementation is different at each
  DRS host.

CONCEPTUAL NETWORK CONNECTIONS

  There are three conceptual Network connections to the DRS, see Fig.
  1.

        1)  The control connection (CC) is between an originating user
            and the DRS.  Forms specifying data reconfigurations are
            defined over this connection.  The user indicates (once)
            forms to be applied to data passing over the two
            connections described below.

        2)  The user connection (UC) is between a user process and the
            DRS.



Anderson, et al.                                                [Page 3]

RFC 166               Data Reconfiguration Service              May 1971


        3)  The server connection (SC) is between the DRS and the
            serving process.

  Since the goal is to adapt the Network to user and server processes,
  a minimum of requirements are imposed on the UC and SC.

     +------------+              +------+          +---------+
     | ORIGINATING|     CC       | DRS  |    SC    | SERVER  |
     | USER       |--------------|      |----------| PROCESS |
     +------------+     ^        +------+     ^    +---------+
                        |           /         |
                        |        UC/ <-----\  |
                        |         /         \ |
                        |   +-----------+    \|
        TELNET ---------+   | USER      |     +-- Simplex or Duplex
        Protocol            | PROCESS   |         Connections
        Connection          +-----------+


               Figure 1.  DRS Network Connections


CONNECTION PROTOCOLS AND MESSAGE FORMATS

  Over a control connection the dialog is directly between an
  originating user and the DRS.  Here the user is defining forms or
  assigning predefined forms to connections for reformatting.

  The user connects to the DRS via the standard initial connection
  protocol (ICP).  Rather than going through a logger, the user calls
  on a particular socket on which the DRS alway listens. (Experimental
  socket numbers will be published later.) DRS switches the user to
  another socket pair.

  Messages sent over a control connection are of the types and formats
  specified for TELNET.  (The data type code should specify ASCII --
  the default.)  Thus, a user at a terminal should be able to connect
  to a DRS via his local TELNET, for example, as shown in Fig. 2.

                           +---------+   CC  +---------+
                 +---------| TELNET  |-------|   DRS   |
                 |         +---------+       +---------+
     +-----------------------+
     |         USER          |
     | (TERMINAL OR PROGRAM) |
     +-----------------------+

                 Figure 2. A TELNET Connection to DRS



Anderson, et al.                                                [Page 4]

RFC 166               Data Reconfiguration Service              May 1971


  When a user connects to DRS he supplies a six-character user ID (UID)
  as a qualifier to guarantee the uniqueness of his form names.  He
  will initially have the following commands:

        1.  DEFFORM (form)
        2.  ENDFORM (form)

            These two commands define a form, the text of which is
            chronologically entered between them.  The form is stored
            in the DRS local file system.

        3.  PURGE (form)

            The named form, as qualified by the current UID, is purged
            from the DRS file system.

        4.  LISTNAMES (UID)

            The unqualified names of all forms assigned to UID are
            returned.

        5.  LISTFORM (form)

            The source text of a named form is returned.

        6.  DUPLEXCONNECT (user site, user receive socket, user method,
            server site, server receive socket, server method, user-
            to-server form name, server-to-user form name)

            A duplex connection is made between two processes using the
            receive sockets and the sockets one greater.  Method is
            defined below.  The forms define the transformations on
            these connections.

        7.  SIMPLEXCONNECT (user site, user socket, user method, server
            site, server socket, server method, form)

            A simplex connection is made between the two sockets as
            specified by method.

        8.  ABORT (site, receive socket)

            The reconfiguration of data is terminated by closing both
            the UC and SC specified in part in the command.

  Either one, both, or neither of the two parties specified in 6 or 7
  may be at the same host as the party issuing the request.  Sites and
  sockets specify user and server for the connection.  Method indicates



Anderson, et al.                                                [Page 5]

RFC 166               Data Reconfiguration Service              May 1971


  the way in which the connection is established.

  The following rules apply to these commands:

        1)  Commands may be abbreviated to the minimum number of
            characters to identify them uniquely.

        2)  All commands should be at the start of a line.

        3)  Parameters are enclosed in parentheses and separated by
            commas.

        4)  Imbedded blanks are ignored.

        5)  The parameters are:

            form name        1-6 characters
            UID              1-6 characters
            Site             1-2 characters specifying
                                 the hexadecimal host number
            Socket           1-8 characters specifying the
                                 hexadecimal socket number
            Method           A single character

        6)  Method has the following values:

            C      The site/socket is already connected
                   to the DRS as a dummy control connection
                   (should not be the real control connection).
            I      Connect via the standard ICP (does not
                   apply to SIMPLEXCONNECT).
            D      Connect directly via STR, RTS.

            The DRS will make at least the following minimal
            responses to the user:

            1)  A positive or negative acknowledgement after
                each line (CR/LF)
            2)  If a form fails or terminates
            TERMINATE, ASCII Host # as hex, ASCII Socket # as hex,
                        ASCII Return Code as decimal
            thus identifying at least one end of the connection.









Anderson, et al.                                                [Page 6]

RFC 166               Data Reconfiguration Service              May 1971


EXAMPLE CONNECTION CONFIGURATIONS

  There are basically two modes of DRS operation: 1) the user wishes to
  establish a DRS UC/SC connection(s) between the programs and 2) the
  user wants to establish the same connection(s) where he (his
  terminal) is at the end of the UC or the SC.  The latter case is
  appropriate when the user wishes to interact from his terminal with
  the serving process (e.g., a logger).

  In the first case (Fig. 1, where the originating user is either a
  terminal or a program) the user issues the appropriate CONNECT
  command.  The UC/SC can be simplex or duplex.

  The second case has two possible configurations, shown in Figs. 3 and
  4.


  +-------+    +--------+   CC    +-----+        +----+
  |       |----|        |---------|     |   SC   |    |
  | USER  |    | TELNET |   UC    | DRS |--------| SP |
  |       |----|        |---------|     |        |    |
  +-------+    +--------+         +-----+        +----+

           Figure 3.  Use of Dummy Control Connection

               +---------+
  +------+    /| USER    |   CC   +-----+
  |      |---/ | SIDE    |--------|     |   SC   +----+
  | USER |     +---------+   UC   | DRS |--------| SP |
  |      |---\ | SERVING |--------|     |        +----+
  +------+    \| SIDE    |        +-----+
               +---------+

           Figure 4.  Use of Server TELNET

  In Fig. 3 the user instructs his TELNET to make two duplex
  connections to DRS.  One is used for control information (the CC) and
  the other is a dummy.  When he issues the CONNECT he references the
  dummy duplex connection (UC) using the "already connected" option.

  In Fig. 4 the user has his TELNET (user side) call the DRS.  When he
  issues the CONNECT the DRS calls the TELNET (server side) which
  accepts the call on behalf of the console.  This distinction is known
  only to the user since to the DRS the configuration Fig. 4 appears
  identical to that in Fig. 1.  Two points should be noted:

       1)  TELNET protocol is needed only to define forms and direct
           connections.  It is not required for the using and serving



Anderson, et al.                                                [Page 7]

RFC 166               Data Reconfiguration Service              May 1971


           processes.
       2)  The using and serving processes need only a minimum of
           modification for Network use, i.e., an NCP interface.

                         III.  THE FORM MACHINE

INPUT/OUTPUT STREAMS AND FORMS

  This section describes the syntax and semantics of forms that specify
  the data reconfigurations.  The Form Machine gets an input stream,
  reformats the input stream according to a form describing the
  reconfiguration, and emits the reformatted data as an output stream.

  In reading this section it will be helpful to envision the
  application of a form to the data stream as depicted in Fig. 5.  An
  input stream pointer identifies the position of data (in the input
  stream) that is being analyzed at any given time by a part of the
  form.  Likewise, an output stream pointer locates data being emitted
  in the output stream.


      /\/\                                                  /\/\
 ^    |  |                     FORM                         |  |   ^
 |    |  |                -----------------                 |  |   |
 |    |  |            +-  -----------------  -+             |  |   |
 |    |  |            |   CURRENT PART OF     |             |  |   |
INPUT  |  |<= CURRENT <    -----------------    > CURRENT => |  | OUTPUT
STREAM |  |   POINTER  |   FORM BEING APPLIED  |  POINTER    |  | STREAM
      |  |            +-  -----------------  -+             |  |
      |  |                -----------------                 |  |
      |  |                -----------------                 |  |
      |  |                -----------------                 |  |
      \/\/                                                  \/\/
             Figure 5.  Application of Form to Data Streams

















Anderson, et al.                                                [Page 8]

RFC 166               Data Reconfiguration Service              May 1971


FORM MACHINE BNF SYNTAX

  form           ::=  rule | rule form

  rule           ;;=  label  inputstream  outputstream ;

  label          ::=  INTEGER | <null>

  inputstream    ::=  terms | <null>

  terms          ::=  term | terms , term

  outputstream   ::=  : terms | <null>

  term           ::=  identifier | identifier  descriptor |
                      descriptor | comparator

  identifier     ::=  an alpha character followed by 0 to 3
                      alphanumerics

  descriptor     ::=  (replicationexpression , datatype ,
                      valueexpression , lengthexpression  control)

  comparator     ::=  (value  connective  value  control)  |
                      (identifier  *<=*  control)

  replicationexpression  ::=  # | arithmeticexpression | <null>

  datatype       ::=  B | O | X | E | A

  valueexpression  ::=  value | <null>

  lengthexpression  ::=      arithmeticexpression | <null>

  connective     ::=  .LE. | .LT. | .GE. | .GT. | .EQ. | .NE.

  value          ::=  literal | arithmeticexpression

  arithmeticexpression  ::=  primary | primary operator
                             arithmeticexpression

  primary        ::=  identifier | L(identifier) | V(identifier) |
                      INTEGER

  operator       ::=  + | - | * | /

  literal        ::=  literaltype "string"




Anderson, et al.                                                [Page 9]

RFC 166               Data Reconfiguration Service              May 1971


  literaltype    ::=  B | O | X | E | A

  string         ::=  from 0 to 256 characters

  control        ::=  :  options | <null>

  options        ::=  S(where) | F(where) | U(where) |
                      S(where) , F(where) |
                      F(where) , S(where)

  where          ::=  arithmeticexpression | R(arithmeticexpression)


ALTERNATE SPECIFICATION OF FORM MACHINE SYNTAX

                                  infinity
form                    ::=  {rule}
                                  1
                                     1         1          1
rule                    ::=  {INTEGER}   {terms}   {:terms} ;
                                     0         0          0
                                        infinity
terms                   ::=  term {,term}
                                        0
                                                     1
term                    ::=  identifier | {identifier}   descriptor
                                                     0
                            | comparator
                                                   1
descriptor              ::=  ({arithmeticexpression}  , datatype ,
                                                   0
                                   1                     1          1
                            {value} ,  {lengthexpression}  {:options}
                                   0                     0          0
                                                                1
comparator              ::=  (value  connective  value {:options} ) |
                                                                0
                                                             1
                            (identifier .<=. value {:options} )
                                                             0
connective              ::=  .LE. | .LT. | .GE. | .GT. | .EQ. | .NE.

lengthexpression        ::=  # | arithmeticexpression

datatype                ::=  B | O | X | E | A

value                   ::=  literal | arithmeticexpression




Anderson, et al.                                               [Page 10]

RFC 166               Data Reconfiguration Service              May 1971


                                                        infinity
arithmeticexpression    ::=  primary  {operator  primary}
                                                        0
operator                ::= + | - | * | /

primary                 ::=  identifier | L(identifier) |
                            V(identifier) | INTEGER
                                                     256
literal                 ::=  literaltype  "{CHARACTER}   "
                                                     0
literaltype             ::=  B | O | X | A | E
                                                1
options                 ::=  S(where) {,F(where)}  |
                                                0
                                                1
                            F(where) {,S(where)}  | U(where)
                                                0
where                   ::=  arithmeticexpression |
                            R(arithmeticexpression)
                                                    3
identifier              ::=  ALPHABETIC  {ALPHAMERIC}
                                                    0


FORMS

  A form is an ordered set of rules.

        form ::=  rule | rule form

  The current rule is applied to the current position of the input
  stream.  If the (input stream part of a) rule fails to correctly
  describe the contents of the current input then another rule is made
  current and applied to the current position of the input stream.  The
  next rule to be made current is either explicitly specified by the
  current term in the current rule or it is the next sequential rule by
  default.  Flow of control is more fully described under TERM AND RULE
  SEQUENCING.

  If the (input stream part of a) rule succeeds in correctly describing
  the current input stream, then some data may be emitted at the
  current position in the output stream according to the rule.  The
  input and output stream pointers are advanced over the described and
  emitted data, respectively, and the next rule is applied to the now
  current position of the input stream.

  Application of the form is terminated when an explicit return
  (R(arithmeticexpression)) is encountered in a rule.  The user and



Anderson, et al.                                               [Page 11]

RFC 166               Data Reconfiguration Service              May 1971


  server connections are closed and the return code
  (arithmeticexpression) is sent to the originating user.

RULES

  A rule is a replacement, comparison, and/or an assignment operation
  of the form shown below.

        rule ::= label  inputstream  outputstream

  A label is the name of a rule and it exists so that the rule may be
  referenced elsewhere in the form for explicit rule transfer of
  control.  Labels are of the form below.

        label ::=  INTEGER | <null>

  The optional integer labels are in the range 0 >= INTEGER >= 9999.
  The rules need not be labeled in ascending numerical order.

TERMS

  The inputstream (describing the input stream to be matched) and the
  outputstream (describing data to be emitted in the output stream)
  consist of zero or more terms and are of the form shown below.

        inputstream   ::=  terms | <null>
        outputstream  ::=  :terms | <null>
        terms         ::=  term | terms , term

  Terms are of one of four formats as indicated below.

        term ::=  identifier | identifier  descriptor |
                  descriptor | comparator

Term Format 1

  The first term format is shown below.

        identifier

  The identifier is a symbolic reference to a previously identified
  term (term format 2) in the form.  It takes on the same attributes
  (value, length, type) as the term by that name.  Term format 1 is
  normally used to emit data in the output stream.

  Identifiers are formed by an alpha character followed by 0 to 3
  alphanumeric characters.




Anderson, et al.                                               [Page 12]

RFC 166               Data Reconfiguration Service              May 1971


Term Format 2

  The second term format is shown below.

        identifier descriptor

  Term format 2 is generally used as an input stream term but can be
  used as an output stream term.

  A descriptor is defined as shown below.

        descriptor ::= (replicationexpression, datatype,
                       valueexpression, lengthexpression
                       control)

  The identifier is the symbolic name of the term in the usual
  programming language sense.  It takes on the type, length, value, and
  replication attributes of the term and it may be referenced elsewhere
  in the form.

  The replication expression, if specified, causes the unit value of
  the term to be generated the number of times indicated by the value
  of the replication expression.  The unit value of the term (quantity
  to be replicated) is determined from the data type, value expression,
  and length expression attributes.  The data type defines the kind of
  data being specified.  The value expression specifies a nominal value
  that is augmented by the other term attributes.  The length
  expression determines the unit length of the term.  (See the IBM SRL
  Form C28-6514 for a similar interpretation of the pseudo instruction,
  defined constant, after which the descriptor was modeled.)

  The replication expression is defined below.

        replicationexpression ::= # | arithmeticexpression | <null>
        arithmeticexpression ::= primary | primary operator
                                 arithmeticexpression
        operator ::= + | - | * | /
        primary ::= identifier | L(identifier) | V(identifier) |
                    INTEGER

  The replication expression is a repeat function applied to the
  combined data type value, and length expressions.  It expresses the
  number of times that the nominal value is to be repeated.

  The terminal symbol # means an arbitrary replication factor.  It must
  be explicitly terminated by a match or non-match to the input stream.
  This termination may result from the same or the following term.




Anderson, et al.                                               [Page 13]

RFC 166               Data Reconfiguration Service              May 1971


  A null replication expression has the value of one.  Arithmetic
  expressions are evaluated from left-to-right with no precedence.

  The L(identifier) is a length operator that generates a 32-bit binary
  integer corresponding to the length of the term named.  The
  V(identifier) is a value operator that generates a 32-bit binary
  integer corresponding to the value of the term named.  (See
  Restrictions and Interpretations of Term Functions.)  The value
  operator is intended to convert character strings to their numerical
  correspondents.

  The data type is defined below.

            datatype ::= B | O | X | E | A

  The data type describes the kind of data that the term represents.
  (It is expected that additional data types, such as floating point
  and user-defined types, will be added as needed.)

       Data Type         Meaning              Unit Length

           B             Bit string              1 bit
           O             Bit string              3 bits
           X             Bit string              4 bits
           E             EBCDIC character        8 bits
           A             Network ASCII character 8 bits

  The value expression is defined below.

           valueexpression ::= value | <null>
           value ::= literal | arithmeticexpression
           literal ::= literaltype "string"
           literaltype ::= B | O | X | E | A

  The value expression is the nominal value of a term expressed in the
  format indicated by the data type.  It is repeated according to the
  replication expression.

  A null value expression in the input stream defaults to the data
  present in the input stream.  The data must comply with the datatype
  attribute, however.

  A null value expression generates padding according to Restrictions
  and Interpretations of Term Functions.

  The length expression is defined below.

        lengthexpression ::= arithmeticexpression | <null>



Anderson, et al.                                               [Page 14]

RFC 166               Data Reconfiguration Service              May 1971


  The length expression states the length of the field containing the
  value expression.

  If the length expression is less than or equal to zero, the term
  succeeds but the appropriate stream pointer is not advanced.
  Positive lengths cause the appropriate stream pointer to be advanced
  if the term otherwise succeeds.

  Control is defined under TERM AND RULE SEQUENCING.

Term Format 3

  Term format 3 is shown below.

        descriptor

  It is identical to term format 2 with the omission of the identifier.
  Term format 3 is generally used in the output stream.  It is used in
  the input stream where input data is to be passed over but not
  retained for emission or later reference.

Term Format 4

  The fourth term format is shown below.

        comparator    ::= (value connective value control) |
                          (identifier *<=* value  control)
        value         ::= literal | arithmeticexpression
        literal       ::= literaltype "string"
        literaltype   ::= B | O | X | E | A
        string        ::= from 0 to 256 characters
        connective    ::= .LE. | .LT. | .GE. | .GT. | .EQ. | .NE.

  The fourth term format is used for assignment and comparison.

  The assignment operator *<=* assigns the value to the identifier.
  The connectives have their usual meaning.  Values to be compared must
  have the same type and length attributes or an error condition arises
  and the form fails.

The Application of a Term

  The elements of a term are applied by the following sequence of
  steps.

        1.  The data type, value expression, and length expression
            together specify a unit value, call it x.




Anderson, et al.                                               [Page 15]

RFC 166               Data Reconfiguration Service              May 1971


        2.  The replication expression specifies the number of times x
            is to be repeated.  The value of the concatenated xs
            becomes y of length L.

        3.  If the term is an input stream term then the value of y of
            length L is tested with the input value beginning at the
            current input pointer position.

        4.  If the input value satisfies the constraints of y over
            length L then the input value of length L becomes the value
            of the term.

  In an output stream term, the procedure is the same except that the
  source of input is the value of the term(s) named in the value
  expression and the data is emitted in the output stream.

  The above procedure is modified to include a one term look-ahead
  where replicated values are of indefinite length because of the
  arbitrary symbol, #.

Restrictions and Interpretations of Term Functions

  1.    Terms having indefinite lengths because their values are
        repeated according to the # symbol, must be separated by some
        type-specific data such as a literal.  (A literal isn't
        specifically required, however.  An arbitrary number of ASCII
        characters could be terminated by a non-ASCII character.)

  2.    Truncation and padding is as follows:
        a)  Character to character (A <-> E) conversion is left-
            justified and truncated or padded on the right with blanks.
        b)  Character to numeric and numeric to numeric conversions are
            right-justified and truncated or padded on the left with
            zeros.
        c)  Numeric to character conversions is right-justified and
            left-padded with blanks.

  3.    The following are ignored in a form definition over the control
        connection.
        a)  TELNET control characters.
        b)  Blanks except within quotes.
        c)  /* string */ is treated as comments except within quotes.

  4.    The following defaults prevail where the term part is omitted.

        a)  The replication expression defaults to one.
        b)  # in an output stream term defaults to one.
        c)  The value expression of an input stream term defaults to



Anderson, et al.                                               [Page 16]

RFC 166               Data Reconfiguration Service              May 1971


            the value found in the input stream, but the input stream
            must conform to the data type and length expression.  The
            value expression of an output stream term defaults to
            padding only.
        e)  The length expression defaults to the size of the quantity
            determined by the data type and value expression.
        f)  Control defaults to the next sequential term if a term is
            successfully applied; else control defaults to the next
            sequential rule.  If _where_ evaluates to an undefined
            _label_ the form fails.

  5.    Arithmetic expressions are evaluated left-to-right with no
        precedence.

  6.    The following limits prevail.

        a)  Binary lengths are <= 32 bits
        b)  Character strings are <= 256 8-bit characters
        c)  Identifier names are <= 4 characters
        d)  Maximum number of identifiers is <= 256
        e)  Label integers are >= 0 and <= 9999
  7.    Value and length operators product 32-bit binary integers.  The
        value operator is currently intended for converting A or E type
        decimal character strings to their binary correspondents.  For
        example, the value of E'12' would be 0......01100.  The value
        of E'AB' would cause the form to fail.

TERM AND RULE SEQUENCING

  Sequencing may be explicitly controlled by including control in a
  term.

       control ::=  :options | <null>
       options ::=  S(where) | F(where) | U(where)
                    S(where) , F(where) |
                    F(where) , S(where)

       where   ::=  arithmeticexpression | R(arithmeticexpression)

  S, F, and U denote success, fail, and unconditional transfers,
  respectively.  _Where_ evaluates to a _rule_ label, thus transfer can
  be effected from within a rule (at the end of a term) to the
  beginning of another rule.  R means terminate the form and return the
  evaluated expression to the initiator over the control connection (if
  still open).

  If terms are not explicitly sequenced, the following defaults
  prevail.



Anderson, et al.                                               [Page 17]

RFC 166               Data Reconfiguration Service              May 1971


       1)  When a term fails go to the next sequential rule.
       2)  When a term succeeds go to the next sequential
           term within the rule.
       3)  At the end of a rule, go to the next sequential
           rule.

  Note in the following example, the correlation between transfer of
  control and movement of the input pointer.

       1   XYZ(,B,,8:S(2),F(3)) : XYZ ;
       2   . . . . . . .
       3   . . . . . . .

  The value of XYZ will never be emitted in the output stream since
  control is transferred out of the rule upon either success or
  failure.  If the term succeeds, the 8 bits of input will be assigned
  as the value of XYZ and rule 2 will then be applied to the same input
  stream data.  That is, since the complete left hand side of rule 1
  was not successfully applied, the input stream pointer is not
  advanced.

                              IV.  EXAMPLES

REMARKS

  The following examples (forms and also single rules) are simple
  representative uses of the Form Machine.  The examples are expressed
  in a term-per-line format only to aid the explanation.  Typically, a
  single rule might be written as a single line.

FIELD INSERTION

  To insert a field, separate the input into the two terms to allow the
  inserted field between them.  For example, to do line numbering for a
  121 character/line printer with a leading carriage control character,
  use the following form.

  (NUMB*<=*1);       /*initialize line number counter to one*/
  1 CC(,E,,1:F(R(99))),  /*pick up control character and save
                         as CC*/
                         /*return a code of 99 upon exhaustion*/
  LINE(,E,,121 : F(R(98)))  /*save text as LINE*/
  :CC,               /*emit control character*/
  (,E,NUMB,2),       /*emit counter in first two columns*/
  (,E,E".",1),       /*emit period after line number*/
  (,E,LINE,117),     /*emit text, truncated in 117 byte field*/
  (NUMB*<=*NUMB+1:U(1));   /*increment line counter and go to
                             rule one*/;;



Anderson, et al.                                               [Page 18]

RFC 166               Data Reconfiguration Service              May 1971


DELETION

  Data to be deleted should be isolated as separate terms on the left,
  so they may be omitted (by not emitting them) on the right.

  (,B,,8),           /*isolate 8 bits to ignore*/
  SAVE(,A,,10)       /*extract 10 ASCII characters from
                       input stream*/
  :(,E,SAVE,);       /*emit the characters in SAVE as EBCDIC
                       characters whose length defaults to the
                       length of SAVE, i.e., 10, and advance to
                       the next rule*/

  In the above example, if either input stream term fails,
  the next sequential rule is applied.

VARIABLE LENGTH RECORDS

  Some devices, terminals and programs generate variable
  length records.  The following rule picks up variable length
  EBCDIC records and translates them to ASCII.

  CHAR(#,E,,1),      /*pick up all (an arbitrary number of)
                       EBCDIC characters in the input stream*/
  (,X,X"FF",2)       /*followed by a hexadecimal literal,
                       FF (terminal signal)*/
  :(,A,CHAR,),       /*emit them as ASCII*/
  (,X,X"25",2);      /*emit an ASCII carriage return*/

STRING LENGTH COMPUTATION

  It is often necessary to prefix a length field to an arbitrarily long
  character string.  The following rule prefixes an EBCDIC string with
  a one-byte length field.

  Q(#,E,,1),         /*pick up all EBCDIC characters*/
  TS(,X,X"FF",2)     /*followed by a hexadecimal literal, FF*/
  :(,B,L(Q)+2,8),    /*emit the length of the characters
                       plus the length of the literal plus
                       the length of the count field itself,
                       in an 8-bit field*/
  Q,                 /*emit the characters*/
  TS,                /*emit the terminal*/








Anderson, et al.                                               [Page 19]

RFC 166               Data Reconfiguration Service              May 1971


TRANSPOSITION

  It is often desirable to reorder fields, such as the following
  example.

  Q(,E,,20), R(,E,,10) , S(,E,,15), T(,E,,5) : R, T, S, Q ;

  The terms are emitted in a different order.

CHARACTER PACKING AND UNPACKING

  In systems such as HASP, repeated sequences of characters are packed
  into a count followed by the character, for more efficient storage
  and transmission.  The first form packs multiple characters and the
  second unpacks them.

  /*form to pack EBCDIC streams*/
  /*returns 99 if OK, input exhausted*/
  /*returns 98 if illegal EBCDIC*/
  /*look for terminal signal FF which is not a legal EBCDIC*/
  /*duplication count must be 0-254*/
  1 (,X,X"FF",2 : S(R(99))) ;
  /*pick up an EBCDIC char/*
  CHAR(,E,,1) ;
  /*get identical EBCDIC chars/*
  LEN(#,E,CHAR,1)
  /*emit the count and the char/*
  : (,B,L(LEN)+1,8), CHAR, (:U(1));
  /*end of form*/;;

  /*form to unpack EBCDIC streams*/
  /*look for terminal*/
  1 (,X,X"FF",2 : S(R(99))) ;
  /*emit character the number of times indicated*/
  /*by the count, in a field the length indicated*/
  /*by the counter contents*/
  CNT(,B,,8), CHAR(,E,,1) : (CNT,E,CHAR,1:U(1));
  /*failure of form*/
  (:U(R(98))) ;;




      [ This RFC was put into machine readable form for entry ]
       [ into the online RFC archives by Simone Demmel 03/98 ]






Anderson, et al.                                               [Page 20]