Network Working Group                                       G. Mansfield
Request for Comments: 1609                        AIC Systems Laboratory
Category: Experimental                                      T. Johannsen
                                                     Dresden University
                                                             M. Knopper
                                                   Merit Networks, Inc.
                                                             March 1994


               Charting Networks in the X.500 Directory

Status of this Memo

  This memo defines an Experimental Protocol for the Internet
  community.  This memo does not specify an Internet standard of any
  kind.  Discussion and suggestions for improvement are requested.
  Distribution of this memo is unlimited.

Abstract

  There is a need for a framework wherein the infrastructural and
  service related information about communication networks can be made
  accessible from all places and at all times in a reasonably efficient
  manner and with reasonable accuracy.  This document presents a model
  in which a communication network with all its related details and
  descriptions can be represented in the X.500 Directory. Schemas of
  objects and their attributes which may be used for this purpose are
  presented.  The model envisages physical objects and several logical
  abstractions of the physical objects.






















Mansfield, Johannsen & Knopper                                  [Page 1]

RFC 1609        Charting Networks in the X.500 Directory      March 1994


Table of Contents

     1. Introduction                                       2
     2. Infrastructural information requirements           2
     3. The Nature of the Network Map - The X.500 Solution 4
     4. The hierarchical model of a network                5
     4.1 Network maps                                      5
     4.2 Representation in the X.500 Directory             6
     5. Position in The Directory Information Tree(DIT)    7
     6. Proposed Schemes                                   8
     6.1 Communication Object Classes                      9
     6.2 Physical elements                                10
     6.2.1 Network                                        10
     6.2.2 Node                                           11
     6.2.3 NetworkInterface                               12
     6.3 Logical Elements                                 12
     6.3.1 Network                                        13
     6.3.2 Node                                           13
     6.3.3 NetworkInterface                               13
     7. Security Considerations                           14
     8. Authors' Addresses                                14
     9. References                                        15

1. Introduction

  The rapid and widespread use of computer networking has highlighted
  the importance of holding and servicing information about the
  networking infrastructure itself.  The growing and active interest in
  network management, which has concentrated mainly in the areas of
  fault and performance management on a local scale, is severely
  constrained by the lack of any organized pool of information about
  the network infrastructure itself. Some attempts have been made, on a
  piecemeal basis, to provide a larger view of some particular aspect
  of the network (WHOIS, DNS, .. in the case of the Internet; [1],
  [2]).  But to date, little or no effort has been made in setting up
  the infrastructural framework, for such an information pool. In this
  work we explore the possibility of setting up a framework to hold and
  serve the infrastructural information of a network.

2. Infrastructural information requirements

  Network operation and management requires information about the
  structure of the network, the nodes, links and their properties.
  Further, with current networks extending literally beyond bounds, the
  scope of the information covers networks beyond the span of local
  domain of authority or administration.  When the Network was
  relatively small and simple the map was already known to the
  knowledgable network administrator.  Based on this knowledge the



Mansfield, Johannsen & Knopper                                  [Page 2]

RFC 1609        Charting Networks in the X.500 Directory      March 1994


  course of the packets to different destinations would be charted. But
  presently the size of the Network is already beyond such usages. The
  current growth of the Network is near explosive. This is giving rise
  to the urgent necessity of having infrastructural and service related
  information made accessible from all places and at all times in a
  reasonably efficient manner and with reasonable accuracy. In the rest
  of this work a network is the media for transmitting information.
  Network elements are equipment with one or more network interfaces
  whereby it is possible to exchange information with the network.
  Network elements with multiple interfaces e.g.,
  gateways/routers/bridges/repeaters...  may be used to connect
  networks.  Network related information, referred to as 'network map'
  in the rest of this paper, should

  1. Show the interconnection between the various network
     elements. This will basically represent the Network as a graph
     where vertices represent objects like gateways/workstations/
     subnetworks and edges indicate the connections.

  2. Show properties and functions of the various network elements
     and the interconnections. Attributes of vertices will represent
     various properties of the objects e.g., speed, charge, protocol, OS,
     etc. Functions include services offered by a network element.

  3. Contain various name and address information of the networks
     and network elements

  4. Contain information about various administrative and management
     details related to the networks and network elements.

  5. Contain the policy related information, part of which may be
     private while the other part may be made public.

  Using this map the following services may be provided

  1. Configuration management:

     - Display the physical configuration of a network,
       i.e., nodes and their physical interconnections
     - Display the logical configuration of a network,
       i.e., nodes and their logical interconnections.

  2. Route management:

     - Find alternate routes by referring to the physical
       and logical configurations.
     - Generate routing tables considering local policy and
       policy of transit domains



Mansfield, Johannsen & Knopper                                  [Page 3]

RFC 1609        Charting Networks in the X.500 Directory      March 1994


     - Check routing tables for routing loops,
       non-optimality, incorrect paths, etc.

  3. Fault management: In case of network failures
     alternatives may be found and used to bypass the
     problem node or link.

  4. Service management: Locate various services and
     servers in the Network.

  5. Optimization: The information available can be used
     to carry out various optimizations, for example cost,
     traffic, response-time, etc.

  6. Provide mappings between the various names and
     addresses of elements

  7. Depict administrative/autonomous domains.

  8. Network Administration and Management: References to
     people responsible for administering and technically
     maintaining a network will be useful.

  Examples of such usages are described in [3], [4].

3. The Nature of the Network Map - The X.500 solution

  Implementing and maintaining a detailed map of the network poses a
  serious problem.  The scope of the map is global and the network
  itself is expanding.  Some of the problems that are peculiar to the
  network map are listed below.

  o The Network configuration is quasi-static. Nodes,
    links and networks are being added,updated and deleted
    someplace or the other.

  o The Network is huge and geographically distributed.

  o The network spans several political and administrative
    areas. The related information is also controlled and
    maintained in a distributed fashion.

  In short, global network configuration information is unwieldy and
  growing continuously.  It is impossible to service such information
  in a centralized fashion. There is need for a distributed framework
  which allows users and applications to access information about
  users, services, networks, ... easily and globally.  The OSI X.500
  Directory services [5] provides a rich framework to support a



Mansfield, Johannsen & Knopper                                  [Page 4]

RFC 1609        Charting Networks in the X.500 Directory      March 1994


  globally distributed information service system.  The X.500 Directory
  is intended to be a very large and highly distributed database. It is
  structured hierarchically with entries arranged in the form of a tree
  in which each object corresponds to a node or an entry. Information
  is stored about an object as a set of attributes.

4. The hierarchical model of a network

  For representing networks in the Directory we use the following
  hierarchical model.

  A network is the media for transmitting information with zero or more
  network elements each having at least one network interface on the
  media. The media may be any kind of a line (physical circuit/virtual
  circuit), or a collection of interconnected networks.

      <  The postscript version of this document  >
      <  has a figure here. However, the figure   >
      <is too complex to be drawn in simple ASCII.>

Figure 1:  Simple and composite networks and their mapping to the DIT.

  The model allows hierarchy of subnetworks.  Network elements with
  multiple interfaces may act as external gateways to the attached
  network and to networks higher up in the hierarchy.  Thus, a gateway
  may be the external gateway of several networks which are either
  interconnected or have a hierarchical relationship.

  A network may be simple consisting of zero or more network elements
  or composite consisting of several sub-networks.  Examples of simple
  networks are ethernets, optical fiber/copper cables, free space, .. .

4.1 Network Maps

  Using the above model it is straight forward to draw the topological
  graph of the network where the vertices represent the components of
  the network and edges indicate the connections.  For visual
  representation the graph may be translated to a more "physical"
  illustration (figure 1).

  Just as there are several maps of the same geographical domain
  (political, natural...)  one can envisage several views of the same
  network and its components. A view (called "image" in the remainder)
  could pertain to a particular protocol suite (IP/OSI/...), an
  administrative domain or purpose.  Using images, several abstractions
  of the same object are possible.





Mansfield, Johannsen & Knopper                                  [Page 5]

RFC 1609        Charting Networks in the X.500 Directory      March 1994


4.2 Representation in the X.500 Directory

  To represent the various images of networks and its components along
  with the real-image relationship among the various objects we
  introduce the following classes of objects:

  o Communication Object Class (CO): All objects defined
    furtheron in this document belong to this class.
    Common attributes for all communication objects are
    defined in section 6.

  o Physical Communication Object Class (PCO): A subclass
    of CO-class, this class defines common properties for
    all objects representing physical communication objects.

  o Image Communication Object Class (ICO): A subclass of
    CO-class, this class defines common properties for all
    objects representing images of communication objects.

  The above classes sort communication objects into physical or image
  object.  As is implied in the nomenclature a physical object will
  have several attributes describing it physical properties - location,
  weight, size, ....  etc.  An image object will have an Image-of
  attribute. The Image-of attribute will point to a physical object or
  to another image object.

  Using this schema it is possible to represent the case of several
  logical network systems (running different protocol stacks - IP, XNS,
  SNA, OSI, ...) which coexist on the same physical network.
  Information related to different types of networks, no matter what
  the underlying communication protocol is, will reside in the
  Directory in harmony.  Also, their interrelation will be represented
  and accessed in a fashion independent of the source/destination
  network, namely, using the OSI X.500 protocol.

  Schemes for physical networks and logical images of physical networks
  are defined in section 6.

  All objects are defined in section 6.












Mansfield, Johannsen & Knopper                                  [Page 6]

RFC 1609        Charting Networks in the X.500 Directory      March 1994


                                             ...............
                                            :              :
                                            :   IP    OSI  :
                                            :  +-+    +-+  :
                                            :  |A|    |B|  :
                            NetWork  -----> :  +-+    +-+  :
                            /    \          :   |      |   :
                           /      \         : ============ :
                          /        \        :      |       :
                         /          \       :     +-+      :
                        /            \      :     |C|      :
                       /              \     :     +-+      :
                  OSI-image        IP-image :   IP + OSI   :
                      |                |    +..............+
                      V                V
                    ........       ........
                    :      :      :       :
                IP  : OSI  :      :   IP  : OSI
               +-+  : +-+  :      :  +-+  : +-+
               |A|  : |B|  :      :  |A|  : |B|
               +-+  : +-+  :      :  +-+  : +-+
            ....|...:  |   :      :   |   :..|...
            : ============ :      : ============ :
            :      |       :      :      |       :
            :     +-+      :      :     +-+      :
            :     |C|      :      :     |C|      :
            :     +-+      :      :     +-+      :
            :   IP + OSI   :      :   IP + OSI   :
            +..............+      +..............+


     Figure 2: Several logical views of the same physical network

5. Position in the Directory Information Tree (DIT)

  Information about networks usually will be contained in the DIT as
  subordinate of the organization maintaining the network. The network
  model gets mapped into a tree structure for network elements.  There
  is one network object giving general descriptions of the network.
  Subordinates of this network object are node objects for each node
  element present in the network.  Node objects hold networkInterface
  objects as subordinates.  A network can be physically or logically
  subdivided into several (sub)networks.  In this case, a network entry
  will have network objects as subordinates which again build the same
  structure.  These entries may be kept as subordinates of
  organizationalUnit entries as well, with pointers from the "root"
  network.




Mansfield, Johannsen & Knopper                                  [Page 7]

RFC 1609        Charting Networks in the X.500 Directory      March 1994


  This structure holds for physical and logical elements.  Physical
  elements are named network, node and networkInterface, and logical
  elements are named networkImage, nodeImage and networkInterfaceImage.

                         _root_
                        /      \
                       /        \
                      /          \
                 country          \
                    /              \
                   /            organization
                  /             /    |     \
                 /             /     |      \
                /             /      |       \
               /             /       |        \
              /  organizationalUnit* |         \
             /   /             \ \   |          \
            /   /               \ \__|_________  \
           /   /                 \   |         \  \
          Person                 Network*<====>NetworkImage*
                                     |             |
                                     |             |
                                    Node      NodeImage
                                     |             |
                                     |             |
                          NetworkInterface   NetworkInterfaceImage

          Legends: * the object may recursively contain objects of
                   same class as children

          Figure 3: Part of the Directory Information Tree,
         showing relations of White Pages and network objects

6. Proposed Schemes

  A physical network comprises of wires and machines. The physical map
  of the network will show the interconnections of these nodes by these
  circuits.

  For each physical network element, one or more images may exist.
  Similarly, an image may be attached to one or more physical objects.
  The types of images can grow along with the requirements.
  Relationship between elements (physical or logical) are expressed by
  attributes or the position in the Directory tree.







Mansfield, Johannsen & Knopper                                  [Page 8]

RFC 1609        Charting Networks in the X.500 Directory      March 1994


  Problems that are addressed in the schema:

  1. Avoiding data duplication
  2. Preserving administrative boundaries/controls.
  3. Simple representation (minimal number of pointers)
  4. Security: Though no special emphasis has been placed
     in this work we believe the X.500 access control policies
     policies will provide a reasonable secure framework for security
     and privacy.

  Problems that are not addressed:

  1. Caching policies, etc.: to be decided locally

6.1 Communication Object Classes

  The object classes introduced in section 4 are defined as follows:

  CommunicationObject OBJECT CLASS
   SUBCLASS of top
   MAY CONTAIN {
    description :: CaseIgnoreStringSyntax,
     /* can contain any information about the object,
        however, wherever an appropriate attribute
        exists, this should be used first to hold
        information */
    adminContact :: distinguishedNameSyntax,
     /* points to the person which is responsible for
        the administration of the instance this object
        describes;
        This refers to the instance only in the context
        of the concrete object class */
    technContact :: distinguishedNameSyntax,
     /* points to the person which is responsible for
        the technical maintenance of the instance this
        object describes;
        This refers to the instance only in the context
        of the concrete object class;
        Availability (e.g. hours of service) is not
        covered by this attribute. */
   }

  PhysicalCommunicationObject OBJECT CLASS
   SUBCLASS of CommunicationObject
   MAY CONTAIN{
    owner :: distinguishedNameSyntax,
     /* refers to organization or person owning the
       physical element;



Mansfield, Johannsen & Knopper                                  [Page 9]

RFC 1609        Charting Networks in the X.500 Directory      March 1994


       Note that more detailed information (like lease,
       rental, etc.) can be covered in a specific image
       (ownerImage) of this element */
    localityName :: CaseIgnoreStringSyntax
     /* where the object is located;
        can be used freely to "spot" a network element,
        e.g. state/city/street/building/floor/room/
        desk/... */
    ICO :: distinguishedNameSyntax
     /* points to image object the physical object
        is related to;
           might have several values if physical object is
           used for several applications at the same time */
          }

  ImageCommunicationObject OBJECT CLASS
   SUBCLASS of CommunicationObject
   MAY CONTAIN{
    type :: caseIgnoreStringSyntax,
     /* expresses the view this object refers to, e.g.
        view of provider/user/IP/OSI/...;
           Note that this information can be covered by
           the object class in some cases
           (e.g. ipNetworkImage gives the IP view) */
    imageOf :: distinguishedNameSyntax,
     /* points to physical/image object the image
        is related to;
           might have several values if view applies to
           several physical objects at the same time */
   }

6.2 Physical elements

  The following objects describe network elements without saying
  anything about their usage.  All objects inherit properties of the
  PhysicalCommunicationObject class.

6.2.1 Network

  The network object supplies general descriptions which are common for
  a set of nodes and circuits comprising one network.  This includes
  information about the type of circuits (medium, broadcast or point-
  to- point, etc.) and properties (speed etc.).

  network OBJECT CLASS
   SUBCLASS of PhysicalCommunicationObject
   MUST CONTAIN  {
    networkName :: caseIgnoreStringSyntax }



Mansfield, Johannsen & Knopper                                 [Page 10]

RFC 1609        Charting Networks in the X.500 Directory      March 1994


   MAY CONTAIN {
    externalGateway :: distinguishedNameSyntax,
     /* points to one or more nodes that connect
        this network to neighbor networks;
           whether a node actually is used as gateway
           for one or the other protocol, is defined
           in a related networkImageObject */
    nwType :: caseIgnoreStringSyntax,
     /* type of this network;
        either "composite" (if consisting of subnetworks)
        or type of a line:
        bus, ring, star, mesh, point-to-point */
    media :: caseIgnoreStringSyntax,
     /* if network is not composite,
        describes physical media:
        copper, fiber optic, etc. */
    speed :: numericStringSyntax,
     /* nominal bandwidth, e.g. 64 kbps */
    traffic :: numericStringSyntax
     /* (average) use in percent of nominal bandwidth
           [ this needs more specification later ] */
    configurationDate ::  uTCTimeSyntax,
     /* date when network was configured in current
           shape */
    configurationHistory :: caseIgnoreStringSyntax
     /* list of configuration changes, like:
           added/removed nodes, lines */
    }

6.2.2 Node

  The node object describes any kind of device that is part of the
  network, such as simple nodes, printer, bridges.

  node OBJECT CLASS
   SUBCLASS of PhysicalCommunicationObject
   MUST CONTAIN{
    nodeName :: caseIgnoreStringSyntax }
   MAY CONTAIN {
    machineType :: caseIgnoreStringSyntax,
     /* e.g. main frame, work station, PC, printer;
        might include manufacturer */
    OS :: caseIgnoreStringSyntax,
     /* e.g. VM, UNIX, DOS; might include release */
   }






Mansfield, Johannsen & Knopper                                 [Page 11]

RFC 1609        Charting Networks in the X.500 Directory      March 1994


6.2.3 NetworkInterface

  Each node object will have one or more networkInterface objects as
  subordinates.  NetworkInterface objects provide information about
  interfaces of the node and connectivity.

  networkInterface OBJECT CLASS
   SUBCLASS of PhysicalCommunicationObject
   MUST CONTAIN {
    networkInterfaceName :: caseIgnoreStringSyntax
     /* It is suggested that the networkInterface
        name is derived from the name of the logical
        device this networkInterface represents for
        the operating system, e.g. le0, COM1 */
    }
   MAY CONTAIN {
    networkInterfaceAddress  :: caseIgnoreStringSyntax,
     /* this should contain a protocol-independent
           interface address, e.g. Ethernet board number */
    connectedNetwork :: distinguishedNameSyntax,
     /* pointer to object of network which this networkInterface is
        connected to */
    }

6.3 Logical Elements

  An abstract view of a physical element is called image in this
  document.  The word image gets appended to the object type, leading
  to the new objects networkImage, nodeImage and networkInterfaceImage.
  Images will either build Directory trees of themselves or be stored
  as part of the physical network tree (see section 5).

  Image objects inherit properties of the ImageCommunicationObject
  class.

  Each image object has specific attributes which vary depending on the
  point of view (IP, OSI, ...). Also, the user and provider of an image
  will view an object differently; further a user of an object may also
  be providing the services of the same object to another user.

  Therefore, in the following a complete and general list of attributes
  cannot be given.  We recommend to define subclasses of Image classes
  for each logical view. These subclasses inherit all attributes
  defined with the object classes below and add more specific
  attributes.  Examples for an IP-view are given in [1].






Mansfield, Johannsen & Knopper                                 [Page 12]

RFC 1609        Charting Networks in the X.500 Directory      March 1994


6.3.1 Network

  There may be several network images for one and the same physical
  network: one for each protocol, application, etc.

  networkImage OBJECT CLASS
   SUBCLASS of ImageCommunicationObject
   MAY CONTAIN {
    externalGateway :: distinguishedNameSyntax,
     /* points to one or more nodes that act
        as gateway for the protocol application
        this images refers to */
    speed :: numericStringSyntax,
     /* nominal bandwidth for the channel dedicated
        to this protocol or application ,
        e.g. 64 kbps */
    traffic :: numericStringSyntax,
     /* (average) use in percent of nominal bandwidth
        [this needs more specification later ] */
    charge  :: numericStringSyntax
     /* amount of money that has to be paid to
        service provider for usage;
        [it is felt that this needs further definition:
         e.g. monetary unit / time unit, monetary unit /
         data unit ] */
    }

6.3.2 Node

  Name and functionality within the network might vary for a node from
  protocol to protocol considered.  In particular, a node might act as
  gateway for one protocol but not for the other. Routing policy is
  stored in the case of policy gateways.

  nodeImage OBJECT CLASS
   SUBCLASS of ImageCommunicationObject
    /* no attributes common for all nodeImages have been
       defined yet */

6.3.3 NetworkInterface

  As with physical nodes, nodeImages have networkInterfaces
  (networkInterfaceImages) which describe connectivity to other network
  elements. NetworkInterfaceImages are only given if the protocol is
  establishing connections via this networkInterface.

  networkInterfaceImage OBJECT CLASS
   SUBCLASS of ImageCommunicationObject



Mansfield, Johannsen & Knopper                                 [Page 13]

RFC 1609        Charting Networks in the X.500 Directory      March 1994


   MAY CONTAIN {
    networkInterfaceAddress :: caseIgnoreStringSyntax,
     /* the networkInterface address in the image
        context, e.g. IP number, NSAP */
    connectedNetwork   :: distinguishedNameSyntax
     /* pointer to networkImageObject that describes
        the network this networkInterface is attached
        to in terms of the protocol or application the
        image indicates */
    }

7. Security Considerations

  Security issues are not discussed in this memo.

8. Authors' Addresses

  Glenn Mansfield
  AIC Systems Laboratory
  6-6-3 Minami Yoshinari
  Aoba-ku, Sendai 989-32
  Japan

  Phone: +81 22 279-3310
  EMail: [email protected]


  Thomas Johannsen
  Dresden University of Technology
  Institute of
  Communication Technology
  D-01062 Dresden
  Germany

  Phone: +49 351 463-4621
  EMail: [email protected]


  Mark Knopper
  Merit Network, Inc.
  1071 Beal Avenue
  Ann Arbor, MI 48109

  EMail: [email protected]







Mansfield, Johannsen & Knopper                                 [Page 14]

RFC 1609        Charting Networks in the X.500 Directory      March 1994


9. References

 [1]  Harrenstein, K., Stahl, M., and E. Feinler, "NICNAME/WHOIS", RFC
      954, SRI, October 1985.

 [2]  Mockapetris, P., "Domain Names - Implementation and
      Specification", STD 13, RFC 1035, USC/Information Sciences
      Institute, November 1987.

 [3]  Johannsen, T., Mansfield, G., Kosters, M., and S. Sataluri,
      "Representing IP information in the X.500 Directory", RFC 1609,
      Dresden University, AIC Systems Laboratory, Network
      Solutions,Inc., AT&T Bell Laboratories, March 1994.

 [4]  Johannsen, T., and G. Mansfield, "The Soft Pages Project", OSI-DS
      WG document, OSI-DS-39, Dresden University, AIC Systems
      Laboratory, February 1993.

 [5]  CCITT Blue Book, "Data Communication Networks: Directory",
      Recommendations X.500-X.521, December 1988.































Mansfield, Johannsen & Knopper                                 [Page 15]