Network Working Group                                          S. Mathur
Request for Comments: 1553                                      M. Lewis
Category: Standards Track                            Telebit Corporation
                                                          December 1993


            Compressing IPX Headers Over WAN Media (CIPX)


Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state and
  status of this protocol.  Distribution of this memo is unlimited.

Abstract

  This document describes a method for compressing the headers of IPX
  datagrams (CIPX).  With this method, it is possible to
  significantly improve performance over lower speed wide area
  network (WAN) media.  For normal IPX packet traffic, CIPX can
  provide a compression ratio of approximately 2:1 including both IPX
  header and data.  This method can be used on various type of WAN
  media, including those supporting PPP and X.25.

  This memo ia a product of the Point-to-Point Protocol Extensions
  (PPPEXT) Working Group of the IETF.  Comments should be sent to
  the authors and the [email protected] mailing list.

Specification of Requirements

  In this document, several words are used to signify the requirements
  of the specification.  These words are often capitalized.

   MUST

     This word, or the adjective "required", means that the
     definition is an absolute requirement of the specification.

   MUST NOT

     This phrase means that the definition is an absolute
     prohibition of the specification.






Mathur & Lewis                                                  [Page 1]

RFC 1553                         CIPX                      December 1993


   SHOULD

     This word, or the adjective "recommended", means that there
     may exist valid reasons in particular circumstances to
     ignore this item, but the full implications should be
     understood and carefully weighed before choosing a
     different course.

   MAY

     This word, or the adjective "optional", means that this
     item is one of an allowed set of alternatives.  An
     implementation which does not include this option MUST be
     prepared to interoperate with another implementation which
     does include the option.

Introduction

  Internetwork Packet Exchange (IPX) is a protocol defined by the
  Novell Corporation [1].  It is derived from the Internet Datagram
  Protocol (IDP) protocol of the Xerox Network Systems (XNS) family
  of protocols.  IPX is a datagram, connectionless protocol that does
  not require an acknowledgment for each packet sent.  The IPX
  protocol corresponds to the network layer of the ISO model.

  Usually, there is a transport layer protocol above IPX.  The most
  common transport protocol is the Netware Core Protocol (NCP), which
  is used for file server access.  The Sequenced Packet Exchange
  (SPX) is the reliable connection-based transport protocol commonly
  used by applications.

  The IPX packet consists of a 30 octet IPX header, usually followed
  by the transport layer protocol header.  The NCP header is 6 octets
  in length.  The SPX header is 12 octets in length.

  Two strategies are described below for compressing IPX headers.
  This specification requires that implementations of CIPX support
  both IPX header compression strategies.  These header compression
  algorithms are based on those Van Jacobson described [2] for TCP/IP
  packets.
  The first strategy is to compress only the IPX header.  This
  compression algorithm can be used to compress any IPX packet,
  without affecting the transport protocol.  This algorithm
  compresses a 30 octet IPX header into a one to seven octet header.

  The second strategy is to compress the combined IPX and NCP
  headers.  This algorithm compresses only NCP packets with NCP type
  of 0x2222 and 0x3333.  This algorithm compresses a 36 octet NCP/IPX



Mathur & Lewis                                                  [Page 2]

RFC 1553                         CIPX                      December 1993


  header into a one to eight octet header.

  Lastly, it is possible and many times desirable, to use this type
  of header compression in conjunction with some type of data
  compression.

  Data compression technology takes many forms. Link bit stream
  compression is a common approach over very low speed asynchronous
  links, normally performed by modems transparently.  Transparent bit
  stream compression is also offered in some DSUs, routers and
  bridges.  Data compression can be provided using protocols such as
  CCITT V.42bis[3], MNP 5, Lempel-Ziv, or LAPB[4].

  When using both header and data compression, the sequence of
  compression is important.  When sending packets, data compression
  MUST be done after header compression.  Conversely when receiving
  packets, data decompression MUST be done before header
  decompression.

IPX Compression Algorithm

  The normal IPX header consists of the following fields: checksum,
  packet length, transport control (hop count), packet type,
  destination and source address fields.

                            +-----------------------+
                            |       Checksum        |
                            +-----------------------+
                            |     Packet Length     |
                            +-----------+-----------+
                            |    Hops   |Packet Type|
                            +-----------+-----------+
                            |      Destination      |
                            |        Address        |
                            |      (12 Octets)      |
                            +-----------------------+
                            |        Source         |
                            |        Address        |
                            |      (12 Octets)      |
                            +-----------------------+

                                IPX PACKET HEADER

  The IPX header diagram above is shown without the field alignment
  details.  Consider each field of the IPX header separately, and how
  it typically changes.

  Historically, Novell has not used the Checksum field in the IPX



Mathur & Lewis                                                  [Page 3]

RFC 1553                         CIPX                      December 1993


  header, and has required that this field be set to 0xFFFF.  Since the
  Checksum field remains constant, it is clear that the value can be
  compressed.

  Where Checksums are implemented (not 0xFFFF), the Checksum MUST be
  included in the compressed packet.  Recalculating the checksum would
  destroy the end-to-end reliability of the connection.  Note that
  Checksums are now implemented in the Fault Tolerant Servers.

  For most links, the Packet Length can be determined from the MAC
  layer.  There are cases in which the length cannot be determined from
  the MAC layer.  For example, some hardware devices pad packets to a
  required minimum length.  For links where it is not possible to
  determine the IPX packet length from the MAC layer, packet length
  needs to be included in the compressed packet.

  The Transport Control (Hops) field usually does not change between
  two end-points.  For the purposes of compression, we will assume that
  it never changes, and will not examine this field when determining a
  connection.

  The Packet Type field is constant for any connection.

  The Destination and Source Address fields are each made up of 12
  octets: Network (4 octets), Node (6 octets), and Socket (2 octets)
  fields.  An IPX connection is the logical association between two
  endpoints known by a given source and destination address pair.  For
  any specific IPX connection, the Destination and Source Address
  fields are constant.

  Hence, the fields that may need to be included in the compressed IPX
  header are the Checksum and the Packet Length.

  While using this IPX header compression algorithm, packets can be
  lost.  The loss of an Initial packet presents a problem.  In this
  case, if the sender later tries to send a compressed packet, the
  receiving end cannot decompress the packet correctly.

  Sufficient information is not available in the IPX header to
  determine when a re-transmission has occured.  For this reason, it is
  necessary that the sender of an Initial packet be guaranteed that the
  packet has been received.  Therefore, we provide a mechanism for
  Confirmation of an Initial packet.

NCP/IPX Header Compression

  Since most IPX packets are Netware Core Protocol packets (packet type
  17), compressing the NCP header will give us added performance.  A



Mathur & Lewis                                                  [Page 4]

RFC 1553                         CIPX                      December 1993


  minimal CIPX implementation MUST also implement NCP/IPX compression.

                                 +------------+
                                 |    NCP     |
                                 |    Type    |
                                 +------------+
                                 |  Sequence  |
                                 |   Number   |
                                 +------------+
                                 | Connection |
                                 |(low octet) |
                                 +------------+
                                 |   Task     |
                                 |   Number   |
                                 +------------+
                                 | Connection |
                                 |(high octet)|
                                 +------------+

                                   NCP HEADER

  The NCP header is 6 octets in length consisting of the following
  fields: NCP type, sequence number, connection number and task number.

  The NCP type field values that are currently defined are:

            1111   Create Connection
            2222   NCP request from workstation
            3333   NCP reply from file server
            5555   Destroy Connection
            7777   Burst Mode Packet
            9999   Server Busy Packet

  This NCP header compression algorithm only compresses packets that
  have a type field value of 0x2222 or 0x3333.  If the NCP type is
  0x2222, this packet is a request from the client to the server.
  Conversely if the NCP type is 0x3333, this is a response from the
  server to the client.  All other types of NCP packets are not
  compressed at the NCP level, but are compressed at the IPX level.
  The Create Connection (0x111), Destroy Connection (0x5555) and Server
  Busy (0x9999) packets are not exchanged frequently enough to justify
  special NCP compression.  The Burst Mode (0x7777) packet is discussed
  below.

  The connection number is a constant for a given connection.

  The sequence number is increased by one for each new request.  Hence
  the sequence number can be determined implicitly.  The decompressor



Mathur & Lewis                                                  [Page 5]

RFC 1553                         CIPX                      December 1993


  increments the sequence number for each compressed packet it receives
  for a connection.

  The task number can change unpredictably, although it might remain
  constant for several packets.  If the NCP task number is different
  from the last one for this connection, the NCP task number must be
  included.

  If the NCP packet is lost, it will be retransmitted through the
  normal transport layer mechanisms.  The Initial NCP packet does not
  require confirmation, as a re-transmitted packet can be easily
  identified.  This is accomplished by comparing the sequence number of
  the packet to the sequence number of the previous packet.  If the
  sequence number is not exactly one greater than the previous packet,
  a new Initial packet must be sent, although the same connection slot
  may be used.

  In the event of compressed packet loss, the sequence number will be
  too small.  When the IPX Checksum is present, the loss can be
  determined at the destination system by an incorrect checksum.  When
  there is no checksum present, the loss is more likely to be detected
  upon receiving a later retransmission.

NCP Burst Mode Packets

  The burst mode protocol uses the NCP type value of 0x7777.  This type
  of packet does not have the normal NCP header described above.
  Instead, it has a 36 octet burst header.  The above NCP header
  compression algorithm should not be used to compress this packet.
  The IPX header in this packet is still compressible with the IPX
  header compression algorithm described.

SPX Packets

     SPX packets are typically used by applications which require
     reliable service such as print servers.  It is possible to apply a
     similar NCP/IPX technique to SPX/IPX packets.  At this time, we
     have not described such a mechanism.  The IPX header in this
     packet is still compressible with the IPX header compression
     algorithm described.

Compression Header

     IPX compression should be negotiated by some means (eg. IPXCP or
     IPXWAN).  Each end must negotiate the desired options, such as the
     maximum number of concurrent connections which will be maintained
     in each direction.  Once IPX compression is negotiated, all IPX
     packets sent over that link have a CIPX header added to the



Mathur & Lewis                                                  [Page 6]

RFC 1553                         CIPX                      December 1993


     beginning of the packet.  The CIPX header is variable in length.

     The one octet CIPX header is added even when a regular IPX packet
     is sent over the link.  By including the CIPX header on every
     packet, we support the ability to run CIPX over various WAN links
     as if it were a normal IPX packet.  It does not rely on any new
     link specific packet demultiplexing.

     Implementations of this compression protocol must maintain send
     and receive tables indicating the state of each connection.  The
     original header for each connection is stored in a "slot".
     Typically, each client-server connection will use a separate slot.
     Both sides keep a copy of the full IPX header corresponding to
     each slot.  The sending side (compressor) uses this information to
     determine the fields that have changed.  The receiving side
     (decompressor) uses this information to reconstruct the original
     packet header.

     The CIPX packet header specifies the type of the packet and any
     options for that packet.  The minimum CIPX header is one octet in
     length.

        7   6   5   4   3   2   1   0
      +---+---+---+---+---+---+---+---+
      |   |   |   |   |   |   |   |   |
      +---+---+---+---+---+---+---+---+
        ^   ^   ^   ^   ^   ^   ^   ^
        |   |   |   |   |   |   |   |
        |   |   |   |   |___|___|___|___ Packet Type
        |   |   |   |                    0    Compressed
        |   |   |   |                    1    Regular
        |   |   |   |                    3    Confirmed Initial
        |   |   |   |                    5    Confirm
        |   |   |   |                    7    Unconfirmed Initial
        |   |   |   |                    9    Reject
        |   |   |   |                   11-15 Reserved
        |   |   |   |
        |__ |__ |__ |___________________ Packet Type Dependent Flags

                               FLAGS OCTET

     As can be seen above, the low order bits specify the packet type.
     All Compressed packets have a lowest bit of zero.  The other
     packet types are odd numbers.

     Note that the Flags octet MUST NOT contain the value 0xFF.  This
     is necessary to distinguish the CIPX flags octet from a normal IPX
     header with a 0xFFFF checksum field.  It is important to be able



Mathur & Lewis                                                  [Page 7]

RFC 1553                         CIPX                      December 1993


     to recognize a normal IPX header regardless of the state of
     compression.  It is possible with some link layer protocols such
     as X.25 Permanent Virtual Circuits that one end of the link may
     fail and start sending regular IPX packets without the CIPX
     header.  CIPX implementations MUST recognize this situation and
     renegotiate the use of CIPX.

     Each packet type has associated flag bits, which are called Packet
     Type Dependent Flags.  Different packet types have different
     Packet Type Dependent Flags.  All bits that are reserved or are
     not specified must be set to zero.

     Since none of the packet types other than Compressed currently
     uses any of the flag bits, the packet type field could easily be
     expanded.  Any future expansion must ensure that at least one of
     the bits in the Flags octet remains zero so the value cannot be
     0xFF.

Compressed Packet

  This type of packet does not contain a packet header (either 30 byte
  IPX, or 36 byte NCP).  A slot number indicates to the receiver which
  saved header to use to formulate the original packet header before
  passing the packet up to IPX.



























Mathur & Lewis                                                  [Page 8]

RFC 1553                         CIPX                      December 1993


     ________________________________ Slot Number
     |                                0    Assume same as last packet
     |                                1    Included in packet
     |
     |   ____________________________ Checksum
     |   |                            0    Assume 0xFFFF
     |   |                            1    Included in packet
     |   |
     |   |   ________________________ Length
     |   |   |                        0    Determine from MAC length
     |   |   |                        1    Included in packet
     |   |   |
     |   |   |   ____________________ Task Number (NCP only)
     |   |   |   |                    0    Assume same as last packet
     |   |   |   |                    1    Included in packet
     |   |   |   |
     |   |   |   |   ________________ Reserved (Must be zero)
     |   |   |   |   |   |   |
     |   |   |   |   |   |   |   ____ Packet Type
     |   |   |   |   |   |   |   |    0    Compressed Packet
     v   v   v   v   v   v   v   v
   +---+---+---+---+---+---+---+---+
   |   |   |   |   | 0 | 0 | 0 | 0 |
   +---+---+---+---+---+---+---+---+
     7   6   5   4   3   2   1   0

  Consider each flag in the flags octet, looking at the high order bits
  working toward the lower order bits.  Each of the fields is optional,
  but if present will be found in the same order in the compressed
  packet header.

Slot Number

  The slot number flag indicates the slot number field is included in
  the compressed packet.  The slot number field is one octet in length
  and specifies the number of the slot which corresponds to the Initial
  packet header.  Slots are numbered starting at zero and continue to
  the maximum number of slots minus one.

  By default, slot compression is disabled.  If negotiated, slot
  compression can be enabled for those slots which were created by the
  Unconfirmed Initial packet.  When set to one (1), the slot number
  flag indicates the inclusion of the the slot number in the compressed
  packet.  When set to zero (0), the slot number flag indicates the
  omission of the the slot number and specifies the use of the same
  slot number as for the last packet.





Mathur & Lewis                                                  [Page 9]

RFC 1553                         CIPX                      December 1993


     Implementation Note:

        Slot compression MUST only be enabled in a receiver which can
        account for all erroneous and discarded packets.  When a packet
        has been discarded, the slot number is indeterminate for future
        packets.  The decompressor MUST discard all further packets
        until a slot number is received.

Checksum

  When set to one (1), the checksum flag indicates the compressed
  packet will include the 2 octet checksum.  When set to zero (0),
  this flag indicates the omission of the checksum and the decompressor
  is to assume the checksum is 0xFFFF.  Note that meaningful checksums
  must be included in the packet with the checksum flag set to one (1).

Length

  When set to one (1), the length flag indicates the inclusion of the
  IPX data length field in the compressed packet.  When set to zero
  (0), the length flag indicates the omission of the IPX data length
  field in the compressed packet.

  This is the Length field from the original IPX packet header.  It
  specifies the length of IPX header and data in the packet prior to
  compression.  It does not include the CIPX compression field such as
  flags, slot number, checksum, length field, or the NCP task number.
  Note that it is preferable to determine the length field from the MAC
  layer whenever possible, by subtracting the length of the compression
  header fields and adding the length of the saved packet header.

  Since every octet is significant over lower speed WAN links, an
  optimization is used in the specification of the length.  It can be
  specified as a one, two or three octet field.  If the length is in
  the range 0 to 127, then it is specified as a one octet field.  If
  the length is in the range 128 to 16383, it is specified as a two
  octet field in high to low order, with the first octet in the range
  128 to 191.  Otherwise, if the length is greater than 16383, the
  first octet contains 192, and the second and third octets contain the
  full length.  (This scheme is extensible to 8 octets, but currently
  is not required in the IPX protocol suite.)










Mathur & Lewis                                                 [Page 10]

RFC 1553                         CIPX                      December 1993


  +-+-+-+-+-+-+-+-+
  |0|   length    |   length < 128
  +-+-+-+-+-+-+-+-+

  ONE OCTET LENGTH FIELD

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |1 0|          length           |   length < 16384
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  TWO OCTET LENGTH FIELD

  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |1 1 0 0 0 0 0 0|            length             |  length < 65535
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  THREE OCTET LENGTH FIELD


Task Number

  When set to one (1), the NCP task number flag indicates the NCP task
  number is included in the compressed packet (see NCP/IPX compression
  above).  When set to zero (0), the NCP task number flag indicates the
  omission of the NCP task number in the compressed packet.  When the
  NCP task number is not included in the compressed packet, we use the
  same NCP task number as that of last packet.

  Based upon the bits set in the flags octet, optional portions are
  included in the compressed IPX header.  The minimum compressed IPX
  header contains only the Flags octet.  All fields in the original IPX
  header have been compressed out of the header.  The maximum
  compressed IPX header can include up to 7 octets, the Flags, Slot,
  Checksum (2 octets), and Length (3 octets) fields, or 8 octets if the
  NCP Task Number is included.  The minimum and maximum compressed IPX
  packets are shown below.  Header fields are one octet in length
  except where noted.














Mathur & Lewis                                                 [Page 11]

RFC 1553                         CIPX                      December 1993


       +--------+---------
       | Flags  | DATA ...
       |  0x00  |
       +--------+---------

       MINIMUM COMPRESSED IPX PACKET

       +--------+--------+---------+---------+---------
       | Flags  |  Slot  |Checksum | Length  | DATA ...
       |  0xE0  | Number |2 octets |3 octets |
       +--------+--------+---------+---------+---------

       MAXIMUM COMPRESSED IPX PACKET

       +--------+--------+---------+---------+--------+---------
       | Flags  |  Slot  |Checksum | Length  |NCP Task| DATA ...
       |  0xF0  | Number |2 octets |3 octets | Number |
       +--------+--------+---------+---------+--------+---------

       MAXIMUM COMPRESSED NCP/IPX PACKET

Regular Packet

  The Regular packet type designates an IPX packet for which no
  compression is desired.  This type of packet is sent when a packet
  cannot be compressed, or a decision is made not to compress it.

         7   6   5   4   3   2   1   0
       +---+---+---+---+---+---+---+---+
       | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
       +---+---+---+---+---+---+---+---+
         ^   ^   ^   ^   ^   ^   ^   ^
         |   |   |   |   |   |   |   |
         |   |   |   |   |___|___|___|___ Packet Type
         |   |   |   |                    1    Regular
         |   |   |   |
         |__ |__ |__ |___________________ Reserved (must be zero)

  The Regular packet is rarely sent.  Usually, the Regular packet is
  sent when there is not enough memory for the overhead of a new
  compression slot.  Also, this type is included for future unforeseen
  changes to the IPX protocol which defeat the effectiveness of
  compression.

     Implementation Note:

        The Regular Packet can be used for packets that are sporadic,
        which are not worth setting-up a compression slot.  This may be



Mathur & Lewis                                                 [Page 12]

RFC 1553                         CIPX                      December 1993


        hard to determine for specific protocols.  Various methods such
        as hold-down and least-recently-used timers are currently being
        used.

     On receipt, the 1 octet header is simply removed and the packet
     passed up to IPX.

     The entire IPX packet follows the single Flags octet.  Note for a
     Regular Packet (not compressed or uncompressed), the slot number
     field is not included.

Confirmed Initial Packet

  The Confirmed Initial packet type is used by the compressor to inform
  the decompressor of the original packet header which will be used for
  subsequent compression, and to request Confirmation.  The high order
  4 bits are reserved for expansion to support additional protocols.

         7   6   5   4   3   2   1   0
       +---+---+---+---+---+---+---+---+
       | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
       +---+---+---+---+---+---+---+---+
         ^   ^   ^   ^   ^   ^   ^   ^
         |   |   |   |   |   |   |   |
         |   |   |   |   |___|___|___|___ Packet Type
         |   |   |   |                    3     Confirmed Initial
         |   |   |   |
         |__ |__ |__ |___________________ 0     IPX Protocol
                                          1-15  Reserved

  This type of packet is sent to inform the receiver to associate the
  IPX packet header with a slot number.  This packet is sent each time
  a different header format is sent for a given slot, or when the
  sender has not received a Confirmation Packet from the receiver.

  The Flags octet lower 4 bits indicate the Confirmed Initial CIPX
  packet type.  The high order 4 bits are reserved for expansion to
  support additional protocols.  The Flags octet is always followed by
  the Slot Number and an ID field.  The ID field is one octet in
  length.

  For each slot, the ID will increment with every new header sent.
  Different slots may have the same ID.  The combination of slot and ID
  uniquely identify a header.  In practice, the ID octet can be any
  number which is unique for a "reasonably long period" of time.  A
  reasonably long period is a function of transmission speed, round
  trip delays, and network load.  There must be very little chance of
  duplicate slot and ID combinations within this period.  Otherwise,



Mathur & Lewis                                                 [Page 13]

RFC 1553                         CIPX                      December 1993


  there is ambiguity as to which header is being identified.

     Implementation Note:

        There is no requirement to hold or resend the Confirmed Initial
        packet until confirmation.  When a new packet with the same IPX
        header is to be sent, another Confirmed Initial packet should
        be sent using the same slot, the same ID, and the new packet
        data.

        When a new packet with a different IPX header is to be sent, it
        may be sent using a slot which has not received confirmation.
        A Confirmed Initial packet is sent with the same slot, an
        incremented ID, and the new packet data.  Assuming a least-
        recently-used policy for selecting a slot for a new IPX header,
        this provides the ability to reuse slots when a Confirmed
        Initial packet has been sent but not confirmed.

             +---------+---------+---------+-/       /-+----------
             |  Flags  |   Slot  |   ID    |    IPX    |  DATA ...
             |   0x03  |  Number |         |   Header  |
             +---------+---------+---------+-/       /-+----------

CONFIRMED INITIAL PACKET

  Note that a Confirmed Initial header is followed by a complete IPX
  packet.

Confirm Packet

  The Confirm packet type is used by the decompressor to tell the
  compressor that it has received the Confirmed Initial packet.

  When the compressor receives this, it can start sending Compressed
  frames.

         7   6   5   4   3   2   1   0
       +---+---+---+---+---+---+---+---+
       | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
       +---+---+---+---+---+---+---+---+
         ^   ^   ^   ^   ^   ^   ^   ^
         |   |   |   |   |   |   |   |
         |   |   |   |   |___|___|___|___ Packet Type
         |   |   |   |                    5    Confirm
         |   |   |   |
         |__ |__ |__ |___________________ Reserved (must be zero)

  A Confirm Packet is exactly 3 octets in length.  It consists of the



Mathur & Lewis                                                 [Page 14]

RFC 1553                         CIPX                      December 1993


  Flags, Slot Number and ID fields.  The Slot Number field contains the
  number of the slot which is being acknowledged.  The ID field
  contains the ID of the Confirmed Initial Packet which is being
  acknowledged.

       +---------+---------+----------+
       |  Flags  |   Slot  |    ID    |
       |   0x05  |  Number |          |
       +---------+---------+----------+

CONFIRM PACKET

Unconfirmed Initial Packet

  The Unconfirmed Initial packet type is used by the compressor to
  inform the decompressor of the original packet header which will be
  used for subsequent compression while not requesting confirmation.

  After sending an Unconfirmed Initial packet, the compressor may
  immediately send Compressed packets without confirmation.

         7   6   5   4   3   2   1   0
       +---+---+---+---+---+---+---+---+
       | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
       +---+---+---+---+---+---+---+---+
         ^   ^   ^   ^   ^   ^   ^   ^
         |   |   |   |   |   |   |   |
         |   |   |   |   |___|___|___|___ Packet Type
         |   |   |   |                    7     Unconfirmed Initial
         |   |   |   |
         |__ |__ |__ |___________________ 0     NCP Protocol
                                          1-15  Reserved

  This type of packet is sent to inform the receiver to associate the
  IPX packet header with a slot number.  This packet is sent each time
  a different header format is sent for a given slot.

  The Flags octet lower 4 bits indicate the Unconfirmed Initial CIPX
  packet type.  The high order 4 bits are reserved for expansion to
  support additional protocols.  The Flags octet is always followed by
  the Slot Number.

       +---------+---------+-/        /-+-/       /-+---------
       |  Flags  |   Slot  |    IPX     |    NCP    | NCP
       |   0x07  |  Number |   Header   |   Header  | DATA ...
       +---------+---------+-/        /-+-/       /-+---------





Mathur & Lewis                                                 [Page 15]

RFC 1553                         CIPX                      December 1993


UNCONFIRMED INITIAL PACKET


  Note that an Unconfirmed Initial header is followed by a complete IPX
  packet.

Reject Packet

  The Reject packet type is used by the decompressor to tell the
  compressor that it has received a CIPX packet with a header which it
  does not support.  This is provided to regulate future extensions to
  CIPX.

         7   6   5   4   3   2   1   0
       +---+---+---+---+---+---+---+---+
       | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
       +---+---+---+---+---+---+---+---+
         ^   ^   ^   ^   ^   ^   ^   ^
         |   |   |   |   |   |   |   |
         |   |   |   |   |___|___|___|___ Packet Type
         |   |   |   |                    9    Reject
         |   |   |   |
         |__ |__ |__ |___________________ Reserved (must be zero)

  A Reject Packet is exactly 3 octets in length.  It consists of the
  Flags, Slot Number and Rejected Flags fields.

  The Slot Number field contains the number of the slot of the packet
  which is being rejected.  Since the actual packet type may be unknown
  or misunderstood, this field actually contains the second octet of
  the rejected packet.  In the normal case of a known CIPX packet type,
  this will be the slot number of an initial packet.

  The Rejected Flags field contains the first octet of the packet being
  rejected.  The packet type field is left untouched.  Any flags which
  are correctly recognized should be cleared.  The remaining flags
  indicate specific features that are being rejected.  This information
  should be sufficient for implementations to adjust the use of certain
  packet types or dependent flags.

     Implementation Note:

        The Flags value of 0xFF is not a valid CIPX packet type.
        Hence, such a packet type should be recognized as a standard
        IPX header and forwarded without CIPX processing to the
        appropriate routines.  Under no circumstances should a Flags
        value of 0xFF be rejected in a Reject Packet.




Mathur & Lewis                                                 [Page 16]

RFC 1553                         CIPX                      December 1993


             +---------+---------+----------+
             |  Flags  |   Slot  | Rejected |
             |   0x09  |  Number |  Flags   |
             +---------+---------+----------+

             REJECT PACKET

Compression Negotiation over PPP Links

  For PPP links [5], the use of header compression can be negotiated by
  IPXCP [6].  By default, no compression is enabled.

  The IPX-Compression-Protocol Configuration Option is used to indicate
  the ability to receive compressed packets.  Each end of the link must
  separately request this option if bi-directional compression is
  desired.

  The PPP Protocol field is set to the same value as the usual IPX
  packets, and all IPX packets sent over the link MUST conform to the
  compressed format.

  A summary of the IPX-Compression-Protocol Configuration Option format
  to negotiate Telebit IPX header compression (CIPX) is shown below.
  The fields are transmitted from left to right.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |     Type      |    Length     |    IPX-Compression-Protocol   |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |  Max-Slot-Id  |    Options    |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Type

          3

      Length

          6

      IPX-Compression-Protocol

          0002 (hex) for Telebit Compressed IPX headers (CIPX).

       Max-Slot-Id

          The Max-Slot-Id field is one octet and indicates the maximum



Mathur & Lewis                                                 [Page 17]

RFC 1553                         CIPX                      December 1993


          slot identifier.  This is one less than the actual number of
          slots; the slot identifier has values from zero to Max-Slot-
          Id.

Options

  The Options field is one octet, and is comprised of the "logical or"
  of the following values:

     0  No options.

     1  The slot identifer may be compressed.

        The slot identifier must not be compressed if there is no
        ability for the PPP link level to indicate an error in
        reception to the decompression module.  Synchronization after
        errors depends on receiving a packet with the slot identifier.

     2  Redefine Compressed Packet type bits 1-3.

        It was noted earlier that packet types have been chosen such
        that only the Compressed Packet type is an even number value
        with the lowest order bit of zero.  All other packet types are
        odd values with a lowest order bit of one.  The reason for this
        assignment was to make it possible to determine the Compressed
        Packet type by examining only one bit.  This make it possible
        to use all the other 7 bits to indicate status in the
        Compressed Packet.  The 7 bits are composed of the upper 4 bits
        which are permanently defined to indicate packet dependent
        flags, plus bits 1-3 which are otherwise part of the Packet
        Type.  The upper 4 bits are defined above.  The redefinition of
        bits 1-3 of the Compressed Packet type is left for future
        expansion.

              7   6   5   4   3   2   1   0
            +---+---+---+---+---+---+---+---+
            |   |   |   |   |   |   |   | 0 |
            +---+---+---+---+---+---+---+---+
              ^   ^   ^   ^   ^   ^   ^   ^
              |   |   |   |   |   |   |   |___ Packet Type
              |   |   |   |   |   |   |        0    Compressed Packet
              |   |   |   |   |   |   |
              |   |   |   |   |___|___|_______ Redefined bits
              |   |   |   |
              |___|___|___|___________________ Compressed Packet flags

        By default, this feature in not enabled and this flag is
        set to zero.  When this flag is set to one, it indicates



Mathur & Lewis                                                 [Page 18]

RFC 1553                         CIPX                      December 1993


        the desire to use this feature.

Compression Negotiation over IPXWAN Links

  "IPXWAN" is the protocol Novell uses to exchange necessary router
  to router information prior to exchanging standard IPX routing
  information and traffic over WAN datalinks [7].  To negotiate the
  Telebit compression option, we use Novell's allocated option number
  for CIPX (00) in the IPXWAN timer request/response packet.

  The Timer Request packet contains the following Telebit compression
  option:

    WOption Number       80        - Define compression type
    WAccept Option       01        - 0=No, 1=Yes, 3=N/A
    WOption Data Len     00 03     - Length of option
    WOption Data         00        - Telebit's compression (CIPX)
    WOption Data         XX        - Compression options
    WOption Data         NN        - Compression slots

  Where the WOption Data fields are:

    00   Telebit's compression option described in this
         document (CIPX).

    XX   Compression options as defined below:

            0x01   Compress slot ID when possible
            0x02   Redefine Compressed Packet type bits 1-3.

    NN   The requested # of compression slots.

    Accept Option (for compression type) must be set to YES if the
    option is supported and NO if the option is not supported.  A Timer
    Response must respond with only one header compression type set to
    YES.

    The Timer Response packet that accepts the option will look like
    this:

    WOption Number       80        - Define compression type
    WAccept Option       01        - 0=No, 1=Yes, 3=N/A
    WOption Data Len     00 03     - Length of option
    WOption Data         00        - Telebit's compression (CIPX)
    WOption Data         XX        - Compression options
    WOption Data         NN        - Compression slots





Mathur & Lewis                                                 [Page 19]

RFC 1553                         CIPX                      December 1993


  Where the WOption Data fields are:

    00   Telebit's compression option described in this
         document (CIPX).

    XX   Compression options as defined below:

            0x01   Compress slot ID when possible
            0x02   Redefine Compressed Packet type bits 1-3.

    NN   The negotiated # of slots (The lower of each side's
         requested number of slots)

  IPX packets (except of course IPXWAN packets) are not sent over the
  link until the IPXWAN negotiations are completed.  Once IPXWAN
  negotiations are completed, regular IPX packets can be sent over the
  link.

  If both ends of the link agree on the compression options, then the
  IPX packets are sent using the specified options.  If either end of
  the link does not accept a compression option, then this compression
  option will not be used.  Compression will be done using any
  remaining options.  Options, by definition, are not required.
  Implementations MUST support CIPX without any options.

  It is the responsibility of the router sending the IPXWAN Timer
  Response to inform the other router of the options that will be used.
  The Timer Response MUST contain a subset of the options received in a
  Timer Request.

  To be clear, IPXWAN is used to set up a symmetrical compression link.
  Compression is configured identically in both directions.  Each end
  will use the same number of slots and same compression options.  It
  is illegal for link ends to use different number of slots or
  different options.

IPX Compression Performance

  The performance of this algorithm will depend on the number of active
  connections and the number of slots negotiated.  If the number of
  slots is greater than the number of connections, the hit rate should
  be very high giving a very high compression ratio.  The performance
  also depends on the average size of the IPX packets.  If the average
  size of packets is small, then compression will result in a more
  noticeable performance improvement.






Mathur & Lewis                                                 [Page 20]

RFC 1553                         CIPX                      December 1993


                           avg_data_len + uncomp_header_len
       Compression ratio = ----------------------------------
                           avg_data_len + avg_comp_header_len

  Where 'avg_data_len' is the average length of data in the IPX packet,
  and 'uncomp_head_len' is the uncompressed header length which is
  fixed at 30 octets.  Where 'avg_comp_header_len' is the average
  length of the compressed IPX header.  The length of the minimum
  compressed IPX header is 1 octet.  The length of the maximum
  compressed NCP/IPX header is 8 octets (including the NCP task
  number), but since no implementation yet sends packets with a length
  greater than 16K, 7 octets is the commonly encountered maximum.
  Perhaps a reasonable 'avg_comp_header_len' is 2, assuming the
  inclusion of the flag and slot number octets.

  The maximum length of the data in an IPX packet is 546 octets (576
  octets - 30 octet IPX header), although newer implementations may
  send packets of up to 4096 octets.  The minimum length of the data in
  an IPX packet is 1 octet.  Within the normal distribution of small
  NCP packets, perhaps a reasonable 'avg_data_len' is 26 octets.

                                546 + 30
       Minimal Compression    = -------- =  1.04
                                546 + 6

                                1 + 30
       Maximal Compression    = ------   = 15.50
                                1 + 1

                                26 + 30
       Likely Compression     = -------  =  2.00
                                26 + 2


Security Considerations

  IPX provides some security features, which are fully applicable to
  CIPX.  CIPX does not significantly alter the basic security of IPX.













Mathur & Lewis                                                 [Page 21]

RFC 1553                         CIPX                      December 1993


References

  [1] Novell Inc., "IPX Router Specification", September 1992, Part
      Number: 107-000029-001

  [2] Jacobson, Van, "Compressing TCP/IP Headers for Low-Speed Serial
      Links", RFC 1144, February 1990

  [3] CCITT Recommendation V.42bis Error Correcting Procedures for DCEs
      using Error Correction Procedures

  [4] ISO 7776, Information Processing Systems - Data Communication -
      High Level Data Link Control Procedures - Description of the X.25
      LAPB-Compatible DTE Data Link Procedures

  [5] Simpson, W. A., "The Point-to-Point Protocol (PPP)", RFC 1548,
      December 1993

  [6] Simpson, W. A., "The PPP Internet Packet Exchange Control
      Protocol (IPXCP)", RFC 1552, December 1993

  [7] Allen, Michael, "Novell IPX Over Various WAN Media [IPXWAN]",
      RFC 1551, December 1993

Acknowledgements

  This compression algorithm incorporates many ideas from the Van
  Jacobson TCP/IP header compression algorithm.

  Michael Allen from Novell provided a lot of valuable feedback in the
  design of this algorithm.  David Piscitello from Bellcore and Marty
  Del Vecchio at Shiva Corp.  made several good suggestions.  Bill
  Simpson was very helpful in driving PPP, and specifically IPXCP, on
  the standards course.

Chair's Address
     Fred Baker
     Advanced Computer Communications
     315 Bollay Drive
     Santa Barbara, California 93117

     EMail: [email protected]









Mathur & Lewis                                                 [Page 22]

RFC 1553                         CIPX                      December 1993


Authors' Addresses

     Saroop Mathur
     Telebit Corp.
     1315 Chesapeake Terrace
     Sunnyvale, CA 94089-1100

     EMail: [email protected]

     Mark S. Lewis
     Telebit Corp.
     1315 Chesapeake Terrace
     Sunnyvale, CA 94089-1100

     EMail: [email protected]




































Mathur & Lewis                                                 [Page 23]