Network Working Group                                      K. McCloghrie
Request for Comments: 1573                            Hughes LAN Systems
Obsoletes: 1229                                            F. Kastenholz
Category: Standards Track                                   FTP Software
                                                           January 1994


             Evolution of the Interfaces Group of MIB-II

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Table of Contents

  1. Introduction .............................................    2
  2. The SNMPv2 Network Management Framework ..................    2
  2.1 Object Definitions ......................................    3
  3 Experience with the Interfaces Group ......................    3
  3.1 Areas of Clarification/Revision .........................    3
  3.1.1 Interface Numbering ...................................    4
  3.1.2 Interface Sub-Layers ..................................    4
  3.1.3 Virtual Circuits ......................................    5
  3.1.4 Bit, Character, and Fixed-Length Interfaces ...........    5
  3.1.5 Counter Size ..........................................    5
  3.1.6 Interface Speed .......................................    6
  3.1.7 Multicast/Broadcast Counters ..........................    6
  3.1.8 Addition of New ifType values .........................    6
  3.1.9 ifSpecific ............................................    6
  3.2 Clarifications/Revisions ................................    7
  3.2.1 Interface Numbering ...................................    7
  3.2.2 Interface Sub-Layers ..................................    8
  3.2.3 Guidance on Defining Sub-layers .......................   11
  3.2.4 Virtual Circuits ......................................   12
  3.2.5 Bit, Character, and Fixed-Length Interfaces ...........   12
  3.2.6 Counter Size ..........................................   14
  3.2.7 Interface Speed .......................................   16
  3.2.8 Multicast/Broadcast Counters ..........................   16
  3.2.9 Trap Enable ...........................................   17
  3.2.10 Addition of New ifType values ........................   17
  3.2.11 InterfaceIndex Textual Convention ....................   17
  3.2.12 IfAdminStatus and IfOperStatus .......................   18
  3.2.13 Traps ................................................   19
  3.2.14 ifSpecific ...........................................   20



McCloghrie & Kastenholz                                         [Page 1]

RFC 1573               Interfaces Group Evolution           January 1994


  3.3 Media-Specific MIB Applicability ........................   20
  4. Overview .................................................   21
  5. IANAifType Definition ....................................   22
  6. Interfaces Group Definitions .............................   24
  7. Acknowledgements .........................................   53
  8. References ...............................................   53
  9. Security Considerations ..................................   55
  10. Authors' Addresses.......................................   55

1.  Introduction

  This memo defines a portion of the Management Information Base (MIB)
  for use with network management protocols in the Internet community.
  In particular, it describes managed objects used for managing Network
  Interfaces.

  This memo discusses the 'interfaces' group of MIB-II, especially the
  experience gained from the definition of numerous media-specific MIB
  modules for use in conjunction with the 'interfaces' group for
  managing various sub-layers beneath the internetwork-layer.  It
  proposes clarifications to, and extensions of, the architectural
  issues within the current model used for the 'interfaces' group.

  This memo also includes a MIB module.  As well as including new MIB
  definitions to support the architectural extensions, this MIB module
  also re-specifies the 'interfaces' group of MIB-II in a manner which
  is both compliant to the SNMPv2 SMI and semantically-identical to the
  existing SNMPv1-based definitions.

2.  The SNMPv2 Network Management Framework

  The SNMPv2 Network Management Framework consists of four major
  components.  They are:

     o    RFC 1442 which defines the SMI, the mechanisms used for
          describing and naming objects for the purpose of management.

     o    STD 17, RFC 1213 defines MIB-II, the core set of managed
          objects for the Internet suite of protocols.

     o    RFC 1445 which defines the administrative and other
          architectural aspects of the framework.

     o    RFC 1448 which defines the protocol used for network access
          to managed objects.

  The Framework permits new objects to be defined for the purpose of
  experimentation and evaluation.



McCloghrie & Kastenholz                                         [Page 2]

RFC 1573               Interfaces Group Evolution           January 1994


2.1.  Object Definitions

  Managed objects are accessed via a virtual information store, termed
  the Management Information Base or MIB.  Objects in the MIB are
  defined using the subset of Abstract Syntax Notation One (ASN.1)
  defined in the SMI.  In particular, each object object type is named
  by an OBJECT IDENTIFIER, an administratively assigned name.  The
  object type together with an object instance serves to uniquely
  identify a specific instantiation of the object.  For human
  convenience, we often use a textual string, termed the descriptor, to
  refer to the object type.

3.  Experience with the Interfaces Group

  One of the strengths of internetwork-layer protocols such as IP [6]
  is that they are designed to run over any network interface.  In
  achieving this, IP considers any and all protocols it runs over as a
  single "network interface" layer.  A similar view is taken by other
  internetwork-layer protocols.  This concept is represented in MIB-II
  by the 'interfaces' group which defines a generic set of managed
  objects such that any network interface can be managed in an
  interface-independent manner through these managed objects.  The
  'interfaces' group provides the means for additional managed objects
  specific to particular types of network interface (e.g., a specific
  medium such as Ethernet) to be defined as extensions to the
  'interfaces' group for media-specific management.  Since the
  standardization of MIB-II, many such media-specific MIB modules have
  been defined.

  Experience in defining these media-specific MIB modules has shown
  that the model defined by MIB-II is too simplistic and/or static for
  some types of media-specific management.  As a result, some of these
  media-specific MIB modules have assumed an evolution or loosening of
  the model.  This memo is a proposal to document and standardize the
  evolution of the model and to fill in the gaps caused by that
  evolution.

  A previous effort to extend the interfaces group resulted in the
  publication of RFC 1229 [7].  As part of defining the evolution of
  the interfaces group, this memo applies that evolution to, and
  thereby incorporates, the RFC 1229 extensions.

3.1.  Areas of Clarification/Revision

  There are several areas for which experience indicates that
  clarification, revision, or extension of the model would be helpful.
  The next sections discuss these.




McCloghrie & Kastenholz                                         [Page 3]

RFC 1573               Interfaces Group Evolution           January 1994


3.1.1.  Interface Numbering

  MIB-II defines an object, ifNumber, whose value represents:

    "The number of network interfaces (regardless of their
    current state) present on this system."

  Each interface is identified by a unique value of the ifIndex object,
  and the description of ifIndex constrains its value as follows:

    "Its value ranges between 1 and the value of ifNumber.  The
    value for each interface must remain constant at least from
    one re-initialization of the entity's network management
    system to the next re-initialization."

  This constancy requirement on the value of ifIndex for a particular
  interface is vital for efficient management.  However, an increasing
  number of devices allow for the dynamic addition/removal of network
  interfaces.  One example of this is a dynamic ability to configure
  the use of SLIP/PPP over a character-oriented port.  For such dynamic
  additions/removals, the combination of the constancy requirement and
  the restriction that the value of ifIndex is less than ifNumber is
  problematic.

3.1.2.  Interface Sub-Layers

  Experience in defining media-specific management information has
  shown the need to distinguish between the multiple sub-layers beneath
  the internetwork-layer.  In addition, there is a need to manage these
  sub-layers in devices (e.g., MAC-layer bridges) which are unaware of
  which, if any, internetwork protocols run over these sub-layers.  As
  such, a model of having a single conceptual row in the interfaces
  table (MIB-II's ifTable) represent a whole interface underneath the
  internetwork-layer, and having a single associated media-specific MIB
  module (referenced via the ifType object) is too simplistic.  A
  further problem arises with the value of the ifType object which has
  enumerated values for each type of interface.

  Consider, for example, an interface with PPP running over an HDLC
  link which uses a RS232-like connector.  Each of these sub-layers has
  its own media-specific MIB module.  If all of this is represented by
  a single conceptual row in the ifTable, then an enumerated value for
  ifType is needed for that specific combination which maps to the
  specific combination of media-specific MIBs.  Furthermore, there is
  still a lack of a method to describe the relationship of all the
  sub-layers of the MIB stack.

  An associated problem is that of upward and downward multiplexing of



McCloghrie & Kastenholz                                         [Page 4]

RFC 1573               Interfaces Group Evolution           January 1994


  the sub-layers.  An example of upward multiplexing is MLP (Multi-
  Link-Procedure) which provides load-sharing over several serial lines
  by appearing as a single point-to-point link to the sub-layer(s)
  above.  An example of downward multiplexing would be several
  instances of PPP, each framed within a separate X.25 virtual circuit,
  all of which run over one fractional T1 channel, concurrently with
  other uses of the T1 link.  The current MIB structure does not allow
  for these sorts of relationships to be described.

3.1.3.  Virtual Circuits

  Several of the sub-layers for which media-specific MIB modules have
  been defined are connection oriented (e.g., Frame Relay, X.25).
  Experience has shown that each effort to define such a MIB module
  revisits the question of whether separate conceptual rows in the
  ifTable are needed for each virtual circuit.  Most, if not all, of
  these efforts to date have decided to have all virtual circuits
  reference a single conceptual row in the ifTable.

3.1.4.  Bit, Character, and Fixed-Length Interfaces

  RS-232 is an example of a character-oriented sub-layer over which
  (e.g., through use of PPP) IP datagrams can be sent.  Due to the
  packet-based nature of many of the objects in the ifTable, experience
  has shown that it is not appropriate to have a character-oriented
  sub-layer represented by a (whole) conceptual row in the ifTable.

  Experience has also shown that it is sometimes desirable to have some
  management information for bit-oriented interfaces, which are
  similarly difficult to represent by a (whole) conceptual row in the
  ifTable.  For example, to manage the channels of a DS1 circuit, where
  only some of the channels are carrying packet-based data.

  A further complication is that some subnetwork technologies transmit
  data in fixed length transmission units.  One example of such a
  technology is cell relay, and in particular Asynchronous Transfer
  Mode (ATM), which transmits data in fixed-length cells.  Representing
  such a interface as a packet-based interface produces redundant
  objects if the relationship between the number of packets and the
  number of octets in either direction is fixed by the size of the
  transmission unit (e.g., the size of a cell).

3.1.5.  Counter Size

  As the speed of network media increase, the minimum time in which a
  32 bit counter will wrap decreases.  For example, on an Ethernet, a
  stream of back-to-back, full-size packets will cause ifInOctets to
  wrap in just over 57 minutes.  For a T3 line, the minimum wrap-time



McCloghrie & Kastenholz                                         [Page 5]

RFC 1573               Interfaces Group Evolution           January 1994


  is just over 12 minutes.  For FDDI, it will wrap in 5.7 minutes.  For
  a 1-gigabit medium, the counter might wrap in as little as 34
  seconds.  Requiring that interfaces be polled frequently enough not
  to miss a counter wrap will be increasingly problematic.

3.1.6.  Interface Speed

  Network speeds are increasing.  The range of ifSpeed is limited to
  reporting a maximum speed of (2**31)-1 bits/second, or approximately
  2.2Gbs.  SONET defines an OC-48 interface, which is defined at
  operating at 48 times 51 Mbs, which is a speed in excess of 2.4gbits.
  Thus, ifSpeed will be of diminishing utility over the next several
  years.

3.1.7.  Multicast/Broadcast Counters

  The counters in the ifTable for packets addressed to a multicast or
  the broadcast address, are combined as counters of non-unicast
  packets.  In contrast, the ifExtensions MIB [7] defines one set of
  counters for multicast, and a separate set for broadcast packets.
  With the separate counters, the original combined counters become
  redundant.

3.1.8.  Addition of New ifType values

  Over time new ifType enumerated values have been needed for new
  interface types.  With the syntax of ifType being defined in a MIB,
  this requires the new MIB to be re-issued in order to define the new
  values.  In the past, re-issuing of the MIB has occurred only after
  several years.

3.1.9.  ifSpecific

  The original definition of the OBJECT IDENTIFIER value of ifSpecific
  was not sufficently clear.  As a result, different implementors have
  used it differently, and confusion has resulted.  Some
  implementations have the value of ifSpecific be the OBJECT IDENTIFIER
  that defines the media-specific MIB, i.e., the "foo" of:

         foo OBJECT IDENTIFIER ::= { transmission xxx }

  while others have it be the OBJECT IDENTIFIER of the table or entry
  in the appropriate media-specific MIB (e.g. fooTable or fooEntry),
  while still others have it be the OBJECT IDENTIFIER of the index
  object of the table's row, including instance identifier (e.g.,
  fooIfIndex.ifIndex).  A definition based on the latter would not be
  sufficient unless it also allowed for media-specific MIBs which
  include several tables, where each table has its own, different,



McCloghrie & Kastenholz                                         [Page 6]

RFC 1573               Interfaces Group Evolution           January 1994


  indexing.

3.2.  Clarifications/Revisions

  The following clarifications and/or revisions are proposed.

3.2.1.  Interface Numbering

  One solution to the interface numbering problem would be to redefine
  ifNumber to be the largest value of ifIndex, but the utility of such
  an object is questionable, and such a re-definition would require
  ifNumber to be deprecated.  Thus, an improvement would be to
  deprecate ifNumber and not replace it.  However, the deprecation of
  ifNumber would require a change to that portion of ifIndex's
  definition which refers to ifNumber.  So, since the definition of
  ifIndex must be changed anyway in order to solve the problem, changes
  to ifNumber do not benefit the solution.

  The solution adopted in this memo is to delete the requirement that
  the value of ifIndex must be less than the value of ifNumber, and to
  retain ifNumber with its current definition.  It could be argued that
  this is a change in the semantics of ifIndex; however, all existing
  implementations conform to this new definition, and in the interests
  of not requiring changes in existing implementations and in the many
  existing media-specific MIBs, it is proposed that this change does
  not require ifIndex to be deprecated.

  This solution also results in the possibility of "holes" in the
  ifTable (i.e., the ifIndex values of conceptual rows in the ifTable
  are not necessarily contiguous), but SNMP's GetNext (and SNMPv2's
  GetBulk) operation easily deals with such holes.  The value of
  ifNumber still represents the number of conceptual rows, which
  increases/decreases as new interfaces are dynamically added/removed.
  The vital constancy requirement is met by requiring that after an
  interface is dynamically removed, its ifIndex value is not re-used
  (by a different dynamically added interface) until after the
  following re-initialization of the network management system.  This
  avoids the need for a priori assignment of ifIndex values for all
  possible interfaces which might be added dynamically.

  The exact meaning of a "different" interface is hard to define, and
  there will be gray areas.  One important criterion is that a
  management station, not noticing that an interface has gone away and
  another come into existence, should not be confused when it
  calculates the difference between the counter values retrieved on
  successive polls for a particular ifIndex value.  However, any firm
  definition in this document would likely to turn out to be
  inadequate.  Instead, the following guidelines are offered to allow



McCloghrie & Kastenholz                                         [Page 7]

RFC 1573               Interfaces Group Evolution           January 1994


  implementors to choose what "different" means in their particular
  situation.

  A previously-unused value of ifIndex should be assigned to a
  dynamically added interface if:

     (1)  the assignment of a previously-used ifIndex value to the
          interface could result in a discontinuity in the values of
          ifTable counters for that value of ifIndex; or,

     (2)  an agent has no knowledge of whether the interface is the
          "same" or "different" from a previous interface incarnation.

  Because of the restriction of the value of ifIndex to be less than
  ifNumber, interfaces have been numbered with small integer values.
  This has led to the ability by humans to use the ifIndex values as
  (somewhat) user-friendly names for network interfaces (e.g.,
  "interface number 3").  With the relaxation of the restriction on the
  value of ifIndex, there is now the possibility that ifIndex values
  could be assigned as very large numbers (e.g., memory addresses).
  Such numbers would be much less user-friendly.

  Therefore, this memo recommends that ifIndex values still be assigned
  as (relatively) small integer values starting at 1, even though the
  values in use at any one time are not necessarily contiguous.  (Note
  that this makes remembering which values have been assigned easy for
  agents which dynamically add new interfaces.)

  This proposed change introduces a new problem of its own.
  Previously, there usually was a simple, direct, mapping of interfaces
  to the physical ports on systems.  This mapping would be based on the
  ifIndex value.  However, by removing the previous restrictions on the
  values allowed for ifIndex, along with the interface sub-layer
  concept (see the following section), mapping from interfaces to
  physical ports becomes increasingly problematic.

  To address this issue, a new object, ifName, is added to the MIB.
  This object contains the device's name for the interface of which the
  relevant entry in the ifTable is a component.  For example, if a
  router has an interface named wan1, which is composed of PPP running
  over an RS-232 port, the ifName objects for the corresponding PPP and
  RS-232 entries in the ifTable will contain the string "wan1".

3.2.2.  Interface Sub-Layers

  One possible but not recommended solution to the problem of
  representing multiple sub-layers would be to retain the concept of
  one conceptual row for all the sub-layers of an interface and have



McCloghrie & Kastenholz                                         [Page 8]

RFC 1573               Interfaces Group Evolution           January 1994


  each media-specific MIB module identify its "superior" and
  "subordinate" sub-layers through OBJECT IDENTIFIER "pointers".  The
  drawbacks of this scheme are: 1) the superior/subordinate pointers
  are contained in the media-specific MIB modules, and thus, a manager
  could not learn the structure of an interface, without inspecting
  multiple pointers in different MIB modules; this is overly complex
  and only possible if the manager has knowledge of all the relevant
  media-specific MIB modules; 2) current MIB modules would all need to
  be retrofitted with these new "pointers"; 3) this scheme does not
  adequately address the problem of upward and downward multiplexing;
  and 4) enumerated values of ifType are needed for each combination of
  sub-layers.

  Another possible but not recommended scheme would be to retain the
  concept of one conceptual row for all the sub-layers of an interface
  and have a new separate MIB table to identify the "superior" and
  "subordinate" sub-layers which contain OBJECT IDENTIFIER "pointers"
  to media-specific MIB module(s) for each sub-layer.  Effectively, one
  conceptual row in the ifTable would represent each combination of
  sub-layers between the internetwork-layer and the wire.  While this
  scheme has fewer drawbacks, it does not support downward
  multiplexing, such as PPP over MLP; since MLP makes two (or more)
  serial lines appear to the layers above as a single physical
  interface, PPP over MLP should appear to the internetwork-layer as a
  single interface.  However, this scheme would result in two (or more)
  conceptual rows in the ifTable and the internetwork-layer would run
  over both of them.  This scheme also requires enumerated values of
  ifType for each combination of sub-layers.

  The solution adopted in this memo is to have an individual conceptual
  row in the ifTable to represent each sub-layer and have a new
  separate MIB table (the ifStackTable, see section 5 of this memo) to
  identify the "superior" and "subordinate" sub-layers through INTEGER
  "pointers" to the appropriate conceptual rows in the ifTable.  This
  solution supports both upward and downward multiplexing.  It also
  allows the IANAIfType to Media-Specific MIB mapping to identify the
  media-specific MIB module for each sub- layer.  The new table
  (ifStackTable) need be referenced only to obtain information about
  layering.  Enumerated values for ifType are required for each sub-
  layer only, not for combinations of them.

  However, this solution does require that the descriptions of some
  objects in the ifTable (specifically, ifType, ifPhysAddress,
  ifInUcastPkts, and ifOutUcastPkts) be generalized so as to apply to
  any sub-layer (rather than only to a sub-layer immediately beneath
  the network layer, as at present).  It also requires that some
  objects (specifically, ifSpeed) need to have appropriate values
  identified for use when a generalized definition does not apply to a



McCloghrie & Kastenholz                                         [Page 9]

RFC 1573               Interfaces Group Evolution           January 1994


  particular sub-layer.

  In addition, this adopted solution makes no requirement that a
  device, in which a sub-layer is instrumented by a conceptual row of
  the ifTable, be aware of whether an internetwork protocol runs on top
  of (i.e., at some layer above) that sub-layer.  In fact, the counters
  of packets received on an interface are defined as counting the
  number "delivered to a higher-layer protocol".  This meaning of
  "higher-layer" includes:

     (1)  Delivery to a forwarding module which accepts
          packets/frames/octets and forwards them on at the same
          protocol layer.  For example, for the purposes of this
          definition, the forwarding module of a MAC-layer bridge is
          considered as a "higher-layer" to the MAC-layer of each port
          on the bridge.

     (2)  Delivery to a higher sub-layer within a interface stack.  For
          example, for the purposes of this definition, if a PPP module
          operated directly over a serial interface, the PPP module
          would be considered the higher sub-layer to the serial
          interface.

     (3)  Delivery to a higher protocol layer which does not do packet
          forwarding for sub-layers that are "at the top of" the
          interface stack.  For example, for the purposes of this
          definition, the local IP module would be considered the
          higher layer to a SLIP serial interface.

  Similarly, for output, the counters of packets transmitted out an
  interface are defined as counting the number "that higher-level
  protocols requested to be transmitted".  This meaning of "higher-
  layer" includes:

     (1)  A forwarding module, at the same protocol layer, which
          transmits packets/frames/octets that were received on an
          different interface.  For example, for the purposes of this
          definition, the forwarding module of a MAC-layer bridge is
          considered as a "higher-layer" to the MAC-layer of each port
          on the bridge.

     (2)  The next higher sub-layer within an interface stack.  For
          example, for the purposes of this definition, if a PPP module
          operated directly over a serial interface, the PPP module
          would be a "higher layer" to the serial interface.






McCloghrie & Kastenholz                                        [Page 10]

RFC 1573               Interfaces Group Evolution           January 1994


     (3)  For sub-layers that are "at the top of" the interface stack,
          a higher element in the network protocol stack.  For example,
          for the purposes of this definition, the local IP module
          would be considered the higher layer to an Ethernet
          interface.

3.2.3.  Guidance on Defining Sub-layers

  The designer of a media-specific MIB must decide whether to divide
  the interface into sub-layers, and if so, how to make the divisions.
  The following guidance is offered to assist the media-specific MIB
  designer in these decisions.

  In general, the number of entries in the ifTable should be kept to
  the minimum required for network management.  In particular, a group
  of related interfaces should be treated as a single interface with
  one entry in the ifTable providing that:

     (1)  None of the group of interfaces performs multiplexing for any
          other interface in the agent,

     (2)  There is a meaningful and useful way for all of the ifTable's
          information (e.g., the counters, and the status variables),
          and all of the ifTable's capabilities (e.g., write access to
          ifAdminStatus), to apply to the group of interfaces as a
          whole.

  Under these circumstances, there should be one entry in the ifTable
  for such a group of interfaces, and any internal structure which
  needs to be represented to network management should be captured in a
  MIB module specific to the particular type of interface.

  Note that application of bullet 2 above to the ifTable's ifType
  object requires that there is a meaningful media-specific MIB and a
  meaningful ifType value which apply to the group of interfaces as a
  whole.  For example, it is not appropriate to treat an HDLC sub-layer
  and an RS-232 sub-layer as a single ifTable entry when the media-
  specific MIBs and the ifType values for HDLC and RS-232 are separate
  (rather than combined).

  Note that the sub-layers of an interface on one device will sometimes
  be different to the sub-layers of the interconnected interface of
  another device.  A simple example of this is a frame-relay DTE
  interface which connects to a frameRelayService interface, where the
  DTE interface has a different ifType value and media-specific MIB to
  the DCE interface.

  Also note that a media-specific MIB may mandate that a particular



McCloghrie & Kastenholz                                        [Page 11]

RFC 1573               Interfaces Group Evolution           January 1994


  ifTable counter does not apply and that its value must always be 0,
  signifying that the applicable event can not and does not occur for
  that type of interface; for example, ifInMulticastPkts and
  ifOutMulticastPkts on an interface type which has no multicast
  capability.  In other circumstances, an agent must not always return
  0 for any counter just because its implementation is incapable of
  detecting occurrences of the particular event; instead, it must
  return a noSuchName/noSuchObject error/exception when queried for the
  counter, even if this prevents the implementation from complying with
  the relevant MODULE-COMPLIANCE macro.

  These guidelines are just that - guidelines.  The designer of a
  media-specific MIB is free to lay out the MIB in whatever SMI
  conformant manner is desired.  However, in so doing, the media-
  specific MIB MUST completely specify the sub-layering model used for
  the MIB, and provide the assumptions, reasoning, and rationale used
  to develop that model.

3.2.4.  Virtual Circuits

  This memo strongly recommends that connection-oriented sub-layers do
  not have a conceptual row in the ifTable for each virtual circuit.
  This avoids the proliferation of conceptual rows, especially those
  which have considerable redundant information.  (Note, as a
  comparison, that connection-less sub-layers do not have conceptual
  rows for each remote address.)  There may, however, be circumstances
  under which it is appropriate for a virtual circuit of a connection-
  oriented sub-layer to have its own conceptual row in the ifTable; an
  example of this might be PPP over an X.25 virtual circuit.  The MIB
  in section 6 of this memo supports such circumstances.

  If a media-specific MIB wishes to assign an entry in the ifTable to
  each virtual circuit, the MIB designer must present the rationale for
  this decision in the media-specific MIB's specification.

3.2.5.  Bit, Character, and Fixed-Length Interfaces

  About half the objects in the ifTable are applicable to every type of
  interface: packet-oriented, character-oriented, and bit-oriented.  Of
  the other half, two are applicable to both character-oriented and
  packet-oriented interfaces, and the rest are applicable only to
  packet-oriented interfaces.  Thus, while it is desirable for
  consistency to be able to represent any/all types of interfaces in
  the ifTable, it is not possible to implement the full ifTable for
  bit- and character-oriented sub-layers.

  One possible but not recommended solution to this problem would be to
  split the ifTable into two (or more) new MIB tables, one of which



McCloghrie & Kastenholz                                        [Page 12]

RFC 1573               Interfaces Group Evolution           January 1994


  would contain objects that are relevant only to packet-oriented
  interfaces (e.g., PPP), and another that may be used by all
  interfaces.  This is highly undesirable since it would require
  changes in every agent implementing the ifTable (i.e., just about
  every existing SNMP agent).

  The solution adopted in this memo builds upon the fact that
  compliance statements in SNMPv2 (in contrast to SNMPv1) refer to
  object groups, where object groups are explicitly defined by listing
  the objects they contain.  Thus, in SNMPv2, multiple compliance
  statements can be specified, one for all interfaces and additional
  ones for specific types of interfaces.  The separate compliance
  statements can be based on separate object groups, where the object
  group for all interfaces can contain only those objects from the
  ifTable which are appropriate for every type of interfaces.  Using
  this solution, every sub-layer can have its own conceptual row in the
  ifTable.

  Thus, section 6 of this memo contains definitions of the objects of
  the existing 'interfaces' group of MIB-II, in a manner which is both
  SNMPv2-compliant and semantically-equivalent to the existing MIB-II
  definitions.  With equivalent semantics, and with the BER ("on the
  wire") encodings unchanged, these definitions retain the same OBJECT
  IDENTIFIER values as assigned by MIB-II.  Thus, in general, no
  rewrite of existing agents which conform to MIB-II and the
  ifExtensions MIB is required.

  In addition, this memo defines several object groups for the purposes
  of defining which objects apply to which types of interface:

     (1)  the ifGeneralGroup.  This group contains those objects
          applicable to all types of network interfaces, including
          bit-oriented interfaces.

     (2)  the ifPacketGroup.  This group contains those objects
          applicable to packet-oriented network interfaces.

     (3)  the ifFixedLengthGroup.  This group contains the objects
          applicable not only to character-oriented interfaces, such as
          RS-232, but also to those subnetwork technologies, such as
          cell-relay/ATM, which transmit data in fixed length
          transmission units.  As well as the octet counters, there are
          also a few other counters (e.g., the error counters) which
          are useful for this type of interface, but are currently
          defined as being packet-oriented.  To accommodate this, the
          definitions of these counters are generalized to apply to
          character-oriented interfaces and fixed-length-transmission
          interfaces.



McCloghrie & Kastenholz                                        [Page 13]

RFC 1573               Interfaces Group Evolution           January 1994


  It should be noted that the octet counters in the ifTable aggregate
  octet counts for unicast and non-unicast packets into a single octet
  counter per direction (received/transmitted).  Thus, with the above
  definition of fixed-length-transmission interfaces, where such
  interfaces which support non-unicast packets, separate counts of
  unicast and multicast/broadcast transmissions can only be maintained
  in a media-specific MIB module.

3.2.6.  Counter Size

  Two approaches to addressing the shrinking minimum counter-wrap time
  problem were evaluated.  Counters could be scaled, for example,
  ifInOctets could be changed to count received octets in, e.g., 1024
  byte blocks.  Alternatively, the size of the counter could be
  increased.

  Scaling the counters was rejected.  While it provides acceptable
  performance at high count rates, at low rates it suffers.  If there
  is little traffic on an interface, there might be a significant
  interval before enough counts occur to cause a counter to be
  incremented.  Traffic would then appear to be very bursty, leading to
  incorrect conclusions of the network's performance.

  The alternative, which this memo adopts, is to provide expanded, 64
  bit, counters.  These counters are provided in new "high capacity"
  groups,

  The old, 32-bit, counters have not been deprecated.  The 64-bit
  counters are to be used only when the 32-bit counters do not provide
  enough capacity; that is, the 32 bit counters could wrap too fast.

  For interfaces that operate at 20,000,000 (20 million) bits per
  second or less, 32-bit byte and packet counters MUST be used.  For
  interfaces that operate faster than 20,000,000 bits/second, and
  slower than 650,000,000 bits/second, 32-bit packet counters MUST be
  used and 64-bit octet counters MUST be used.  For interfaces that
  operate at 650,000,000 bits/second or faster, both 64-bit packet
  counters AND 64-bit octet counters MUST be used.

  These speed steps were chosen as reasonable compromises based on the
  following:

     (1)  The cost of maintaining 64-bit counters is relatively high,
          so minimizing the number of agents which must support them is
          desirable.  Common interfaces (such as Ethernet) should not
          require them.





McCloghrie & Kastenholz                                        [Page 14]

RFC 1573               Interfaces Group Evolution           January 1994


     (2)  64-bit counters are a new feature, introduced in SNMPv2.  It
          is reasonable to expect that support for them will be spotty
          for the immediate future.  Thus, we wish to limit them to as
          few systems as possible.  This, in effect, means that 64-bit
          counters should be limited to higher speed interfaces.
          Ethernet (10,000,000 bps) and Token Ring (16,000,000 bps) are
          fairly wide-spread so it seems reasonable to not require 64-
          bit counters for these interfaces.

     (3)  The 32-bit octet counters will wrap in the following times,
          for the following interfaces (when transmitting maximum-sized
          packets back-to-back):

          -   Ethernet: 57 minutes,

          -   16 megabit Token Ring: 36 minutes,

          -   A US T3 line (45 megabits): 12 minutes,

          -   FDDI: 5.7 minutes

     (4)  The 32-bit packet counters wraps in about 57 minutes when
          64-byte packets are transmitted back-to-back on a 650,000,000
          bit/second link.

          As an aside, a 1-terabit (1,000 gigabits) link will cause a
          64 bit octet counter to wrap in just under 5 years.
          Conversely, an 81,000,000 terabit/second link is required to
          cause a 64-bit counter to wrap in 30 minutes.  We believe
          that, while technology rapidly marches forward, this link
          speed will not be achieved for at least several years,
          leaving sufficient time to evaluate the introduction of 96
          bit counters.

  When 64-bit counters are in use, the 32-bit counters MUST still be
  available.  They will report the low 32-bits of the associated 64-bit
  count (e.g., ifInOctets will report the least significant 32 bits of
  ifHCInOctets).  This enhances inter-operability with existing
  implementations at a very minimal cost to agents.

  The new "high capacity" groups are:

     (1)  the ifHCFixedLengthGroup for character-oriented/fixed-length
          interfaces, and the ifHCPacketGroup for packet-based
          interfaces; both of these groups include 64 bit counters for
          octets, and





McCloghrie & Kastenholz                                        [Page 15]

RFC 1573               Interfaces Group Evolution           January 1994


     (2)  the ifVHCPacketGroup for packet-based interfaces; this group
          includes 64 bit counters for octets and packets.

3.2.7.  Interface Speed

  In order to deal with increasing interface speeds, we have added an
  ifHighSpeed object.

  This object reports the speed of the interface in 1,000,000 (1
  million) bits/second units.  Thus, the true speed of the interface
  will be the value reported by this object, plus or minus 500,000
  bits/second.

  Other alternatives considered were:

     (1)  Making the interface speed a 64-bit gauge.  This was rejected
          since the current SMI does not allow such a syntax.

          Furthermore, even if 64-bit gauges were available, their use
          would require additional complexity in agents due to an
          increased requirement for 64-bit operations.

     (2)  We also considered making "high-32 bit" and "low-32-bit"
          objects which, when combined, would be a 64-bit value.  This
          simply seemed overly complex for what we are trying to do.

          Furthermore, a full 64-bits of precision does not seem
          necessary.  The value of ifHighSpeed will be the only report
          of interface speed for interfaces that are faster than
          4,294,967,295 bits per second.  At this speed, the
          granularity of ifHighSpeed will be 1,000,000 bits per second,
          thus the error will be 1/4294, or about 0.02%.  This seems
          reasonable.

     (3)  Adding a "scale" object, which would define the units which
          ifSpeed's value is.

          This would require two additional objects; one for the
          scaling object, and one to replace the current ifSpeed.  This
          later object is required since the semantics of ifSpeed would
          be significantly altered, and manager stations which do not
          understand the new semantics would be confused.

3.2.8.  Multicast/Broadcast Counters

  To avoid the redundancy of counting all non-unicast packets as well
  as having individual multicast and broadcast packet counters, we
  deprecate the use of the non-unicast counters, which can be derived



McCloghrie & Kastenholz                                        [Page 16]

RFC 1573               Interfaces Group Evolution           January 1994


  from the values of the others.

  For the output broadcast and multicast counters defined in RFC 1229,
  their definitions varied slightly from the packet counters in the
  ifTable, in that they did not count errors/discarded packets.  To
  align the definitions better, the old counters are deprecated and
  replaced by new definitions.  Counters with 64 bits of range are also
  needed, as explained above.

3.2.9.  Trap Enable

  In the multi-layer interface model, each sub-layer for which there is
  an entry in the ifTable can generate linkUp/Down Traps.  Since
  interface state changes would tend to propagate through the interface
  (from top to bottom, or bottom to top), it is likely that several
  traps would be generated for each linkUp/Down occurrence.

  It is desirable to provide a mechanism for manager stations to
  control the generation of these traps.  To this end, the
  ifLinkUpDownTrapEnable object has been added.  This object allows
  managers to limit generation of traps to just the sub-layers of
  interest.

  The default setting should limit the number of traps generated to one
  per interface per linkUp/Down event.  Furthermore, it seems that the
  conditions that cause these state changes that are of most interest
  to network managers occur at the lowest level of an interface stack.
  Therefore we specify that by default, only the lowest sub-layer of
  the interface generate traps.

3.2.10.  Addition of New ifType values

  The syntax of ifType is changed to be a textual convention, such that
  the enumerated integer values are now defined in the textual
  convention, IANAifType, which can be re-specified (with additional
  values) without issuing a new version of this document.  The Internet
  Assigned Number Authority (IANA) is responsible for the assignment of
  all Internet numbers, including various SNMP-related numbers, and
  specifically, new ifType values.  Thus, this document defines two MIB
  modules: one to define the MIB for the 'interfaces' group, and a
  second to define the first version of the IANAifType textual
  convention.  The latter will be periodically re-issued by the IANA.

3.2.11.  InterfaceIndex Textual Convention

  A new textual convention, InterfaceIndex, has been defined.  This
  textual convention "contains" all of the semantics of the ifIndex
  object.  This allows other mib modules to easily import the semantics



McCloghrie & Kastenholz                                        [Page 17]

RFC 1573               Interfaces Group Evolution           January 1994


  of ifIndex.

3.2.12.  IfAdminStatus and IfOperStatus

  A new state has been added to ifOperStatus: dormant.  This state
  indicates that the relevant interface is not actually in a condition
  to pass packets (i.e., up) but is in a "pending" state, waiting for
  some external event.  For "on-demand" interfaces, this new state
  identifies the situation where the interface is waiting for events to
  place it in the up state.  Examples of such events might be:

     (1)  having packets to transmit before establishing a connection
          to a remote system.

     (2)  having a remote system establish a connection to the
          interface (e.g., dialing up to a slip-server).

  The down state now has two meanings, depending on the value of
  ifAdminStatus.

     (1)  If ifAdminStatus is not down and ifOperStatus is down, then a
          fault condition is presumed to exist on the interface.

     (2)  If ifAdminStatus is down, then ifOperStatus will normally
          also be down, i.e., there is not (necessarily) a fault
          condition on the interface.

  Note that when ifAdminStatus transitions to down, ifOperStatus will
  normally also transition to down.  In this situation, it is possible
  that ifOperStatus's transition will not occur immediately, but rather
  after a small time lag to complete certain operations before going
  "down"; for example, it might need to finish transmitting a packet.
  If a manager station finds that ifAdminStatus is down and
  ifOperStatus is not down for a particular interface, the manager
  station should wait a short while and check again.  If the condition
  still exists only then should it raise an error indication.
  Naturally, it should also ensure that ifLastChange has not changed
  during this interval.

  Whenever an interface table entry is created (usually as a result of
  system initialization), the relevant instance of ifAdminStatus is set
  to down, and presumably ifOperStatus will also be down.

  An interface may be enabled in two ways: either as a result of
  explicit management action (e.g., setting ifAdminStatus to up) or as
  a result of the managed system's initialization process.  When
  ifAdminStatus changes to the up state, the related ifOperStatus
  should do one of the following:



McCloghrie & Kastenholz                                        [Page 18]

RFC 1573               Interfaces Group Evolution           January 1994


     (1)  Change to the up state if and only if the interface is able
          to send and receive packets.

     (2)  Change to the dormant state if and only if the interface is
          found to be operable, but the interface is waiting for other,
          external, events to occur before it can transmit or receive
          packets.  Presumably when the expected events occur, the
          interface will then transition to the up state.

     (3)  Remain in the down state if an error or other fault condition
          is detected on the interface.

     (4)  Change to the unknown state if, for some reason, the state of
          the interface can not be ascertained.

     (5)  Change to the testing state if some test(s) must be performed
          on the interface.  Presumably after completion of the test,
          the interface's state will change to up, dormant, or down, as
          appropriate.

3.2.13.  Traps

  The exact definition of when linkUp and linkDown traps are generated,
  has been changed to reflect the changes to ifAdminStatus and
  ifOperStatus.

  LinkUp and linkDown traps are generated just after ifOperStatus
  leaves, or just before it enters, the down state, respectively.  The
  wording of the conditions under which a linkDown trap is generated
  was explicitly chosen to allow a node with only one interface to
  transmit the linkDown trap before that interface goes down.

  Operational experience seems to indicate that manager stations are
  most concerned with an interface being in the down state and the fact
  that this state may indicate a failure.  It seemed most useful to
  instrument either transitions into/out of the up state or the down
  state.

  Instrumenting transitions into or out of the up state has the
  drawback that an on-demand interface might have many transitions
  between up and dormant, leading to many linkUp traps and no linkDown
  traps.  Furthermore, if a node's only interface is the on-demand
  interface, then a transition to dormant will entail generation of a
  trap, necessitating bringing the link to the up state (and a linkUp
  trap)!!

  On the other hand, instrumenting transitions into or out of the down
  state has the advantages:



McCloghrie & Kastenholz                                        [Page 19]

RFC 1573               Interfaces Group Evolution           January 1994


     (1)  A transition into the down state will occur when an error is
          detected on an interface.  Error conditions are presumably of
          great interest to network managers.

     (2)  Departing the down state generally indicates that the
          interface is going to either up or dormant, both of which are
          considered "healthy" states.

  Furthermore, it is believed that generarating traps on transitions
  into or out of the down state is generally consistent with current
  usage and interpretation of these traps by manager stations.

  Therefore, this memo defines that it is the transitions into/out of
  the down state which generate traps.

  Obviously, if a failure condition is present on a node with a single
  interface, the linkDown trap will probably not be succesfully
  transmitted since the interface through which it must be transmitted
  has failed.

3.2.14.  ifSpecific

  The current definition of ifSpecific is not explicit enough.  The
  only definition that can both be made explicit and can cover all the
  useful situations (see section 3.1.9) is to have ifSpecific be the
  most general value for the media-specific MIB module (the first
  example given section in 3.1.9).  This effectively makes it redundant
  because it contains no more information than is provided by ifType.
  For this reason, ifSpecific has been deprecated.

3.3.  Media-Specific MIB Applicability

  The exact use and semantics of many objects in this MIB are open to
  some interpretation.  This is a result of the generic nature of this
  MIB.  It is not always possible to come up with specific,
  unambiguous, text that covers all cases and yet preserve the generic
  nature of the MIB.

  Therefore, it is incumbent upon a media-specific MIB designer to,
  wherever necessary, clarify the use of the objects in this MIB with
  respect to the media-specific MIB.

  Specific areas of clarification include:

  Layering Model
       The media-specific MIB designer MUST completely and
       unambiguously specify the layering model used.  Each
       individual sub-layer must be identified.



McCloghrie & Kastenholz                                        [Page 20]

RFC 1573               Interfaces Group Evolution           January 1994


  Virtual Circuits
       The media-specific MIB designer MUST specify whether virtual
       circuits are assigned entries in the ifTable or not.  If they
       are, compelling rationale must be presented.

  ifTestTable
       The media-specific MIB designer MUST specify the
       applicability of the ifTestTable.

  ifRcvAddressTable
       The media-specific MIB designer MUST specify the
       applicability of the ifRcvAddressTable.

  ifType
       For each of the ifType values to which the media-specific MIB
       applies, it must specify the mapping of ifType values to
       media-specific MIB module(s) and instances of MIB objects
       within those modules.

  However, wherever this interface MIB is specific in the semantics,
  DESCRIPTION, or applicability of objects, the media-specific MIB
  designer MUST NOT change said semantics, DESCRIPTION, or
  applicability.

4.  Overview

  This MIB consists of 5 tables:

  ifTable
       This table is the ifTable from MIB-II.

  ifXTable
       This table contains objects that have been added to the
       Interface MIB as a result of the Interface Evolution effort,
       or replacements for objects of the original, MIB-II, ifTable
       that were deprecated because the semantics of said objects
       have significantly changed.  This table also contains objects
       that were previously in the ifExtnsTable.

  ifStackTable
       This table contains objects that define the relationships
       among the sub-layers of an interface.

  ifTestTable
       This table contains objects that are used to perform tests on
       interfaces.  This table is a generic table.  The designers of
       media-specific MIBs must define exactly how this table
       applies to their specific MIB.



McCloghrie & Kastenholz                                        [Page 21]

RFC 1573               Interfaces Group Evolution           January 1994


       This table replaces the interface test table defined in
       RFC1229 [7].  The significant change is the replacement of
       the ifExtnsTestCommunity (and ifExtnsTestContext which would
       also have been required for SNMPv2) and ifExtnsTestRequestId
       objects, by the new ifTestId, ifTestStatus, and ifTestOwner
       objects.

  ifRcvAddressTable
       This table contains objects that are used to define the
       media-level addresses which this interface will receive.
       This table is a generic table.  The designers of media-
       specific MIBs must define exactly how this table applies to
       their specific MIB.

5.  IANAifType Definition

  IANAifType-MIB DEFINITIONS ::= BEGIN

  IMPORTS
      MODULE-IDENTITY, OBJECT-TYPE        FROM SNMPv2-SMI
      TEXTUAL-CONVENTION                  FROM SNMPv2-TC;

  ianaifType MODULE-IDENTITY
      LAST-UPDATED "9311082155Z"
      ORGANIZATION "IANA"
      CONTACT-INFO

                 "        Internet Assigned Numbers Authority

                  Postal: USC/Information Sciences Institute
                          4676 Admiralty Way, Marina del Rey, CA 90292

                  Tel:    +1  310 822 1511
                  E-Mail: [email protected]"
      DESCRIPTION
              "The MIB module which defines the IANAifType textual
              convention, and thus the enumerated values of the
              ifType object defined in MIB-II's ifTable."
      ::= { mib-2 30 }


  IANAifType ::= TEXTUAL-CONVENTION
      STATUS       current
      DESCRIPTION
              "This data type is used as the syntax of the ifType
              object in the (updated) definition of MIB-II's
              ifTable.




McCloghrie & Kastenholz                                        [Page 22]

RFC 1573               Interfaces Group Evolution           January 1994


              The definition of this textual convention with the
              addition of newly assigned values is published
              periodically by the IANA, in either the Assigned
              Numbers RFC, or some derivative of it specific to
              Internet Network Management number assignments.  (The
              latest arrangements can be obtained by contacting the
              IANA.)

              Requests for new values should be made to IANA via
              email ([email protected]).

              The relationship between the assignment of ifType
              values and of OIDs to particular media-specific MIBs
              is solely the purview of IANA and is subject to change
              without notice.  Quite often, a media-specific MIB's
              OID-subtree assignment within MIB-II's 'transmission'
              subtree will be the same as its ifType value.
              However, in some circumstances this will not be the
              case, and implementors must not pre-assume any
              specific relationship between ifType values and
              transmission subtree OIDs."
      SYNTAX  INTEGER {
                  other(1),          -- none of the following
                  regular1822(2),
                  hdh1822(3),
                  ddnX25(4),
                  rfc877x25(5),
                  ethernetCsmacd(6),
                  iso88023Csmacd(7),
                  iso88024TokenBus(8),
                  iso88025TokenRing(9),
                  iso88026Man(10),
                  starLan(11),
                  proteon10Mbit(12),
                  proteon80Mbit(13),
                  hyperchannel(14),
                  fddi(15),
                  lapb(16),
                  sdlc(17),
                  ds1(18),           -- DS1/E1 (RFC 1406)
                  e1(19),            -- obsolete
                  basicISDN(20),
                  primaryISDN(21),
                  propPointToPointSerial(22), -- proprietary serial
                  ppp(23),
                  softwareLoopback(24),
                  eon(25),            -- CLNP over IP (RFC 1070)
                  ethernet3Mbit(26),



McCloghrie & Kastenholz                                        [Page 23]

RFC 1573               Interfaces Group Evolution           January 1994


                  nsip(27),           -- XNS over IP
                  slip(28),           -- generic SLIP
                  ultra(29),          -- ULTRA technologies
                  ds3(30),            -- T-3
                  sip(31),            -- SMDS
                  frameRelay(32),    -- DTE only
                  rs232(33),
                  para(34),           -- parallel-port
                  arcnet(35),         -- arcnet
                  arcnetPlus(36),     -- arcnet plus
                  atm(37),            -- ATM cells
                  miox25(38),
                  sonet(39),          -- SONET or SDH
                  x25ple(40),
                  iso88022llc(41),
                  localTalk(42),
                  smdsDxi(43),
                  frameRelayService(44),  -- Frame relay DCE
                  v35(45),
                  hssi(46),
                  hippi(47),
                  modem(48),          -- Generic modem
                  aal5(49),           -- AAL5 over ATM
                  sonetPath(50),
                  sonetVT(51),
                  smdsIcip(52),       -- SMDS InterCarrier Interface
                  propVirtual(53),    -- proprietary virtual/internal
                  propMultiplexor(54) -- proprietary multiplexing
              }

  END

6.  Interfaces Group Definitions

  IF-MIB DEFINITIONS ::= BEGIN

  IMPORTS
      MODULE-IDENTITY, OBJECT-TYPE, Counter32, Gauge32,
      Integer32, TimeTicks,
      NOTIFICATION-TYPE                        FROM SNMPv2-SMI
      TEXTUAL-CONVENTION, DisplayString,
      PhysAddress, TruthValue, RowStatus,
      AutonomousType, TestAndIncr              FROM SNMPv2-TC
      MODULE-COMPLIANCE, OBJECT-GROUP          FROM SNMPv2-CONF
      IANAifType                               FROM IANAifType-MIB
      interfaces                               FROM RFC-1213;





McCloghrie & Kastenholz                                        [Page 24]

RFC 1573               Interfaces Group Evolution           January 1994


  ifMIB MODULE-IDENTITY
      LAST-UPDATED "9311082155Z"
      ORGANIZATION "IETF Interfaces MIB Working Group"
      CONTACT-INFO

                 "        Keith McCloghrie

                  Postal: Hughes LAN Systems
                          1225 Charleston Road, Mountain View, CA 94043

                  Tel:    +1 415 966 7934
                  E-Mail: [email protected]


                          Frank Kastenholz

                  Postal: FTP Software
                          2 High Street, North Andover, MA 01845

                  Tel:    +1 508 685 4000
                  E-Mail: [email protected]"
      DESCRIPTION
              "The MIB module to describe generic objects for
              network interface sub-layers.  This MIB is an updated
              version of MIB-II's ifTable, and incorporates the
              extensions defined in RFC 1229."
      ::= { mib-2 31 }

  ifMIBObjects OBJECT IDENTIFIER ::= { ifMIB 1 }

  -- OwnerString has the same semantics as used in RFC 1271

  OwnerString ::= TEXTUAL-CONVENTION
      DISPLAY-HINT "255a"
      STATUS       current
      DESCRIPTION
              "This data type is used to model an administratively
              assigned name of the owner of a resource.  This
              information is taken from the NVT ASCII character set.
              It is suggested that this name contain one or more of
              the following: ASCII form of the manager station's
              transport address, management station name (e.g.,
              domain name), network management personnel's name,
              location, or phone number.  In some cases the agent
              itself will be the owner of an entry.  In these cases,
              this string shall be set to a string starting with
              'agent'."
      SYNTAX       OCTET STRING (SIZE(0..255))



McCloghrie & Kastenholz                                        [Page 25]

RFC 1573               Interfaces Group Evolution           January 1994


  -- InterfaceIndex contains the semantics of ifIndex and
  -- should be used for any objects defined on other mib
  -- modules that need these semantics.

  InterfaceIndex ::= TEXTUAL-CONVENTION
      DISPLAY-HINT "d"
      STATUS       current
      DESCRIPTION
              "A unique value, greater than zero, for each interface
              or interface sub-layer in the managed system.  It is
              recommended that values are assigned contiguously
              starting from 1.  The value for each interface sub-
              layer must remain constant at least from one re-
              initialization of the entity's network management
              system to the next re-initialization."
      SYNTAX       Integer32

  ifNumber  OBJECT-TYPE
      SYNTAX      Integer32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The number of network interfaces (regardless of their
              current state) present on this system."
      ::= { interfaces 1 }


  -- the Interfaces table

  -- The Interfaces table contains information on the entity's
  -- interfaces.  Each sub-layer below the internetwork-layer
  -- of a network interface is considered to be an interface.

  ifTable OBJECT-TYPE
      SYNTAX      SEQUENCE OF IfEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
              "A list of interface entries.  The number of entries
              is given by the value of ifNumber."
      ::= { interfaces 2 }

  ifEntry OBJECT-TYPE
      SYNTAX      IfEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
              "An entry containing management information applicable



McCloghrie & Kastenholz                                        [Page 26]

RFC 1573               Interfaces Group Evolution           January 1994


              to a particular interface."
      INDEX   { ifIndex }
      ::= { ifTable 1 }

  IfEntry ::=
      SEQUENCE {
          ifIndex                 InterfaceIndex,
          ifDescr                 DisplayString,
          ifType                  IANAifType,
          ifMtu                   Integer32,
          ifSpeed                 Gauge32,
          ifPhysAddress           PhysAddress,
          ifAdminStatus           INTEGER,
          ifOperStatus            INTEGER,
          ifLastChange            TimeTicks,
          ifInOctets              Counter32,
          ifInUcastPkts           Counter32,
          ifInNUcastPkts          Counter32,  -- deprecated
          ifInDiscards            Counter32,
          ifInErrors              Counter32,
          ifInUnknownProtos       Counter32,
          ifOutOctets             Counter32,
          ifOutUcastPkts          Counter32,
          ifOutNUcastPkts         Counter32,  -- deprecated
          ifOutDiscards           Counter32,
          ifOutErrors             Counter32,
          ifOutQLen               Gauge32,    -- deprecated
          ifSpecific              OBJECT IDENTIFIER -- deprecated
      }


  ifIndex OBJECT-TYPE
      SYNTAX      InterfaceIndex
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "A unique value, greater than zero, for each
              interface.  It is recommended that values are assigned
              contiguously starting from 1.  The value for each
              interface sub-layer must remain constant at least from
              one re-initialization of the entity's network
              management system to the next re-initialization."
      ::= { ifEntry 1 }

  ifDescr OBJECT-TYPE
      SYNTAX      DisplayString (SIZE (0..255))
      MAX-ACCESS  read-only
      STATUS      current



McCloghrie & Kastenholz                                        [Page 27]

RFC 1573               Interfaces Group Evolution           January 1994


      DESCRIPTION
              "A textual string containing information about the
              interface.  This string should include the name of the
              manufacturer, the product name and the version of the
              interface hardware/software."
      ::= { ifEntry 2 }

  ifType OBJECT-TYPE
      SYNTAX      IANAifType
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The type of interface.  Additional values for ifType
              are assigned by the Internet Assigned Numbers
              Authority (IANA), through updating the syntax of the
              IANAifType textual convention."
      ::= { ifEntry 3 }

  ifMtu OBJECT-TYPE
      SYNTAX      Integer32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The size of the largest packet which can be
              sent/received on the interface, specified in octets.
              For interfaces that are used for transmitting network
              datagrams, this is the size of the largest network
              datagram that can be sent on the interface."
      ::= { ifEntry 4 }

  ifSpeed OBJECT-TYPE
      SYNTAX      Gauge32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "An estimate of the interface's current bandwidth in
              bits per second.  For interfaces which do not vary in
              bandwidth or for those where no accurate estimation
              can be made, this object should contain the nominal
              bandwidth.  If the bandwidth of the interface is
              greater than the maximum value reportable by this
              object then this object should report its maximum
              value (4,294,967,295) and ifHighSpeed must be used to
              report the interace's speed.  For a sub-layer which
              has no concept of bandwidth, this object should be
              zero."
      ::= { ifEntry 5 }




McCloghrie & Kastenholz                                        [Page 28]

RFC 1573               Interfaces Group Evolution           January 1994


  ifPhysAddress OBJECT-TYPE
      SYNTAX      PhysAddress
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The interface's address at its protocol sub-layer.
              The interface's media-specific MIB must define the bit
              and byte ordering and format of the value contained by
              this object.  For interfaces which do not have such an
              address (e.g., a serial line), this object should
              contain an octet string of zero length."
      ::= { ifEntry 6 }

  ifAdminStatus OBJECT-TYPE
      SYNTAX  INTEGER {
                  up(1),       -- ready to pass packets
                  down(2),
                  testing(3)   -- in some test mode
              }
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
              "The desired state of the interface.  The testing(3)
              state indicates that no operational packets can be
              passed.  When a managed system initializes, all
              interfaces start with ifAdminStatus in the down(2)
              state.  As a result of either explicit management
              action or per configuration information retained by
              the managed system, ifAdminStatus is then changed to
              either the up(1) or testing(3) states (or remains in
              the down(2) state)."
      ::= { ifEntry 7 }

  ifOperStatus OBJECT-TYPE
      SYNTAX  INTEGER {
                  up(1),       -- ready to pass packets
                  down(2),
                  testing(3),  -- in some test mode
                  unknown(4),  -- status can not be determined
                               -- for some reason.
                  dormant(5)
              }
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The current operational state of the interface.  The
              testing(3) state indicates that no operational packets
              can be passed.  If ifAdminStatus is down(2) then



McCloghrie & Kastenholz                                        [Page 29]

RFC 1573               Interfaces Group Evolution           January 1994


              ifOperStatus should be down(2).  If ifAdminStatus is
              changed to up(1) then ifOperStatus should change to
              up(1) if the interface is ready to transmit and
              receive network traffic; it should change to
              dormant(5) if the interface is waiting for external
              actions (such as a serial line waiting for an
              incomming connection); it should remain in the down(2)
              state if and only if there is a fault that prevents if
              from going to the up(1) state."
      ::= { ifEntry 8 }

  ifLastChange OBJECT-TYPE
      SYNTAX      TimeTicks
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The value of sysUpTime at the time the interface
              entered its current operational state.  If the current
              state was entered prior to the last re-initialization
              of the local network management subsystem, then this
              object contains a zero value."
      ::= { ifEntry 9 }

  ifInOctets OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The total number of octets received on the interface,
              including framing characters."
      ::= { ifEntry 10 }

  ifInUcastPkts OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The number of packets, delivered by this sub-layer to
              a higher (sub-)layer, which were not addressed to a
              multicast or broadcast address at this sub-layer."
      ::= { ifEntry 11 }

  ifInNUcastPkts OBJECT-TYPE
      SYNTAX  Counter32
      MAX-ACCESS  read-only
      STATUS      deprecated
      DESCRIPTION
              "The number of packets, delivered by this sub-layer to



McCloghrie & Kastenholz                                        [Page 30]

RFC 1573               Interfaces Group Evolution           January 1994


              a higher (sub-)layer, which were addressed to a
              multicast or broadcast address at this sub-layer.
              This object is deprecated in favour of
              ifInMulticastPkts and ifInBroadcastPkts."
      ::= { ifEntry 12 }

  ifInDiscards OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The number of inbound packets which were chosen to be
              discarded even though no errors had been detected to
              prevent their being deliverable to a higher-layer
              protocol.  One possible reason for discarding such a
              packet could be to free up buffer space."
      ::= { ifEntry 13 }

  ifInErrors OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "For packet-oriented interfaces, the number of inbound
              packets that contained errors preventing them from
              being deliverable to a higher-layer protocol.  For
              character-oriented or fixed-length interfaces, the
              number of inbound transmission units that contained
              errors preventing them from being deliverable to a
              higher-layer protocol."
      ::= { ifEntry 14 }

  ifInUnknownProtos OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "For packet-oriented interfaces, the number of packets
              received via the interface which were discarded
              because of an unknown or unsupported protocol.  For
              character-oriented or fixed-length interfaces which
              support protocol multiplexing the number of
              transmission units received via the interface which
              were discarded because of an unknown or unsupported
              protocol.  For any interface which does not support
              protocol multiplexing, this counter will always be 0."
      ::= { ifEntry 15 }




McCloghrie & Kastenholz                                        [Page 31]

RFC 1573               Interfaces Group Evolution           January 1994


  ifOutOctets OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The total number of octets transmitted out of the
              interface, including framing characters."
      ::= { ifEntry 16 }

  ifOutUcastPkts OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION

              "The total number of packets that higher-level
              protocols requested be transmitted, and which were not
              addressed to a multicast or broadcast address at this
              sub-layer, including those that were discarded or not
              sent."
      ::= { ifEntry 17 }

  ifOutNUcastPkts OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      deprecated
      DESCRIPTION
              "The total number of packets that higher-level
              protocols requested be transmitted, and which were
              addressed to a multicast or broadcast address at this
              sub-layer, including those that were discarded or not
              sent.

              This object is deprecated in favour of
              ifOutMulticastPkts and ifOutBroadcastPkts."
      ::= { ifEntry 18 }

  ifOutDiscards OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The number of outbound packets which were chosen to
              be discarded even though no errors had been detected
              to prevent their being transmitted.  One possible
              reason for discarding such a packet could be to free
              up buffer space."
      ::= { ifEntry 19 }



McCloghrie & Kastenholz                                        [Page 32]

RFC 1573               Interfaces Group Evolution           January 1994


  ifOutErrors OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "For packet-oriented interfaces, the number of
              outbound packets that could not be transmitted because
              of errors.  For character-oriented or fixed-length
              interfaces, the number of outbound transmission units
              that could not be transmitted because of errors."
      ::= { ifEntry 20 }

  ifOutQLen OBJECT-TYPE
      SYNTAX      Gauge32
      MAX-ACCESS  read-only
      STATUS      deprecated
      DESCRIPTION
              "The length of the output packet queue (in packets)."
      ::= { ifEntry 21 }

  ifSpecific OBJECT-TYPE
      SYNTAX      OBJECT IDENTIFIER
      MAX-ACCESS  read-only
      STATUS      deprecated
      DESCRIPTION
              "A reference to MIB definitions specific to the
              particular media being used to realize the interface.
              It is recommended that this value point to an instance
              of a MIB object in the media-specific MIB, i.e., that
              this object have the semantics associated with the
              InstancePointer textual convention defined in RFC
              1443.  In fact, it is recommended that the media-
              specific MIB specify what value ifSpecific should/can
              take for values of ifType.  If no MIB definitions
              specific to the particular media are available, the
              value should be set to the OBJECT IDENTIFIER { 0 0 }."
      ::= { ifEntry 22 }


  --
  --   Extension to the interface table
  --
  -- This table replaces the ifExtnsTable table.
  --

  ifXTable        OBJECT-TYPE
      SYNTAX      SEQUENCE OF IfXEntry
      MAX-ACCESS  not-accessible



McCloghrie & Kastenholz                                        [Page 33]

RFC 1573               Interfaces Group Evolution           January 1994


      STATUS      current
      DESCRIPTION
              "A list of interface entries.  The number of entries
              is given by the value of ifNumber.  This table
              contains additional objects for the interface table."
      ::= { ifMIBObjects 1 }

  ifXEntry        OBJECT-TYPE
      SYNTAX      IfXEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
              "An entry containing additional management information
              applicable to a particular interface."
      AUGMENTS    { ifEntry }
      ::= { ifXTable 1 }

  IfXEntry ::=
      SEQUENCE {
          ifName                  DisplayString,
          ifInMulticastPkts       Counter32,
          ifInBroadcastPkts       Counter32,
          ifOutMulticastPkts      Counter32,
          ifOutBroadcastPkts      Counter32,
          ifHCInOctets            Counter64,
          ifHCInUcastPkts         Counter64,
          ifHCInMulticastPkts     Counter64,
          ifHCInBroadcastPkts     Counter64,
          ifHCOutOctets           Counter64,
          ifHCOutUcastPkts        Counter64,
          ifHCOutMulticastPkts    Counter64,
          ifHCOutBroadcastPkts    Counter64,
          ifLinkUpDownTrapEnable  INTEGER,
          ifHighSpeed             Gauge32,
          ifPromiscuousMode       TruthValue,
          ifConnectorPresent      TruthValue
      }


  ifName OBJECT-TYPE
      SYNTAX      DisplayString
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The textual name of the interface.  The value of this
              object should be the name of the interface as assigned
              by the local device and should be suitable for use in
              commands entered at the device's `console'.  This



McCloghrie & Kastenholz                                        [Page 34]

RFC 1573               Interfaces Group Evolution           January 1994


              might be a text name, such as `le0' or a simple port
              number, such as `1', depending on the interface naming
              syntax of the device.  If several entries in the
              ifTable together represent a single interface as named
              by the device, then each will have the same value of
              ifName.  If there is no local name, or this object is
              otherwise not applicable, then this object contains a
              0-length string."
      ::= { ifXEntry 1 }

  ifInMulticastPkts OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The number of packets, delivered by this sub-layer to
              a higher (sub-)layer, which were addressed to a
              multicast address at this sub-layer.  For a MAC layer
              protocol, this includes both Group and Functional
              addresses."
      ::= { ifXEntry 2 }

  ifInBroadcastPkts OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The number of packets, delivered by this sub-layer to
              a higher (sub-)layer, which were addressed to a
              broadcast address at this sub-layer."
      ::= { ifXEntry 3 }

  ifOutMulticastPkts OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The total number of packets that higher-level
              protocols requested be transmitted, and which were
              addressed to a multicast address at this sub-layer,
              including those that were discarded or not sent.  For
              a MAC layer protocol, this includes both Group and
              Functional addresses."
      ::= { ifXEntry 4 }

  ifOutBroadcastPkts OBJECT-TYPE
      SYNTAX      Counter32
      MAX-ACCESS  read-only



McCloghrie & Kastenholz                                        [Page 35]

RFC 1573               Interfaces Group Evolution           January 1994


      STATUS      current
      DESCRIPTION
              "The total number of packets that higher-level
              protocols requested be transmitted, and which were
              addressed to a broadcast address at this sub-layer,
              including those that were discarded or not sent."
      ::= { ifXEntry 5 }

  --
  -- High Capacity Counter objects.  These objects are all

  -- 64 bit versions of the "basic" ifTable counters.  These
  -- objects all have the same basic semantics as their 32-bit
  -- counterparts, however, their syntax has been extended
  -- to 64 bits.
  --

  ifHCInOctets OBJECT-TYPE
      SYNTAX      Counter64
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The total number of octets received on the interface,
              including framing characters.  This object is a 64-bit
              version of ifInOctets."
      ::= { ifXEntry 6 }

  ifHCInUcastPkts OBJECT-TYPE
      SYNTAX      Counter64
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The number of packets, delivered by this sub-layer to
              a higher (sub-)layer, which were not addressed to a
              multicast or broadcast address at this sub-layer.
              This object is a 64-bit version of ifInUcastPkts."
      ::= { ifXEntry 7 }

  ifHCInMulticastPkts OBJECT-TYPE
      SYNTAX      Counter64
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The number of packets, delivered by this sub-layer to
              a higher (sub-)layer, which were addressed to a
              multicast address at this sub-layer.  For a MAC layer
              protocol, this includes both Group and Functional
              addresses.  This object is a 64-bit version of



McCloghrie & Kastenholz                                        [Page 36]

RFC 1573               Interfaces Group Evolution           January 1994


              ifInMulticastPkts."
      ::= { ifXEntry 8 }

  ifHCInBroadcastPkts OBJECT-TYPE
      SYNTAX      Counter64
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The number of packets, delivered by this sub-layer to
              a higher (sub-)layer, which were addressed to a
              broadcast address at this sub-layer.  This object is a
              64-bit version of ifInBroadcastPkts."
      ::= { ifXEntry 9 }

  ifHCOutOctets OBJECT-TYPE
      SYNTAX      Counter64
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The total number of octets transmitted out of the
              interface, including framing characters.  This object
              is a 64-bit version of ifOutOctets."
      ::= { ifXEntry 10 }

  ifHCOutUcastPkts OBJECT-TYPE
      SYNTAX      Counter64
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The total number of packets that higher-level
              protocols requested be transmitted, and which were not
              addressed to a multicast or broadcast address at this
              sub-layer, including those that were discarded or not
              sent.  This object is a 64-bit version of
              ifOutUcastPkts."
      ::= { ifXEntry 11 }

  ifHCOutMulticastPkts OBJECT-TYPE
      SYNTAX      Counter64
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The total number of packets that higher-level
              protocols requested be transmitted, and which were
              addressed to a multicast address at this sub-layer,
              including those that were discarded or not sent.  For
              a MAC layer protocol, this includes both Group and
              Functional addresses.  This object is a 64-bit version



McCloghrie & Kastenholz                                        [Page 37]

RFC 1573               Interfaces Group Evolution           January 1994


              of ifOutMulticastPkts."
      ::= { ifXEntry 12 }

  ifHCOutBroadcastPkts OBJECT-TYPE
      SYNTAX      Counter64
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "The total number of packets that higher-level
              protocols requested be transmitted, and which were
              addressed to a broadcast address at this sub-layer,
              including those that were discarded or not sent.  This
              object is a 64-bit version of ifOutBroadcastPkts."
      ::= { ifXEntry 13 }

  ifLinkUpDownTrapEnable  OBJECT-TYPE
      SYNTAX      INTEGER { enabled(1), disabled(2) }
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
              "Indicates whether linkUp/linkDown traps should be
              generated for this interface.

              By default, this object should have the value
              enabled(1) for interfaces which do not operate on
              'top' of any other interface (as defined in the
              ifStackTable), and disabled(2) otherwise."
      ::= { ifXEntry 14 }

  ifHighSpeed OBJECT-TYPE
      SYNTAX      Gauge32
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "An estimate of the interface's current bandwidth in
              units of 1,000,000 bits per second.  If this object
              reports a value of `n' then the speed of the interface
              is somewhere in the range of `n-500,000' to
              `n+499,999'.  For interfaces which do not vary in
              bandwidth or for those where no accurate estimation
              can be made, this object should contain the nominal
              bandwidth.  For a sub-layer which has no concept of
              bandwidth, this object should be zero."
      ::= { ifXEntry 15 }

  ifPromiscuousMode  OBJECT-TYPE
      SYNTAX      TruthValue
      MAX-ACCESS  read-write



McCloghrie & Kastenholz                                        [Page 38]

RFC 1573               Interfaces Group Evolution           January 1994


      STATUS      current
      DESCRIPTION
              "This object has a value of false(2) if this interface
              only accepts packets/frames that are addressed to this
              station.  This object has a value of true(1) when the
              station accepts all packets/frames transmitted on the
              media.  The value true(1) is only legal on certain
              types of media.  If legal, setting this object to a
              value of true(1) may require the interface to be reset
              before becoming effective.

              The value of ifPromiscuousMode does not affect the
              reception of broadcast and multicast packets/frames by
              the interface."
      ::= { ifXEntry 16 }

  ifConnectorPresent   OBJECT-TYPE
      SYNTAX      TruthValue
      MAX-ACCESS  read-only
      STATUS      current
      DESCRIPTION
              "This object has the value 'true(1)' if the interface
              sublayer has a physical connector and the value
              'false(2)' otherwise."
      ::= { ifXEntry 17 }


  --           The Interface Stack Group
  --
  -- Implementation of this group is mandatory for all systems
  --

  ifStackTable  OBJECT-TYPE
       SYNTAX        SEQUENCE OF IfStackEntry
       MAX-ACCESS    not-accessible
       STATUS        current
       DESCRIPTION
              "The table containing information on the relationships
              between the multiple sub-layers of network interfaces.
              In particular, it contains information on which sub-
              layers run 'on top of' which other sub-layers.  Each
              sub-layer corresponds to a conceptual row in the
              ifTable."
       ::= { ifMIBObjects 2 }


  ifStackEntry  OBJECT-TYPE
       SYNTAX        IfStackEntry



McCloghrie & Kastenholz                                        [Page 39]

RFC 1573               Interfaces Group Evolution           January 1994


       MAX-ACCESS    not-accessible
       STATUS        current
       DESCRIPTION
              "Information on a particular relationship between two
              sub-layers, specifying that one sub-layer runs on
              'top' of the other sub-layer.  Each sub-layer
              corresponds to a conceptual row in the ifTable."
       INDEX { ifStackHigherLayer, ifStackLowerLayer }
       ::= { ifStackTable 1 }


  IfStackEntry ::=
      SEQUENCE {
          ifStackHigherLayer  Integer32,
          ifStackLowerLayer   Integer32,
          ifStackStatus       RowStatus
       }


  ifStackHigherLayer  OBJECT-TYPE
       SYNTAX        Integer32
       MAX-ACCESS    not-accessible
       STATUS        current
       DESCRIPTION
              "The value of ifIndex corresponding to the higher
              sub-layer of the relationship, i.e., the sub-layer
              which runs on 'top' of the sub-layer identified by the
              corresponding instance of ifStackLowerLayer.  If there
              is no higher sub-layer (below the internetwork layer),
              then this object has the value 0."
       ::= { ifStackEntry 1 }


  ifStackLowerLayer  OBJECT-TYPE
       SYNTAX        Integer32
       MAX-ACCESS    not-accessible
       STATUS        current
       DESCRIPTION
              "The value of ifIndex corresponding to the lower sub-
              layer of the relationship, i.e., the sub-layer which
              runs 'below' the sub-layer identified by the
              corresponding instance of ifStackHigherLayer.  If
              there is no lower sub-layer, then this object has the
              value 0."
       ::= { ifStackEntry 2 }


  ifStackStatus  OBJECT-TYPE



McCloghrie & Kastenholz                                        [Page 40]

RFC 1573               Interfaces Group Evolution           January 1994


      SYNTAX         RowStatus
      MAX-ACCESS     read-write
      STATUS         current
      DESCRIPTION
              "The status of the relationship between two sub-
              layers.

              Changing the value of this object from 'active' to
              'notInService' or 'destroy' will likely have
              consequences up and down the interface stack.  Thus,
              write access to this object is likely to be
              inappropriate for some types of interfaces, and many
              implementations will choose not to support write-
              access for any type of interface."
      ::= { ifStackEntry 3 }


  --
  --    The Interface Test Table
  --
  -- This group of objects is optional.  However, a media-specific
  -- MIB may make implementation of this group mandatory.
  --
  -- This table replaces the ifExtnsTestTable
  --

  ifTestTable   OBJECT-TYPE
      SYNTAX      SEQUENCE OF IfTestEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
              "This table contains one entry per interface.  It
              defines objects which allow a network manager to
              instruct an agent to test an interface for various
              faults.  Tests for an interface are defined in the
              media-specific MIB for that interface.  After invoking
              a test, the object ifTestResult can be read to
              determine the outcome.  If an agent can not perform
              the test, ifTestResult is set to so indicate.  The
              object ifTestCode can be used to provide further
              test-specific or interface-specific (or even
              enterprise-specific) information concerning the
              outcome of the test.  Only one test can be in progress
              on each interface at any one time.  If one test is in
              progress when another test is invoked, the second test
              is rejected.  Some agents may reject a test when a
              prior test is active on another interface.




McCloghrie & Kastenholz                                        [Page 41]

RFC 1573               Interfaces Group Evolution           January 1994


              Before starting a test, a manager-station must first
              obtain 'ownership' of the entry in the ifTestTable for
              the interface to be tested.  This is accomplished with
              the ifTestId and ifTestStatus objects as follows:

           try_again:
               get (ifTestId, ifTestStatus)
               while (ifTestStatus != notInUse)
                   /*
                    * Loop while a test is running or some other
                    * manager is configuring a test.
                    */
                   short delay
                   get (ifTestId, ifTestStatus)
               }

               /*
                * Is not being used right now -- let's compete
                * to see who gets it.
                */
               lock_value = ifTestId

               if ( set(ifTestId = lock_value, ifTestStatus = inUse,
                        ifTestOwner = 'my-IP-address') == FAILURE)
                   /*
                    * Another manager got the ifTestEntry -- go
                    * try again
                    */
                   goto try_again;

               /*
                * I have the lock
                */
               set up any test parameters.

               /*
                * This starts the test
                */
               set(ifTestType = test_to_run);

               wait for test completion by polling ifTestResult

               when test completes, agent sets ifTestResult
                    agent also sets ifTestStatus = 'notInUse'

               retrieve any additional test results, and ifTestId

               if (ifTestId == lock_value+1) results are valid



McCloghrie & Kastenholz                                        [Page 42]

RFC 1573               Interfaces Group Evolution           January 1994


             A manager station first retrieves the value of the
             appropriate ifTestId and ifTestStatus objects,
             periodically repeating the retrieval if necessary,
             until the value of ifTestStatus is 'notInUse'.  The
             manager station then tries to set the same ifTestId
             object to the value it just retrieved, the same
             ifTestStatus object to 'inUse', and the corresponding
             ifTestOwner object to a value indicating itself.  If
             the set operation succeeds then the manager has
             obtained ownership of the ifTestEntry, and the value of
             the ifTestId object is incremented by the agent (per
             the semantics of TestAndIncr).  Failure of the set
             operation indicates that some other manager has
             obtained ownership of the ifTestEntry.

             Once ownership is obtained, any test parameters can be
             setup, and then the test is initiated by setting
             ifTestType.  On completion of the test, the agent sets
             ifTestStatus to 'notInUse'.  Once this occurs, the
             manager can retrieve the results.  In the (rare) event
             that the invocation of tests by two network managers
             were to overlap, then there would be a possibility that
             the first test's results might be overwritten by the
             second test's results prior to the first results being
             read.  This unlikely circumstance can be detected by a
             network manager retrieving ifTestId at the same time as
             retrieving the test results, and ensuring that the
             results are for the desired request.

             If ifTestType is not set within an abnormally long
             period of time after ownership is obtained, the agent
             should time-out the manager, and reset the value of the
             ifTestStatus object back to 'notInUse'.  It is
             suggested that this time-out period be 5 minutes.

             In general, a management station must not retransmit a
             request to invoke a test for which it does not receive
             a response; instead, it properly inspects an agent's
             MIB to determine if the invocation was successful.
             Only if the invocation was unsuccessful, is the
             invocation request retransmitted.

             Some tests may require the interface to be taken off-
             line in order to execute them, or may even require the
             agent to reboot after completion of the test.  In these
             circumstances, communication with the management
             station invoking the test may be lost until after
             completion of the test.  An agent is not required to



McCloghrie & Kastenholz                                        [Page 43]

RFC 1573               Interfaces Group Evolution           January 1994


             support such tests.  However, if such tests are
             supported, then the agent should make every effort to
             transmit a response to the request which invoked the
             test prior to losing communication.  When the agent is
             restored to normal service, the results of the test are
             properly made available in the appropriate objects.
             Note that this requires that the ifIndex value assigned
             to an interface must be unchanged even if the test
             causes a reboot.  An agent must reject any test for
             which it cannot, perhaps due to resource constraints,
             make available at least the minimum amount of
             information after that test completes."
      ::= { ifMIBObjects 3 }

  ifTestEntry OBJECT-TYPE
      SYNTAX       IfTestEntry
      MAX-ACCESS   not-accessible
      STATUS       current
      DESCRIPTION
              "An entry containing objects for invoking tests on an
              interface."
      AUGMENTS  { ifEntry }
      ::= { ifTestTable 1 }

  IfTestEntry ::=
      SEQUENCE {
          ifTestId           TestAndIncr,
          ifTestStatus       INTEGER,
          ifTestType         AutonomousType,
          ifTestResult       INTEGER,
          ifTestCode         OBJECT IDENTIFIER,
          ifTestOwner        OwnerString
      }

  ifTestId         OBJECT-TYPE
      SYNTAX       TestAndIncr
      MAX-ACCESS   read-write
      STATUS       current
      DESCRIPTION
              "This object identifies the current invocation of the
              interface's test."
      ::= { ifTestEntry 1 }

  ifTestStatus     OBJECT-TYPE
      SYNTAX       INTEGER { notInUse(1), inUse(2) }
      MAX-ACCESS   read-write
      STATUS       current
      DESCRIPTION



McCloghrie & Kastenholz                                        [Page 44]

RFC 1573               Interfaces Group Evolution           January 1994


              "This object indicates whether or not some manager
              currently has the necessary 'ownership' required to
              invoke a test on this interface.  A write to this
              object is only successful when it changes its value
              from 'notInUse(1)' to 'inUse(2)'.  After completion of
              a test, the agent resets the value back to
              'notInUse(1)'."
      ::= { ifTestEntry 2 }

  ifTestType       OBJECT-TYPE
      SYNTAX       AutonomousType
      MAX-ACCESS   read-write
      STATUS       current
      DESCRIPTION
              "A control variable used to start and stop operator-
              initiated interface tests.  Most OBJECT IDENTIFIER
              values assigned to tests are defined elsewhere, in
              association with specific types of interface.
              However, this document assigns a value for a full-
              duplex loopback test, and defines the special meanings
              of the subject identifier:

                  noTest  OBJECT IDENTIFIER ::= { 0 0 }

              When the value noTest is written to this object, no
              action is taken unless a test is in progress, in which
              case the test is aborted.  Writing any other value to
              this object is only valid when no test is currently in
              progress, in which case the indicated test is
              initiated.

              When read, this object always returns the most recent
              value that ifTestType was set to.  If it has not been
              set since the last initialization of the network
              management subsystem on the agent, a value of noTest
              is returned."
      ::= { ifTestEntry 3 }

  ifTestResult  OBJECT-TYPE
      SYNTAX       INTEGER {
                       none(1),          -- no test yet requested
                       success(2),
                       inProgress(3),
                       notSupported(4),
                       unAbleToRun(5),   -- due to state of system
                       aborted(6),
                       failed(7)
                   }



McCloghrie & Kastenholz                                        [Page 45]

RFC 1573               Interfaces Group Evolution           January 1994


      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
              "This object contains the result of the most recently
              requested test, or the value none(1) if no tests have
              been requested since the last reset.  Note that this
              facility provides no provision for saving the results
              of one test when starting another, as could be
              required if used by multiple managers concurrently."
      ::= { ifTestEntry 4 }

  ifTestCode  OBJECT-TYPE
      SYNTAX       OBJECT IDENTIFIER
      MAX-ACCESS   read-only
      STATUS       current
      DESCRIPTION
              "This object contains a code which contains more
              specific information on the test result, for example
              an error-code after a failed test.  Error codes and
              other values this object may take are specific to the
              type of interface and/or test.  The value may have the
              semantics of either the AutonomousType or
              InstancePointer textual conventions as defined in RFC
              1443.  The identifier:

                  testCodeUnknown  OBJECT IDENTIFIER ::= { 0 0 }

              is defined for use if no additional result code is
              available."
      ::= { ifTestEntry 5 }

  ifTestOwner      OBJECT-TYPE
      SYNTAX       OwnerString
      MAX-ACCESS   read-write
      STATUS       current
      DESCRIPTION
              "The entity which currently has the 'ownership'
              required to invoke a test on this interface."
      ::= { ifTestEntry 6 }


  --   Generic Receive Address Table
  --
  -- This group of objects is mandatory for all types of
  -- interfaces which can receive packets/frames addressed to
  -- more than one address.
  --
  -- This table replaces the ifExtnsRcvAddr table.  The main



McCloghrie & Kastenholz                                        [Page 46]

RFC 1573               Interfaces Group Evolution           January 1994


  -- difference is that this table makes use of the RowStatus
  -- textual convention, while ifExtnsRcvAddr did not.

  ifRcvAddressTable  OBJECT-TYPE
      SYNTAX      SEQUENCE OF IfRcvAddressEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
              "This table contains an entry for each address
              (broadcast, multicast, or uni-cast) for which the
              system will receive packets/frames on a particular
              interface, except as follows:

              - for an interface operating in promiscuous mode,
              entries are only required for those addresses for
              which the system would receive frames were it not
              operating in promiscuous mode.

              - for 802.5 functional addresses, only one entry is
              required, for the address which has the functional
              address bit ANDed with the bit mask of all functional
              addresses for which the interface will accept frames."
      ::= { ifMIBObjects 4 }

  ifRcvAddressEntry  OBJECT-TYPE
      SYNTAX      IfRcvAddressEntry
      MAX-ACCESS  not-accessible
      STATUS      current
      DESCRIPTION
              "A list of objects identifying an address for which
              the system will accept packets/frames on the
              particular interface identified by the index value
              ifIndex."
      INDEX  { ifIndex, ifRcvAddressAddress }
      ::= { ifRcvAddressTable 1 }

  IfRcvAddressEntry ::=
      SEQUENCE {
          ifRcvAddressAddress   PhysAddress,
          ifRcvAddressStatus    RowStatus,
          ifRcvAddressType      INTEGER
      }

  ifRcvAddressAddress OBJECT-TYPE
      SYNTAX      PhysAddress
      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION



McCloghrie & Kastenholz                                        [Page 47]

RFC 1573               Interfaces Group Evolution           January 1994


              "An address for which the system will accept
              packets/frames on this entry's interface."
      ::= { ifRcvAddressEntry 1 }

  ifRcvAddressStatus OBJECT-TYPE
      SYNTAX      RowStatus
      MAX-ACCESS  read-write
      STATUS      current
      DESCRIPTION
              "This object is used to create and delete rows in the
              ifRcvAddressTable."

      ::= { ifRcvAddressEntry 2 }

  ifRcvAddressType OBJECT-TYPE
      SYNTAX      INTEGER {
                      other(1),
                      volatile(2),
                      nonVolatile(3)
                  }

      MAX-ACCESS  read-create
      STATUS      current
      DESCRIPTION
              "This object has the value nonVolatile(3) for those
              entries in the table which are valid and will not be
              deleted by the next restart of the managed system.
              Entries having the value volatile(2) are valid and
              exist, but have not been saved, so that will not exist
              after the next restart of the managed system.  Entries
              having the value other(1) are valid and exist but are
              not classified as to whether they will continue to
              exist after the next restart."

      DEFVAL  { volatile }

      ::= { ifRcvAddressEntry 3 }


  -- definition of interface-related traps.

  linkDown NOTIFICATION-TYPE
      OBJECTS { ifIndex, ifAdminStatus, ifOperStatus }
      STATUS  current
      DESCRIPTION
              "A linkDown trap signifies that the SNMPv2 entity,
              acting in an agent role, has detected that the
              ifOperStatus object for one of its communication links



McCloghrie & Kastenholz                                        [Page 48]

RFC 1573               Interfaces Group Evolution           January 1994


              is about to transition into the down state."
      ::= { snmpTraps 3 }

  linkUp NOTIFICATION-TYPE
      OBJECTS { ifIndex, ifAdminStatus, ifOperStatus }
      STATUS  current
      DESCRIPTION
              "A linkUp trap signifies that the SNMPv2 entity,
              acting in an agent role, has detected that the
              ifOperStatus object for one of its communication links
              has transitioned out of the down state."
      ::= { snmpTraps 4 }


  -- conformance information

  ifConformance OBJECT IDENTIFIER ::= { ifMIB 2 }

  ifGroups      OBJECT IDENTIFIER ::= { ifConformance 1 }
  ifCompliances OBJECT IDENTIFIER ::= { ifConformance 2 }


  -- compliance statements

  ifCompliance MODULE-COMPLIANCE
      STATUS  current
      DESCRIPTION
              "The compliance statement for SNMPv2 entities which
              have network interfaces."

      MODULE  -- this module
          MANDATORY-GROUPS { ifGeneralGroup, ifStackGroup }

          GROUP       ifFixedLengthGroup
          DESCRIPTION
              "This group is mandatory for all network interfaces
              which are character-oriented or transmit data in
              fixed-length transmission units."

          GROUP       ifHCFixedLengthGroup
          DESCRIPTION
              "This group is mandatory only for those network
              interfaces which are character-oriented or transmit
              data in fixed-length transmission units, and for which
              the value of the corresponding instance of ifSpeed is
              greater than 20,000,000 bits/second."

          GROUP       ifPacketGroup



McCloghrie & Kastenholz                                        [Page 49]

RFC 1573               Interfaces Group Evolution           January 1994


          DESCRIPTION
              "This group is mandatory for all network interfaces
              which are packet-oriented."

          GROUP       ifHCPacketGroup
          DESCRIPTION
              "This group is mandatory only for those network
              interfaces which are packet-oriented and for which the
              value of the corresponding instance of ifSpeed is
              greater than 650,000,000 bits/second."
          GROUP       ifTestGroup
          DESCRIPTION
              "This group is optional.  Media-specific MIBs which
              require interface tests are strongly encouraged to use
              this group for invoking tests and reporting results.
              A medium specific MIB which has mandatory tests may
              make implementation of this group mandatory."

          GROUP       ifRcvAddressGroup
          DESCRIPTION
              "The applicability of this group MUST be defined by
              the media-specific MIBs.  Media-specific MIBs must
              define the exact meaning, use, and semantics of the
              addresses in this group."

          OBJECT      ifLinkUpDownTrapEnable
          MIN-ACCESS  read-only
          DESCRIPTION
              "Write access is not required."

          OBJECT      ifPromiscuousMode
          MIN-ACCESS  read-only
          DESCRIPTION
              "Write access is not required."

          OBJECT      ifStackStatus
          SYNTAX      INTEGER { active(1) } -- subset of RowStatus
          MIN-ACCESS  read-only
          DESCRIPTION
              "Write access is not required, and only one of the six
              enumerated values for the RowStatus textual convention
              need be supported, specifically: active(1)."

          OBJECT       ifAdminStatus
          SYNTAX       INTEGER { up(1), down(2) }
          MIN-ACCESS   read-only
          DESCRIPTION
              "Write access is not required, nor is support for the



McCloghrie & Kastenholz                                        [Page 50]

RFC 1573               Interfaces Group Evolution           January 1994


              value testing(3)."
      ::= { ifCompliances 1 }


  -- units of conformance

  ifGeneralGroup    OBJECT-GROUP
      OBJECTS { ifDescr, ifType, ifSpeed, ifPhysAddress,
                ifAdminStatus, ifOperStatus, ifLastChange,
                ifLinkUpDownTrapEnable, ifConnectorPresent,
                ifHighSpeed, ifName }
      STATUS  current
      DESCRIPTION
              "A collection of objects providing information
              applicable to all network interfaces."
      ::= { ifGroups 1 }

  -- the following five groups are mutually exclusive; at most
  -- one of these groups is implemented for any interface

  ifFixedLengthGroup    OBJECT-GROUP
      OBJECTS { ifInOctets, ifOutOctets, ifInUnknownProtos,
                ifInErrors, ifOutErrors }
      STATUS  current
      DESCRIPTION
              "A collection of objects providing information
              specific to non-high speed, character-oriented or
              fixed-length-transmission network interfaces.  (Non-
              high speed interfaces transmit and receive at speeds
              less than or equal to 20,000,000 bits/second.)"
      ::= { ifGroups 2 }

  ifHCFixedLengthGroup    OBJECT-GROUP
      OBJECTS { ifHCInOctets, ifHCOutOctets,
                ifInOctets, ifOutOctets, ifInUnknownProtos,
                ifInErrors, ifOutErrors }
      STATUS  current
      DESCRIPTION
              "A collection of objects providing information
              specific to high speed (greater than 20,000,000
              bits/second) character-oriented or fixed-length-
              transmission network interfaces."
      ::= { ifGroups 3 }

  ifPacketGroup    OBJECT-GROUP
      OBJECTS { ifInOctets, ifOutOctets, ifInUnknownProtos,
                ifInErrors, ifOutErrors,
                ifMtu, ifInUcastPkts, ifInMulticastPkts,



McCloghrie & Kastenholz                                        [Page 51]

RFC 1573               Interfaces Group Evolution           January 1994


                ifInBroadcastPkts, ifInDiscards,
                ifOutUcastPkts, ifOutMulticastPkts,
                ifOutBroadcastPkts, ifOutDiscards,
                ifPromiscuousMode }
      STATUS  current
      DESCRIPTION
              "A collection of objects providing information
              specific to non-high speed, packet-oriented network
              interfaces.  (Non-high speed interfaces transmit and
              receive at speeds less than or equal to 20,000,000
              bits/second.)"
      ::= { ifGroups 4 }

  ifHCPacketGroup    OBJECT-GROUP
      OBJECTS { ifHCInOctets, ifHCOutOctets,
                ifInOctets, ifOutOctets, ifInUnknownProtos,
                ifInErrors, ifOutErrors,
                ifMtu, ifInUcastPkts, ifInMulticastPkts,
                ifInBroadcastPkts, ifInDiscards,
                ifOutUcastPkts, ifOutMulticastPkts,
                ifOutBroadcastPkts, ifOutDiscards,
                ifPromiscuousMode }
      STATUS  current
      DESCRIPTION
              "A collection of objects providing information
              specific to high speed (greater than 20,000,000
              bits/second but less than or equal to 650,000,000
              bits/second) packet-oriented network interfaces."
      ::= { ifGroups 5 }

  ifVHCPacketGroup    OBJECT-GROUP
      OBJECTS { ifHCInUcastPkts, ifHCInMulticastPkts,
                ifHCInBroadcastPkts, ifHCOutUcastPkts,
                ifHCOutMulticastPkts, ifHCOutBroadcastPkts,
                ifHCInOctets, ifHCOutOctets,
                ifInOctets, ifOutOctets, ifInUnknownProtos,
                ifInErrors, ifOutErrors,
                ifMtu, ifInUcastPkts, ifInMulticastPkts,
                ifInBroadcastPkts, ifInDiscards,
                ifOutUcastPkts, ifOutMulticastPkts,
                ifOutBroadcastPkts, ifOutDiscards,
                ifPromiscuousMode }
      STATUS  current
      DESCRIPTION
              "A collection of objects providing information
              specific to higher speed (greater than 650,000,000
              bits/second) packet-oriented network interfaces."
      ::= { ifGroups 6 }



McCloghrie & Kastenholz                                        [Page 52]

RFC 1573               Interfaces Group Evolution           January 1994


  ifRcvAddressGroup    OBJECT-GROUP
      OBJECTS { ifRcvAddressStatus, ifRcvAddressType }
      STATUS  current
      DESCRIPTION
              "A collection of objects providing information on the
              multiple addresses which an interface receives."
      ::= { ifGroups 7 }

  ifTestGroup    OBJECT-GROUP
      OBJECTS { ifTestId, ifTestStatus, ifTestType,
                ifTestResult, ifTestCode, ifTestOwner }
      STATUS  current
      DESCRIPTION
              "A collection of objects providing the ability to
              invoke tests on an interface."
      ::= { ifGroups 8 }

  ifStackGroup    OBJECT-GROUP
      OBJECTS { ifStackStatus }
      STATUS  current
      DESCRIPTION
              "A collection of objects providing information on the
              layering of MIB-II interfaces."
      ::= { ifGroups 9 }

  END

7.  Acknowledgements

  This memo has been produced by the IETF's Interfaces MIB Working
  Group.

  The initial proposal to the working group was the result of
  conversations and discussions with many people, including at least
  the following: Fred Baker, Ted Brunner, Chuck Davin, Jeremy Greene,
  Marshall Rose, Kaj Tesink, and Dean Throop.

8.  References

  [1] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Structure
      of Management Information for version 2 of the Simple Network
      Management Protocol (SNMPv2)", RFC 1442, SNMP Research, Inc.,
      Hughes LAN Systems, Dover Beach Consulting, Inc., Carnegie Mellon
      University, April 1993.

  [2] Galvin, J., and K. McCloghrie, "Administrative Model for version
      2 of the Simple Network Management Protocol (SNMPv2)", RFC 1445,
      Trusted Information Systems, Hughes LAN Systems, April 1993.



McCloghrie & Kastenholz                                        [Page 53]

RFC 1573               Interfaces Group Evolution           January 1994


  [3] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Protocol
      Operations for version 2 of the Simple Network Management
      Protocol (SNMPv2)", RFC 1448, SNMP Research, Inc., Hughes LAN
      Systems, Dover Beach Consulting, Inc., Carnegie Mellon
      University, April 1993.

  [4] McCloghrie, K., and M. Rose, "Management Information Base for
      Network Management of TCP/IP-based internets - MIB-II", STD 17,
      RFC 1213, Hughes LAN Systems, Performance Systems International,
      March 1991.

  [5] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple
      Network Management Protocol", RFC 1157, SNMP Research,
      Performance Systems International, Performance Systems
      International, MIT Laboratory for Computer Science, May 1990.

  [6] Postel, J., "Internet Protocol", STD 5, RFC 791, USC/Information
      Sciences Institute, September 1981.

  [7] McCloghrie, K., "Extensions to the Generic-Interface MIB", RFC
      1229, Hughes LAN Systems, May 1991.

  [8] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser, "Textual
      Conventions for version 2 of the Simple Network Management
      Protocol (SNMPv2)", RFC 1443, SNMP Research, Inc., Hughes LAN
      Systems, Dover Beach Consulting, Inc., Carnegie Mellon
      University, April 1993.
























McCloghrie & Kastenholz                                        [Page 54]

RFC 1573               Interfaces Group Evolution           January 1994


9.  Security Considerations

  Security issues are not discussed in this memo.

10.  Authors' Addresses

  Keith McCloghrie
  Hughes LAN Systems
  1225 Charleston Rd,
  Mountain View, Ca 94043

  Phone: 415-966-7934
  EMail: [email protected]


  Frank Kastenholz
  FTP Software
  2 High Street
  North Andover, Mass. USA 01845

  Phone: (508)685-4000
  EMail: [email protected]





























McCloghrie & Kastenholz                                        [Page 55]