Network Working Group                                         W. Simpson
Request for Comments: 1548                                    Daydreamer
Obsoletes: RFC 1331                                        December 1993
Category: Standards Track


                  The Point-to-Point Protocol (PPP)

Status of this Memo

  This document specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" (STD 1) for the standardization state
  and status of this protocol.  Distribution of this memo is unlimited.

Abstract

  The Point-to-Point Protocol (PPP) provides a standard method for
  transporting multi-protocol datagrams over point-to-point links.  PPP
  is comprised of three main components:

     1. A method for encapsulating multi-protocol datagrams.

     2. A Link Control Protocol (LCP) for establishing, configuring,
        and testing the data-link connection.

     3. A family of Network Control Protocols (NCPs) for establishing
        and configuring different network-layer protocols.

  This document defines the PPP organization and methodology, and the
  PPP encapsulation, together with an extensible option negotiation
  mechanism which is able to negotiate a rich assortment of
  configuration parameters and provides additional management
  functions.  The PPP Link Control Protocol (LCP) is described in terms
  of this mechanism.

  This document is the product of the Point-to-Point Protocol Working
  Group of the Internet Engineering Task Force (IETF).  Comments should
  be submitted to the [email protected] mailing list.











Simpson                                                         [Page 1]

RFC 1548              The Point-to-Point Protocol          December 1993


Table of Contents

  1.   Introduction ................................................3
  1.1  Specification of Requirements ...............................4
  1.2  Terminology .................................................5
  2.   PPP Encapsulation ...........................................5
  3.   PPP Link Operation ..........................................8
  3.1  Overview ....................................................8
  3.2  Phase Diagram ...............................................8
  3.3  Link Dead (physical-layer not ready) ........................9
  3.4  Link Establishment Phase ....................................9
  3.5  Authentication Phase ........................................9
  3.6  Network-Layer Protocol Phase ................................10
  3.7  Link Termination Phase ......................................10
  4.   The Option Negotiation Automaton ............................11
  4.1  State Diagram ...............................................12
  4.2  State Transition Table ......................................14
  4.3  A Day in the Life ...........................................15
  4.4  States ......................................................16
  4.5  Events ......................................................19
  4.6  Actions .....................................................23
  4.7  Loop Avoidance ..............................................26
  4.8  Counters and Timers .........................................26
  5.   LCP Packet Formats ..........................................27
  5.1  Configure-Request ...........................................29
  5.2  Configure-Ack ...............................................30
  5.3  Configure-Nak ...............................................31
  5.4  Configure-Reject ............................................33
  5.5  Terminate-Request and Terminate-Ack .........................34
  5.6  Code-Reject .................................................35
  5.7  Protocol-Reject .............................................36
  5.8  Echo-Request and Echo-Reply .................................37
  5.9  Discard-Request .............................................39
  6.   LCP Configuration Options ...................................40
  6.1  Maximum-Receive-Unit ........................................41
  6.2  Async-Control-Character-Map .................................42
  6.3  Authentication-Protocol .....................................43
  6.4  Quality-Protocol ............................................45
  6.5  Magic-Number ................................................46
  6.6  Protocol-Field-Compression ..................................49
  6.7  Address-and-Control-Field-Compression .......................50
  APPENDIX A. LCP Recommended Options ..............................51
  SECURITY CONSIDERATIONS ..........................................51
  REFERENCES .......................................................52
  ACKNOWLEDGEMENTS .................................................52
  CHAIR'S ADDRESS ..................................................52
  EDITOR'S ADDRESS .................................................53




Simpson                                                         [Page 2]

RFC 1548              The Point-to-Point Protocol          December 1993


1. Introduction

  Encapsulation

     The PPP encapsulation provides for multiplexing of different
     network-layer protocols simultaneously over the same link.  It is
     intended that PPP provide a common solution for easy connection of
     a wide variety of hosts, bridges and routers [1].

     The PPP encapsulation has been carefully designed to retain
     compatibility with most commonly used supporting hardware.

     Only 8 additional octets are necessary to form the encapsulation
     when used with the default HDLC framing.  In environments where
     bandwidth is at a premium, the encapsulation and framing may be
     shortened to 2 or 4 octets.

     To support high speed implementations, the default encapsulation
     uses only simple fields, only one of which needs to be examined
     for demultiplexing.  The default header and information fields
     fall on 32-bit boundaries, and the trailer may be padded to an
     arbitrary boundary.

   Link Control Protocol

     In order to be sufficiently versatile to be portable to a wide
     variety of environments, PPP provides a Link Control Protocol
     (LCP).  The LCP is used to automatically agree upon the
     encapsulation format options, handle varying limits on sizes of
     packets, authenticate the identity of its peer on the link,
     determine when a link is functioning properly and when it is
     defunct, detect a looped-back link and other common
     misconfiguration errors, and terminate the link.

   Network Control Protocols

     Point-to-Point links tend to exacerbate many problems with the
     current family of network protocols.  For instance, assignment and
     management of IP addresses, which is a problem even in LAN
     environments, is especially difficult over circuit-switched
     point-to-point links (such as dial-up modem servers).  These
     problems are handled by a family of Network Control Protocols
     (NCPs), which each manage the specific needs required by their
     respective network-layer protocols.  These NCPs are defined in
     companion documents.






Simpson                                                         [Page 3]

RFC 1548              The Point-to-Point Protocol          December 1993


   Configuration

     It is intended that PPP links be easy to configure.  By design,
     the standard defaults handle all common configurations.  The
     implementor can specify improvements to the default configuration,
     which are automatically communicated to the peer without operator
     intervention.  Finally, the operator may explicitly configure
     options for the link which enable the link to operate in
     environments where it would otherwise be impossible.

     This self-configuration is implemented through an extensible
     option negotiation mechanism, wherein each end of the link
     describes to the other its capabilities and requirements.
     Although the option negotiation mechanism described in this
     document is specified in terms of the Link Control Protocol (LCP),
     the same facilities are designed to be used by other control
     protocols, especially the family of NCPs.

1.1 Specification of Requirements

     In this document, several words are used to signify the
     requirements of the specification.  These words are often
     capitalized.

   MUST

     This word, or the adjective "required", means that the definition
     is an absolute requirement of the specification.

   MUST NOT

     This phrase means that the definition is an absolute prohibition
     of the specification.

   SHOULD

     This word, or the adjective "recommended", means that there may
     exist valid reasons in particular circumstances to ignore this
     item, but the full implications must be understood and carefully
     weighed before choosing a different course.

   MAY

     This word, or the adjective "optional", means that this item is
     one of an allowed set of alternatives.  An implementation which
     does not include this option MUST be prepared to interoperate with
     another implementation which does include the option.




Simpson                                                         [Page 4]

RFC 1548              The Point-to-Point Protocol          December 1993


1.2 Terminology

     This document frequently uses the following terms:

   datagram

     The unit of transmission in the network layer (such as IP).  A
     datagram may be encapsulated in one or more packets passed to the
     data link layer.

   frame

     The unit of transmission at the data link layer.  A frame may
     include a header and/or a trailer, along with some number of units
     of data.

   packet

     The basic unit of encapsulation, which is passed across the
     interface between the network layer and the data link layer.  A
     packet is usually mapped to a frame; the exceptions are when data
     link layer fragmentation is being performed, or when multiple
     packets are incorporated into a single frame.

   peer

     The other end of the point-to-point link.

   silently discard

     This means the implementation discards the packet without further
     processing.  The implementation SHOULD provide the capability of
     logging the error, including the contents of the silently
     discarded packet, and SHOULD record the event in a statistics
     counter.

2. PPP Encapsulation

  The PPP encapsulation is used to disambiguate multiprotocol
  datagrams.  This encapsulation requires framing to indicate the
  beginning and end of the encapsulation.  Methods of providing framing
  are specified in companion documents.









Simpson                                                         [Page 5]

RFC 1548              The Point-to-Point Protocol          December 1993


  A summary of the PPP encapsulation is shown below.  The fields are
  transmitted from left to right.

             +----------+-------------+---------+
             | Protocol | Information | Padding |
             | 16 bits  |      *      |    *    |
             +----------+-------------+---------+

   Protocol Field

     The Protocol field is two octets and its value identifies the
     datagram encapsulated in the Information field of the packet.  The
     field is transmitted and received most significant octet first.

     The structure of this field is consistent with the ISO 3309
     extension mechanism for address fields.  All Protocols MUST be
     odd; the least significant bit of the least significant octet MUST
     equal "1".  Also, all Protocols MUST be assigned such that the
     least significant bit of the most significant octet equals "0".
     Frames received which don't comply with these rules MUST be
     treated as having an unrecognized Protocol.

     Protocol field values in the "0***" to "3***" range identify the
     network-layer protocol of specific packets, and values in the
     "8***" to "b***" range identify packets belonging to the
     associated Network Control Protocols (NCPs), if any.

     Protocol field values in the "4***" to "7***" range are used for
     protocols with low volume traffic which have no associated NCP.
     Protocol field values in the "c***" to "f***" range identify
     packets as link-layer Control Protocols (such as LCP).

     Up-to-date values of the Protocol field are specified in the most
     recent "Assigned Numbers" RFC [2].  Current values are assigned as
     follows:

          Value (in hex)  Protocol Name

          0001            Padding Protocol
          0003 to 001f    reserved (transparency inefficient)
          0021            Internet Protocol
          0023            OSI Network Layer
          0025            Xerox NS IDP
          0027            DECnet Phase IV
          0029            Appletalk
          002b            Novell IPX
          002d            Van Jacobson Compressed TCP/IP
          002f            Van Jacobson Uncompressed TCP/IP



Simpson                                                         [Page 6]

RFC 1548              The Point-to-Point Protocol          December 1993


          0031            Bridging PDU
          0033            Stream Protocol (ST-II)
          0035            Banyan Vines
          0037            unused
          0039            AppleTalk EDDP
          003b            AppleTalk SmartBuffered
          003d            Multi-Link
          005d            reserved (compression inefficient)
          00cf            reserved (PPP NLPID)
          00fd            1st choice compression
          00ff            reserved (compression inefficient)

          0201            802.1d Hello Packets
          0203            IBM Source Routing BPDU
          0231            Luxcom
          0233            Sigma Network Systems

          8021            Internet Protocol Control Protocol
          8023            OSI Network Layer Control Protocol
          8025            Xerox NS IDP Control Protocol
          8027            DECnet Phase IV Control Protocol
          8029            Appletalk Control Protocol
          802b            Novell IPX Control Protocol
          802d            Reserved
          802f            Reserved
          8031            Bridging NCP
          8033            Stream Protocol Control Protocol
          8035            Banyan Vines Control Protocol
          8037            unused
          8039            Reserved
          803b            Reserved
          803d            Multi-Link Control Protocol
          80fd            Compression Control Protocol
          80ff            Reserved

          c021            Link Control Protocol
          c023            Password Authentication Protocol
          c025            Link Quality Report
          c223            Challenge Handshake Authentication Protocol

     Developers of new protocols MUST obtain a number from the Internet
     Assigned Numbers Authority (IANA), at [email protected].

   Information Field

     The Information field is zero or more octets.  The Information
     field contains the datagram for the protocol specified in the
     Protocol field.



Simpson                                                         [Page 7]

RFC 1548              The Point-to-Point Protocol          December 1993


     The maximum length for the Information field, including Padding,
     is termed the Maximum Receive Unit (MRU), which defaults to 1500
     octets.  By negotiation, consenting PPP implementations may use
     other values for the MRU.

   Padding

     On transmission, the Information field MAY be padded with an
     arbitrary number of octets up to the MRU.  It is the
     responsibility of each protocol to distinguish padding octets from
     real information.

3.  PPP Link Operation

3.1 Overview

  In order to establish communications over a point-to-point link, each
  end of the PPP link MUST first send LCP packets to configure and test
  the data link.  After the link has been established, the peer MAY be
  authenticated.  Then, PPP MUST send NCP packets to choose and
  configure one or more network-layer protocols.  Once each of the
  chosen network-layer protocols has been configured, datagrams from
  each network-layer protocol can be sent over the link.

  The link will remain configured for communications until explicit LCP
  or NCP packets close the link down, or until some external event
  occurs (an inactivity timer expires or network administrator
  intervention).

3.2 Phase Diagram

  In the process of configuring, maintaining and terminating the
  point-to-point link, the PPP link goes through several distinct
  phases:

  +------+        +-----------+           +--------------+
  |      | UP     |           | OPENED    |              | SUCCESS/NONE
  | Dead |------->| Establish |---------->| Authenticate |--+
  |      |        |           |           |              |  |
  +------+        +-----------+           +--------------+  |
     ^          FAIL |                   FAIL |             |
     +<--------------+             +----------+             |
     |                             |                        |
     |            +-----------+    |           +---------+  |
     |       DOWN |           |    |   CLOSING |         |  |
     +------------| Terminate |<---+<----------| Network |<-+
                  |           |                |         |
                  +-----------+                +---------+



Simpson                                                         [Page 8]

RFC 1548              The Point-to-Point Protocol          December 1993


3.3 Link Dead (physical-layer not ready)

  The link necessarily begins and ends with this phase.  When an
  external event (such as carrier detection or network administrator
  configuration) indicates that the physical-layer is ready to be used,
  PPP will proceed to the Link Establishment phase.

  During this phase, the LCP automaton (described below) will be in the
  Initial or Starting states.  The transition to the Link Establishment
  phase will signal an Up event to the automaton.

   Implementation Note:

     Typically, a link will return to this phase automatically after
     the disconnection of a modem.  In the case of a hard-wired line,
     this phase may be extremely short -- merely long enough to detect
     the presence of the device.

3.4 Link Establishment Phase

  The Link Control Protocol (LCP) is used to establish the connection
  through an exchange of Configure packets.  This exchange is complete,
  and the LCP Opened state entered, once a Configure-Ack packet
  (described below) has been both sent and received.

  All Configuration Options are assumed to be at default values unless
  altered by the configuration exchange.  See the section on LCP
  Configuration Options for further discussion.

  It is important to note that only Configuration Options which are
  independent of particular network-layer protocols are configured by
  LCP.  Configuration of individual network-layer protocols is handled
  by separate Network Control Protocols (NCPs) during the Network-Layer
  Protocol phase.

  Any non-LCP packets received during this phase MUST be silently
  discarded.

3.5 Authentication Phase

  On some links it may be desirable to require a peer to authenticate
  itself before allowing network-layer protocol packets to be
  exchanged.

  By default, authentication is not mandatory.  If an implementation
  desires that the peer authenticate with some specific authentication
  protocol, then it MUST negotiate the use of that authentication
  protocol during Link Establishment phase.



Simpson                                                         [Page 9]

RFC 1548              The Point-to-Point Protocol          December 1993


  Authentication SHOULD take place as soon as possible after link
  establishment.  However, link quality determination MAY occur
  concurrently.  An implementation MUST NOT allow the exchange of link
  quality determination packets to delay authentication indefinitely.

  Advancement from the Authentication phase to the Network-Layer
  Protocol phase MUST NOT occur until authentication has completed,
  using the negotiated authentication protocol.  If authentication
  fails, PPP SHOULD proceed instead to the Link Termination phase.

  Any Network Control Protocol or network-layer protocol packets
  received during this phase MUST be silently discarded.

3.6 Network-Layer Protocol Phase

  Once PPP has finished the previous phases, each network-layer
  protocol (such as IP, IPX, or AppleTalk) MUST be separately
  configured by the appropriate Network Control Protocol (NCP).

  Each NCP MAY be Opened and Closed at any time.

   Implementation Note:

     Because an implementation may initially use a significant amount
     of time for link quality determination, implementations SHOULD
     avoid fixed timeouts when waiting for their peers to configure a
     NCP.

     After a NCP has reached the Opened state, PPP will carry the
     corresponding network-layer protocol packets.  Any network-layer
     protocol packets received when the corresponding NCP is not in the
     Opened state MUST be silently discarded.

   Implementation Note:

     There is an exception to the preceding paragraphs, due to the
     availability of the LCP Protocol-Reject (described below).  While
     LCP is in the Opened state, any protocol packet which is
     unsupported by the implementation MUST be returned in a Protocol-
     Reject.  Only protocols which are supported are silently
     discarded.

     During this phase, link traffic consists of any possible
     combination of LCP, NCP, and network-layer protocol packets.

3.7 Link Termination Phase

  PPP can terminate the link at any time.  This might happen because of



Simpson                                                        [Page 10]

RFC 1548              The Point-to-Point Protocol          December 1993


  the loss of carrier, authentication failure, link quality failure,
  the expiration of an idle-period timer, or the administrative closing
  of the link.  LCP is used to close the link through an exchange of
  Terminate packets.  When the link is closing, PPP informs the
  network-layer protocols so that they may take appropriate action.

  After the exchange of Terminate packets, the implementation SHOULD
  signal the physical-layer to disconnect in order to enforce the
  termination of the link, particularly in the case of an
  authentication failure.  The sender of the Terminate-Request SHOULD
  disconnect after receiving a Terminate-Ack, or after the Restart
  counter expires.  The receiver of a Terminate-Request SHOULD wait for
  the peer to disconnect, and MUST NOT disconnect until at least one
  Restart time has passed after sending a Terminate-Ack.  PPP SHOULD
  proceed to the Link Dead phase.

  Any non-LCP packets received during this phase MUST be silently
  discarded.

   Implementation Note:

     The closing of the link by LCP is sufficient.  There is no need
     for each NCP to send a flurry of Terminate packets.  Conversely,
     the fact that one NCP has Closed is not sufficient reason to cause
     the termination of the PPP link, even if that NCP was the only NCP
     currently in the Opened state.

4. The Option Negotiation Automaton

  The finite-state automaton is defined by events, actions and state
  transitions.  Events include reception of external commands such as
  Open and Close, expiration of the Restart timer, and reception of
  packets from a peer.  Actions include the starting of the Restart
  timer and transmission of packets to the peer.

  Some types of packets -- Configure-Naks and Configure-Rejects, or
  Code-Rejects and Protocol-Rejects, or Echo-Requests, Echo-Replies and
  Discard-Requests -- are not differentiated in the automaton
  descriptions.  As will be described later, these packets do indeed
  serve different functions.  However, they always cause the same
  transitions.

Events                                  Actions

Up   = lower layer is Up                tlu = This-Layer-Up
Down = lower layer is Down              tld = This-Layer-Down
Open = administrative Open              tls = This-Layer-Started
Close= administrative Close             tlf = This-Layer-Finished



Simpson                                                        [Page 11]

RFC 1548              The Point-to-Point Protocol          December 1993


TO+  = Timeout with counter > 0         irc = Initialize-Restart-Counter
TO-  = Timeout with counter expired     zrc = Zero-Restart-Counter

RCR+ = Receive-Configure-Request (Good) scr = Send-Configure-Request
RCR- = Receive-Configure-Request (Bad)
RCA  = Receive-Configure-Ack            sca = Send-Configure-Ack
RCN  = Receive-Configure-Nak/Rej        scn = Send-Configure-Nak/Rej

RTR  = Receive-Terminate-Request        str = Send-Terminate-Request
RTA  = Receive-Terminate-Ack            sta = Send-Terminate-Ack

RUC  = Receive-Unknown-Code             scj = Send-Code-Reject
RXJ+ = Receive-Code-Reject (permitted)
   or Receive-Protocol-Reject
RXJ- = Receive-Code-Reject (catastrophic)
   or Receive-Protocol-Reject
RXR  = Receive-Echo-Request             ser = Send-Echo-Reply
   or Receive-Echo-Reply
   or Receive-Discard-Request

4.1 State Diagram

  The simplified state diagram which follows describes the sequence of
  events for reaching agreement on Configuration Options (opening the
  PPP link) and for later termination of the link.

  This diagram is not a complete representation of the automaton.
  Implementation MUST be done by consulting the actual state transition
  table.

  Events are in upper case.  Actions are in lower case.  For these
  purposes, the state machine is initially in the Closed state.  Once
  the Opened state has been reached, both ends of the link have met the
  requirement of having both sent and received a Configure-Ack packet.

















Simpson                                                        [Page 12]

RFC 1548              The Point-to-Point Protocol          December 1993


                RCR                    TO+
              +--sta-->+             +------->+
              |        |             |        |
        +-------+      |   RTA +-------+      | Close +-------+
        |       |<-----+<------|       |<-str-+<------|       |
        |Closed |              |Closing|              |Opened |
        |       | Open         |       |              |       |
        |       |------+       |       |              |       |
        +-------+      |       +-------+              +-------+
                       |                                ^
                       |                                |
                       |         +-sca----------------->+
                       |         |                      ^
               RCN,TO+ V    RCR+ |     RCR-         RCA |    RCN,TO+
              +------->+         |   +------->+         |   +--scr-->+
              |        |         |   |        |         |   |        |
        +-------+      |   TO+ +-------+      |       +-------+      |
        |       |<-scr-+<------|       |<-scn-+       |       |<-----+
        | Req-  |              | Ack-  |              | Ack-  |
        | Sent  | RCA          | Rcvd  |              | Sent  |
 +-scn->|       |------------->|       |       +-sca->|       |
 |      +-------+              +-------+       |      +-------+
 |   RCR- |   | RCR+                           |   RCR+ |   | RCR-
 |        |   +------------------------------->+<-------+   |
 |        |                                                 |
 +<-------+<------------------------------------------------+

























Simpson                                                        [Page 13]

RFC 1548              The Point-to-Point Protocol          December 1993


4.2 State Transition Table

 The complete state transition table follows.  States are indicated
 horizontally, and events are read vertically.  State transitions and
 actions are represented in the form action/new-state.  Multiple
 actions are separated by commas, and may continue on succeeding lines
 as space requires; multiple actions may be implemented in any
 convenient order.  The state may be followed by a letter, which
 indicates an explanatory footnote.  The dash ('-') indicates an
 illegal transition.


        | State
        |    0         1         2         3         4         5
  Events| Initial   Starting  Closed    Stopped   Closing   Stopping
  ------+-----------------------------------------------------------
   Up   |    2     irc,scr/6     -         -         -         -
   Down |    -         -         0       tls/1       0         1
   Open |  tls/1       1     irc,scr/6     3r        5r        5r
   Close|    0         0         2         2         4         4
        |
    TO+ |    -         -         -         -       str/4     str/5
    TO- |    -         -         -         -       tlf/2     tlf/3
        |
   RCR+ |    -         -       sta/2 irc,scr,sca/8   4         5
   RCR- |    -         -       sta/2 irc,scr,scn/6   4         5
   RCA  |    -         -       sta/2     sta/3       4         5
   RCN  |    -         -       sta/2     sta/3       4         5
        |
   RTR  |    -         -       sta/2     sta/3     sta/4     sta/5
   RTA  |    -         -         2         3       tlf/2     tlf/3
        |
   RUC  |    -         -       scj/2     scj/3     scj/4     scj/5
   RXJ+ |    -         -         2         3         4         5
   RXJ- |    -         -       tlf/2     tlf/3     tlf/2     tlf/3
        |
   RXR  |    -         -         2         3         4         5














Simpson                                                        [Page 14]

RFC 1548              The Point-to-Point Protocol          December 1993


           | State
           |    6         7         8           9
     Events| Req-Sent  Ack-Rcvd  Ack-Sent    Opened
     ------+-----------------------------------------
      Up   |    -         -         -           -
      Down |    1         1         1         tld/1
      Open |    6         7         8           9r
      Close|irc,str/4 irc,str/4 irc,str/4 tld,irc,str/4
           |
       TO+ |  scr/6     scr/6     scr/8         -
       TO- |  tlf/3p    tlf/3p    tlf/3p        -
           |
      RCR+ |  sca/8   sca,tlu/9   sca/8   tld,scr,sca/8
      RCR- |  scn/6     scn/7     scn/6   tld,scr,scn/6
      RCA  |  irc/7     scr/6x  irc,tlu/9   tld,scr/6x
      RCN  |irc,scr/6   scr/6x  irc,scr/8   tld,scr/6x
           |
      RTR  |  sta/6     sta/6     sta/6   tld,zrc,sta/5
      RTA  |    6         6         8       tld,scr/6
           |
      RUC  |  scj/6     scj/7     scj/8       scj/9
      RXJ+ |    6         6         8           9
      RXJ- |  tlf/3     tlf/3     tlf/3   tld,irc,str/5
           |
      RXR  |    6         7         8         ser/9

  The states in which the Restart timer is running are identifiable by
  the presence of TO events.  Only the Send-Configure-Request, Send-
  Terminate-Request and Zero-Restart-Counter actions start or re-start
  the Restart timer.  The Restart timer is stopped when transitioning
  from any state where the timer is running to a state where the timer
  is not running.

     [p]   Passive option; see Stopped state discussion.

     [r]   Restart option; see Open event discussion.

     [x]   Crossed connection; see RCA event discussion.

4.3 A Day in the Life

  Here is an example of how a typical implementation might use the
  automaton to implement LCP in a dial-up environment:

  -  The Network Access Server is powered on (Initial state, Link Dead
     phase).

  -  A configuration file indicates that a particular link is to be



Simpson                                                        [Page 15]

RFC 1548              The Point-to-Point Protocol          December 1993


     used for PPP access (Open: tls/Starting).  The This-Layer-Started
     event turns on DTR to a modem, readying it for accepting calls.

  -  An incoming call is answered.  The modem CD triggers configuration
     negotiation (Up: irc,scr/Req-Sent, Link Establishment phase).

  -  A Configure-Request is received, which is acknowleged (RCR+:
     sca/Ack-Sent).

  -  The Request is acknowleged (RCA: irc,tlu/Opened).  The This-
     Layer-Up event starts authentication and quality monitoring
     protocols (Authentication phase).

  -  When authentication and quality monitoring are satisfied, they
     send an Up event to start the available NCPs (Network-Layer
     Protocol phase).

  -  Later, the peer is finished, and closes the link.  A Terminate-
     Request arrives (RTR: tld,zrc,sta/Stopping, Termination phase).
     The This-Layer-Down action sends the Down event to any NCPs, while
     the Terminate-Ack is sent.  The Zero-Restart-Counter action causes
     the link to wait for the peer to process the Terminate-Ack, with
     no retries.

  -  When the Restart Timer times out (TO-: tlf/Stopped), the This-
     Layer-Finished action signals the modem to hang up by dropping
     DTR.

  -  When the CD from the modem drops (Down: tls/Starting), the This-
     Layer-Started action raises DTR again, readying it for the next
     call (returning to the Link Dead phase).

4.4 States

  Following is a more detailed description of each automaton state.

   Initial

     In the Initial state, the lower layer is unavailable (Down), and
     no Open has occurred.  The Restart timer is not running in the
     Initial state.

   Starting

     The Starting state is the Open counterpart to the Initial state.
     An administrative Open has been initiated, but the lower layer is
     still unavailable (Down).  The Restart timer is not running in the
     Starting state.



Simpson                                                        [Page 16]

RFC 1548              The Point-to-Point Protocol          December 1993


     When the lower layer becomes available (Up), a Configure-Request
     is sent.

   Closed

     In the Closed state, the link is available (Up), but no Open has
     occurred.  The Restart timer is not running in the Closed state.

     Upon reception of Configure-Request packets, a Terminate-Ack is
     sent.  Terminate-Acks are silently discarded to avoid creating a
     loop.

   Stopped

     The Stopped state is the Open counterpart to the Closed state.  It
     is entered when the automaton is waiting for a Down event after
     the This-Layer-Finished action, or after sending a Terminate-Ack.
     The Restart timer is not running in the Stopped state.

     Upon reception of Configure-Request packets, an appropriate
     response is sent.  Upon reception of other packets, a Terminate-
     Ack is sent.  Terminate-Acks are silently discarded to avoid
     creating a loop.

   Rationale:

     The Stopped state is a junction state for link termination, link
     configuration failure, and other automaton failure modes.  These
     potentially separate states have been combined.

     There is a race condition between the Down event response (from
     the This-Layer-Finished action) and the Receive-Configure- Request
     event.  When a Configure-Request arrives before the Down event,
     the Down event will supercede by returning the automaton to the
     Starting state.  This prevents attack by repetition.

   Implementation Option:

     After the peer fails to respond to Configure-Requests, an
     implementation MAY wait passively for the peer to send Configure-
     Requests.  In this case, the This-Layer-Finished action is not
     used for the TO- event in states Req-Sent, Ack- Rcvd and Ack-Sent.

     This option is useful for dedicated circuits, or circuits which
     have no status signals available, but SHOULD NOT be used for
     switched circuits.





Simpson                                                        [Page 17]

RFC 1548              The Point-to-Point Protocol          December 1993


   Closing

     In the Closing state, an attempt is made to terminate the
     connection.  A Terminate-Request has been sent and the Restart
     timer is running, but a Terminate-Ack has not yet been received.

     Upon reception of a Terminate-Ack, the Closed state is entered.
     Upon the expiration of the Restart timer, a new Terminate-Request
     is transmitted and the Restart timer is restarted.  After the
     Restart timer has expired Max-Terminate times, this action may be
     skipped, and the Closed state may be entered.

   Stopping

     The Stopping state is the Open counterpart to the Closing state.
     A Terminate-Request has been sent and the Restart timer is
     running, but a Terminate-Ack has not yet been received.

   Rationale:

     The Stopping state provides a well defined opportunity to
     terminate a link before allowing new traffic.  After the link has
     terminated, a new configuration may occur via the Stopped or
     Starting states.

   Request-Sent

     In the Request-Sent state an attempt is made to configure the
     connection.  A Configure-Request has been sent and the Restart
     timer is running, but a Configure-Ack has not yet been received
     nor has one been sent.

   Ack-Received

     In the Ack-Received state, a Configure-Request has been sent and a
     Configure-Ack has been received.  The Restart timer is still
     running since a Configure-Ack has not yet been sent.

   Ack-Sent

     In the Ack-Sent state, a Configure-Request and a Configure-Ack
     have both been sent but a Configure-Ack has not yet been received.
     The Restart timer is always running in the Ack-Sent state.

   Opened

     In the Opened state, a Configure-Ack has been both sent and
     received.  The Restart timer is not running in the Opened state.



Simpson                                                        [Page 18]

RFC 1548              The Point-to-Point Protocol          December 1993


     When entering the Opened state, the implementation SHOULD signal
     the upper layers that it is now Up.  Conversely, when leaving the
     Opened state, the implementation SHOULD signal the upper layers
     that it is now Down.

4.5 Events

  Transitions and actions in the automaton are caused by events.

   Up

     The Up event occurs when a lower layer indicates that it is ready
     to carry packets.

     Typically, this event is used by a modem handling or calling
     process, or by some other coupling of the PPP link to the physical
     media, to signal LCP that the link is entering Link Establishment
     phase.

     It also can be used by LCP to signal each NCP that the link is
     entering Network-Layer Protocol phase.  That is, the This-Layer-Up
     action from LCP triggers the Up event in the NCP.

   Down

     The Down event occurs when a lower layer indicates that it is no
     longer ready to carry packets.

     Typically, this event is used by a modem handling or calling
     process, or by some other coupling of the PPP link to the physical
     media, to signal LCP that the link is entering Link Dead phase.

     It also can be used by LCP to signal each NCP that the link is
     leaving Network-Layer Protocol phase.  That is, the This-Layer-
     Down action from LCP triggers the Down event in the NCP.

   Open

     The Open event indicates that the link is administratively
     available for traffic; that is, the network administrator (human
     or program) has indicated that the link is allowed to be Opened.
     When this event occurs, and the link is not in the Opened state,
     the automaton attempts to send configuration packets to the peer.

     If the automaton is not able to begin configuration (the lower
     layer is Down, or a previous Close event has not completed), the
     establishment of the link is automatically delayed.




Simpson                                                        [Page 19]

RFC 1548              The Point-to-Point Protocol          December 1993


     When a Terminate-Request is received, or other events occur which
     cause the link to become unavailable, the automaton will progress
     to a state where the link is ready to re-open.  No additional
     administrative intervention is necessary.

   Implementation Option:

     Experience has shown that users will execute an additional Open
     command when they want to renegotiate the link.  This might
     indicate that new values are to be negotiated.

     Since this is not the meaning of the Open event, it is suggested
     that when an Open user command is executed in the Opened, Closing,
     Stopping, or Stopped states, the implementation issue a Down
     event, immediately followed by an Up event.  This will cause the
     renegotiation of the link, without any harmful side effects.

   Close

     The Close event indicates that the link is not available for
     traffic; that is, the network administrator (human or program) has
     indicated that the link is not allowed to be Opened.  When this
     event occurs, and the link is not in the Closed state, the
     automaton attempts to terminate the connection.  Futher attempts
     to re-configure the link are denied until a new Open event occurs.

   Implementation Note:

     When authentication fails, the link SHOULD be terminated, to
     prevent attack by repetition and denial of service to other users.
     Since the link is administratively available (by definition), this
     can be accomplished by simulating a Close event to the LCP,
     immediately followed by an Open event.

     The Close followed by an Open will cause an orderly termination of
     the link, by progressing from the Closing to the Stopping state,
     and the This-Layer-Finished action can disconnect the link.  The
     automaton waits in the Stopped or Starting states for the next
     connection attempt.

   Timeout (TO+,TO-)

     This event indicates the expiration of the Restart timer.  The
     Restart timer is used to time responses to Configure-Request and
     Terminate-Request packets.

     The TO+ event indicates that the Restart counter continues to be
     greater than zero, which triggers the corresponding Configure-



Simpson                                                        [Page 20]

RFC 1548              The Point-to-Point Protocol          December 1993


     Request or Terminate-Request packet to be retransmitted.

     The TO- event indicates that the Restart counter is not greater
     than zero, and no more packets need to be retransmitted.

   Receive-Configure-Request (RCR+,RCR-)

     This event occurs when a Configure-Request packet is received from
     the peer.  The Configure-Request packet indicates the desire to
     open a connection and may specify Configuration Options.  The
     Configure-Request packet is more fully described in a later
     section.

     The RCR+ event indicates that the Configure-Request was
     acceptable, and triggers the transmission of a corresponding
     Configure-Ack.

     The RCR- event indicates that the Configure-Request was
     unacceptable, and triggers the transmission of a corresponding
     Configure-Nak or Configure-Reject.

   Implementation Note:

     These events may occur on a connection which is already in the
     Opened state.  The implementation MUST be prepared to immediately
     renegotiate the Configuration Options.

   Receive-Configure-Ack (RCA)

     The Receive-Configure-Ack event occurs when a valid Configure-Ack
     packet is received from the peer.  The Configure-Ack packet is a
     positive response to a Configure-Request packet.  An out of
     sequence or otherwise invalid packet is silently discarded.

   Implementation Note:

     Since the correct packet has already been received before reaching
     the Ack-Rcvd or Opened states, it is extremely unlikely that
     another such packet will arrive.  As specified, all invalid
     Ack/Nak/Rej packets are silently discarded, and do not affect the
     transitions of the automaton.

     However, it is not impossible that a correctly formed packet will
     arrive through a coincidentally-timed cross-connection.  It is
     more likely to be the result of an implementation error.  At the
     very least, this occurance SHOULD be logged.





Simpson                                                        [Page 21]

RFC 1548              The Point-to-Point Protocol          December 1993


   Receive-Configure-Nak/Rej (RCN)

     This event occurs when a valid Configure-Nak or Configure-Reject
     packet is received from the peer.  The Configure-Nak and
     Configure-Reject packets are negative responses to a Configure-
     Request packet.  An out of sequence or otherwise invalid packet is
     silently discarded.

   Implementation Note:

     Although the Configure-Nak and Configure-Reject cause the same
     state transition in the automaton, these packets have
     significantly different effects on the Configuration Options sent
     in the resulting Configure-Request packet.

   Receive-Terminate-Request (RTR)

     The Receive-Terminate-Request event occurs when a Terminate-
     Request packet is received.  The Terminate-Request packet
     indicates the desire of the peer to close the connection.

   Implementation Note:

     This event is not identical to the Close event (see above), and
     does not override the Open commands of the local network
     administrator.  The implementation MUST be prepared to receive a
     new Configure-Request without network administrator intervention.

   Receive-Terminate-Ack (RTA)

     The Receive-Terminate-Ack event occurs when a Terminate-Ack packet
     is received from the peer.  The Terminate-Ack packet is usually a
     response to a Terminate-Request packet.  The Terminate-Ack packet
     may also indicate that the peer is in Closed or Stopped states,
     and serves to re-synchronize the link configuration.

   Receive-Unknown-Code (RUC)

     The Receive-Unknown-Code event occurs when an un-interpretable
     packet is received from the peer.  A Code-Reject packet is sent in
     response.

   Receive-Code-Reject, Receive-Protocol-Reject (RXJ+,RXJ-)

     This event occurs when a Code-Reject or a Protocol-Reject packet
     is received from the peer.

     The RXJ+ event arises when the rejected value is acceptable, such



Simpson                                                        [Page 22]

RFC 1548              The Point-to-Point Protocol          December 1993


     as a Code-Reject of an extended code, or a Protocol-Reject of a
     NCP.  These are within the scope of normal operation.  The
     implementation MUST stop sending the offending packet type.

     The RXJ- event arises when the rejected value is catastrophic,
     such as a Code-Reject of Configure-Request, or a Protocol-Reject
     of LCP!  This event communicates an unrecoverable error that
     terminates the connection.

   Receive-Echo-Request, Receive-Echo-Reply, Receive-Discard-Request
   (RXR)

   This event occurs when an Echo-Request, Echo-Reply or Discard-
   Request packet is received from the peer.  The Echo-Reply packet is
   a response to a Echo-Request packet.  There is no reply to an Echo-
   Reply or Discard-Request packet.

4.6 Actions

  Actions in the automaton are caused by events and typically indicate
  the transmission of packets and/or the starting or stopping of the
  Restart timer.

   Illegal-Event (-)

     This indicates an event that cannot occur in a properly
     implemented automaton.  The implementation has an internal error,
     which should be reported and logged.  No transition is taken, and
     the implementation SHOULD NOT reset or freeze.

   This-Layer-Up (tlu)

     This action indicates to the upper layers that the automaton is
     entering the Opened state.

     Typically, this action is used by the LCP to signal the Up event
     to a NCP, Authentication Protocol, or Link Quality Protocol, or
     MAY be used by a NCP to indicate that the link is available for
     its network layer traffic.

   This-Layer-Down (tld)

     This action indicates to the upper layers that the automaton is
     leaving the Opened state.

     Typically, this action is used by the LCP to signal the Down event
     to a NCP, Authentication Protocol, or Link Quality Protocol, or
     MAY be used by a NCP to indicate that the link is no longer



Simpson                                                        [Page 23]

RFC 1548              The Point-to-Point Protocol          December 1993


     available for its network layer traffic.

   This-Layer-Started (tls)

     This action indicates to the lower layers that the automaton is
     entering the Starting state, and the lower layer is needed for the
     link.  The lower layer SHOULD respond with an Up event when the
     lower layer is available.

   Implementation Note:

     This results of this action are highly implementation dependent.

     The transitions where this event is indicated are defined
     according to a message passing architecture, rather than a
     signalling architecture.  If the action is desired to control
     specific signals (such as DTR), other transitions for the action
     are likely to be required (Open in Closed, RCR in Stopped).

   This-Layer-Finished (tlf)

     This action indicates to the lower layers that the automaton is
     entering the Stopped or Closed states, and the lower layer is no
     longer needed for the link.  The lower layer SHOULD respond with a
     Down event when the lower layer has terminated.

     Typically, this action MAY be used by the LCP to advance to the
     Link Dead phase, or MAY be used by a NCP to indicate to the LCP
     that the link may terminate when there are no other NCPs open.

   Implementation Note:

     This results of this action are highly implementation dependent.

     The transitions where this event is indicated are defined
     according to a message passing architecture, rather than a
     signalling architecture.  If the action is desired to control
     specific signals (such as DTR), other transitions for the action
     are likely to be required (Close in Starting, Down in Closing).

   Initialize-Restart-Counter (irc)

     This action sets the Restart counter to the appropriate value
     (Max-Terminate or Max-Configure).  The counter is decremented for
     each transmission, including the first.






Simpson                                                        [Page 24]

RFC 1548              The Point-to-Point Protocol          December 1993


   Implementation Note:

     In addition to setting the Restart counter, the implementation
     MUST set the timeout period to the initial value when Restart
     timer backoff is used.

   Zero-Restart-Counter (zrc)

     This action sets the Restart counter to zero.

   Implementation Note:

     This action enables the FSA to pause before proceeding to the
     desired final state, allowing traffic to be processed by the peer.
     In addition to zeroing the Restart counter, the implementation
     MUST set the timeout period to an appropriate value.

   Send-Configure-Request (scr)

     The Send-Configure-Request action transmits a Configure-Request
     packet.  This indicates the desire to open a connection with a
     specified set of Configuration Options.  The Restart timer is
     started when the Configure-Request packet is transmitted, to guard
     against packet loss.  The Restart counter is decremented each time
     a Configure-Request is sent.

   Send-Configure-Ack (sca)

     The Send-Configure-Ack action transmits a Configure-Ack packet.
     This acknowledges the reception of a Configure-Request packet with
     an acceptable set of Configuration Options.

   Send-Configure-Nak (scn)

     The Send-Configure-Nak action transmits a Configure-Nak or
     Configure-Reject packet, as appropriate.  This negative response
     reports the reception of a Configure-Request packet with an
     unacceptable set of Configuration Options.  Configure-Nak packets
     are used to refuse a Configuration Option value, and to suggest a
     new, acceptable value.  Configure-Reject packets are used to
     refuse all negotiation about a Configuration Option, typically
     because it is not recognized or implemented.  The use of
     Configure-Nak versus Configure-Reject is more fully described in
     the section on LCP Packet Formats.

   Send-Terminate-Request (str)

     The Send-Terminate-Request action transmits a Terminate-Request



Simpson                                                        [Page 25]

RFC 1548              The Point-to-Point Protocol          December 1993


     packet.  This indicates the desire to close a connection.  The
     Restart timer is started when the Terminate-Request packet is
     transmitted, to guard against packet loss.  The Restart counter is
     decremented each time a Terminate-Request is sent.

   Send-Terminate-Ack (sta)

     The Send-Terminate-Ack action transmits a Terminate-Ack packet.
     This acknowledges the reception of a Terminate-Request packet or
     otherwise serves to synchronize the state machines.

   Send-Code-Reject (scj)

     The Send-Code-Reject action transmits a Code-Reject packet.  This
     indicates the reception of an unknown type of packet.

   Send-Echo-Reply (ser)

     The Send-Echo-Reply action transmits an Echo-Reply packet.  This
     acknowledges the reception of an Echo-Request packet.

4.7 Loop Avoidance

  The protocol makes a reasonable attempt at avoiding Configuration
  Option negotiation loops.  However, the protocol does NOT guarantee
  that loops will not happen.  As with any negotiation, it is possible
  to configure two PPP implementations with conflicting policies that
  will never converge.  It is also possible to configure policies which
  do converge, but which take significant time to do so.  Implementors
  should keep this in mind and SHOULD implement loop detection
  mechanisms or higher level timeouts.


4.8 Counters and Timers

   Restart Timer

     There is one special timer used by the automaton.  The Restart
     timer is used to time transmissions of Configure-Request and
     Terminate- Request packets.  Expiration of the Restart timer
     causes a Timeout event, and retransmission of the corresponding
     Configure-Request or Terminate-Request packet.  The Restart timer
     MUST be configurable, but SHOULD default to three (3) seconds.

   Implementation Note:

     The Restart timer SHOULD be based on the speed of the link.  The
     default value is designed for low speed (2,400 to 9,600 bps), high



Simpson                                                        [Page 26]

RFC 1548              The Point-to-Point Protocol          December 1993


     switching latency links (typical telephone lines).  Higher speed
     links, or links with low switching latency, SHOULD have
     correspondingly faster retransmission times.

     Instead of a constant value, the Restart timer MAY begin at an
     initial small value and increase to the configured final value.
     Each successive value less than the final value SHOULD be at least
     twice the previous value.  The initial value SHOULD be large
     enough to account for the size of the packets, twice the round
     trip time for transmission at the link speed, and at least an
     additional 100 milliseconds to allow the peer to process the
     packets before responding.  Some circuits add another 200
     milliseconds of satellite delay.  Round trip times for modems
     operating at 14,400 bps have been measured in the range of 160 to
     more than 600 milliseconds.

   Max-Terminate

     There is one required restart counter for Terminate-Requests.
     Max- Terminate indicates the number of Terminate-Request packets
     sent without receiving a Terminate-Ack before assuming that the
     peer is unable to respond.  Max-Terminate MUST be configurable,
     but SHOULD default to two (2) transmissions.

   Max-Configure

     A similar counter is recommended for Configure-Requests.  Max-
     Configure indicates the number of Configure-Request packets sent
     without receiving a valid Configure-Ack, Configure-Nak or
     Configure- Reject before assuming that the peer is unable to
     respond.  Max- Configure MUST be configurable, but SHOULD default
     to ten (10) transmissions.

   Max-Failure

     A related counter is recommended for Configure-Nak.  Max-Failure
     indicates the number of Configure-Nak packets sent without sending
     a Configure-Ack before assuming that configuration is not
     converging.  Any further Configure-Nak packets are converted to
     Configure-Reject packets.  Max-Failure MUST be configurable, but
     SHOULD default to ten (10) transmissions.

5. LCP Packet Formats

  There are three classes of LCP packets:

     1. Link Configuration packets used to establish and configure a
        link (Configure-Request, Configure-Ack, Configure-Nak and



Simpson                                                        [Page 27]

RFC 1548              The Point-to-Point Protocol          December 1993


        Configure-Reject).

     2. Link Termination packets used to terminate a link (Terminate-
        Request and Terminate-Ack).

     3. Link Maintenance packets used to manage and debug a link
        (Code-Reject, Protocol-Reject, Echo-Request, Echo-Reply, and
        Discard-Request).

  This document describes Version 1 of the Link Control Protocol.  In
  the interest of simplicity, there is no version field in the LCP
  packet.  If a new version of LCP is necessary in the future, the
  intention is that a new PPP Protocol field value will be used to
  differentiate Version 1 LCP from all other versions.  A correctly
  functioning Version 1 LCP implementation will always respond to
  unknown Protocols (including other versions) with an easily
  recognizable Version 1 packet, thus providing a deterministic
  fallback mechanism for implementations of other versions.

  Regardless of which Configuration Options are enabled, all LCP Link
  Configuration, Link Termination, and Code-Reject packets (codes 1
  through 7) are always sent as if no Configuration Options were
  enabled.  This ensures that such LCP packets are always recognizable
  even when one end of the link mistakenly believes the link to be
  open.

   Implementation Note:

     In particular, the Async-Control-Character-Map (ACCM) default for
     the type of link is used, and no address, control, or protocol
     field compression is allowed.

     Exactly one LCP packet is encapsulated in the PPP Information
     field, where the PPP Protocol field indicates type hex c021 (Link
     Control Protocol).

  A summary of the Link Control Protocol packet format is shown below.
  The fields are transmitted from left to right.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Code      |  Identifier   |            Length             |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |    Data ...
 +-+-+-+-+





Simpson                                                        [Page 28]

RFC 1548              The Point-to-Point Protocol          December 1993


  Code

     The Code field is one octet and identifies the kind of LCP packet.
     When a packet is received with an invalid Code field, a Code-
     Reject packet is transmitted.

     Up-to-date values of the LCP Code field are specified in the most
     recent "Assigned Numbers" RFC [2].  This specification concerns
     the following values:

           1       Configure-Request
           2       Configure-Ack
           3       Configure-Nak
           4       Configure-Reject
           5       Terminate-Request
           6       Terminate-Ack
           7       Code-Reject
           8       Protocol-Reject
           9       Echo-Request
           10      Echo-Reply
           11      Discard-Request

   Identifier

     The Identifier field is one octet and aids in matching requests
     and replies.  When a packet is received with an invalid Identifier
     field, the packet is silently discarded.

   Length

     The Length field is two octets and indicates the length of the LCP
     packet including the Code, Identifier, Length and Data fields.
     Octets outside the range of the Length field are treated as
     padding and are ignored on reception.  When a packet is received
     with an invalid Length field, the packet is silently discarded.

   Data

     The Data field is zero or more octets as indicated by the Length
     field.  The format of the Data field is determined by the Code
     field.

5.1 Configure-Request

   Description

     An implementation wishing to open a connection MUST transmit a LCP
     packet with the Code field set to 1 (Configure-Request), and the



Simpson                                                        [Page 29]

RFC 1548              The Point-to-Point Protocol          December 1993


     Options field filled with any desired changes to the link
     defaults.  Configuration Options SHOULD NOT be included with
     default values.

     Upon reception of a Configure-Request, an appropriate reply MUST
     be transmitted.

  A summary of the Configure-Request packet format is shown below.  The
  fields are transmitted from left to right.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Code      |  Identifier   |            Length             |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Options ...
 +-+-+-+-+

  Code

     1 for Configure-Request.

  Identifier

     The Identifier field MUST be changed whenever the content of the
     Options field changes, and whenever a valid reply has been
     received for a previous request.  For retransmissions, the
     Identifier MAY remain unchanged.

  Options

     The options field is variable in length and contains the list of
     zero or more Configuration Options that the sender desires to
     negotiate.  All Configuration Options are always negotiated
     simultaneously.  The format of Configuration Options is further
     described in a later section.

5.2 Configure-Ack

  Description

     If every Configuration Option received in a Configure-Request is
     recognizable and all values are acceptable, then the
     implementation MUST transmit a LCP packet with the Code field set
     to 2 (Configure-Ack), the Identifier field copied from the
     received Configure-Request, and the Options field copied from the
     received Configure-Request.  The acknowledged Configuration
     Options MUST NOT be reordered or modified in any way.



Simpson                                                        [Page 30]

RFC 1548              The Point-to-Point Protocol          December 1993


     On reception of a Configure-Ack, the Identifier field MUST match
     that of the last transmitted Configure-Request.  Additionally, the
     Configuration Options in a Configure-Ack MUST exactly match those
     of the last transmitted Configure-Request.  Invalid packets are
     silently discarded.

  A summary of the Configure-Ack packet format is shown below.  The
  fields are transmitted from left to right.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Code      |  Identifier   |            Length             |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Options ...
 +-+-+-+-+

  Code

     2 for Configure-Ack.

  Identifier

     The Identifier field is a copy of the Identifier field of the
     Configure-Request which caused this Configure-Ack.

  Options

     The Options field is variable in length and contains the list of
     zero or more Configuration Options that the sender is
     acknowledging.  All Configuration Options are always acknowledged
     simultaneously.

5.3 Configure-Nak

  Description

     If every element of the received Configuration Options is
     recognizable but some values are not acceptable, then the
     implementation MUST transmit a LCP packet with the Code field set
     to 3 (Configure-Nak), the Identifier field copied from the
     received Configure-Request, and the Options field filled with only
     the unacceptable Configuration Options from the Configure-Request.
     All acceptable Configuration Options are filtered out of the
     Configure-Nak, but otherwise the Configuration Options from the
     Configure-Request MUST NOT be reordered.

     Options which have no value fields (boolean options) MUST use the



Simpson                                                        [Page 31]

RFC 1548              The Point-to-Point Protocol          December 1993


     Configure-Reject reply instead.

     Each Configuration Option which is allowed only a single instance
     MUST be modified to a value acceptable to the Configure-Nak
     sender.  The default value MAY be used, when this differs from the
     requested value.

     When a particular type of Configuration Option can be listed more
     than once with different values, the Configure-Nak MUST include a
     list of all values for that option which are acceptable to the
     Configure-Nak sender.  This includes acceptable values that were
     present in the Configure-Request.

     Finally, an implementation may be configured to request the
     negotiation of a specific Configuration Option.  If that option is
     not listed, then that option MAY be appended to the list of Nak'd
     Configuration Options in order to prompt the peer to include that
     option in its next Configure-Request packet.  Any value fields for
     the option MUST indicate values acceptable to the Configure-Nak
     sender.

     On reception of a Configure-Nak, the Identifier field MUST match
     that of the last transmitted Configure-Request.  Invalid packets
     are silently discarded.

     Reception of a valid Configure-Nak indicates that a new
     Configure-Request MAY be sent with the Configuration Options
     modified as specified in the Configure-Nak.  When multiple
     instances of a Configuration Option are present, the peer SHOULD
     select a single value to include in its next Configure-Request
     packet.

     Some Configuration Options have a variable length.  Since the
     Nak'd Option has been modified by the peer, the implementation
     MUST be able to handle an Option length which is different from
     the original Configure-Request.

  A summary of the Configure-Nak packet format is shown below.  The
  fields are transmitted from left to right.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Code      |  Identifier   |            Length             |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Options ...
 +-+-+-+-+




Simpson                                                        [Page 32]

RFC 1548              The Point-to-Point Protocol          December 1993


   Code

     3 for Configure-Nak.

   Identifier

     The Identifier field is a copy of the Identifier field of the
     Configure-Request which caused this Configure-Nak.

   Options

     The Options field is variable in length and contains the list of
     zero or more Configuration Options that the sender is Nak'ing.
     All Configuration Options are always Nak'd simultaneously.

5.4 Configure-Reject

  Description

     If some Configuration Options received in a Configure-Request are
     not recognizable or are not acceptable for negotiation (as
     configured by a network administrator), then the implementation
     MUST transmit a LCP packet with the Code field set to 4
     (Configure-Reject), the Identifier field copied from the received
     Configure-Request, and the Options field filled with only the
     unacceptable Configuration Options from the Configure-Request.
     All recognizable and negotiable Configuration Options are filtered
     out of the Configure-Reject, but otherwise the Configuration
     Options MUST NOT be reordered or modified in any way.

     On reception of a Configure-Reject, the Identifier field MUST
     match that of the last transmitted Configure-Request.
     Additionally, the Configuration Options in a Configure-Reject MUST
     be a proper subset of those in the last transmitted Configure-
     Request.  Invalid packets are silently discarded.

     Reception of a valid Configure-Reject indicates that a new
     Configure-Request SHOULD be sent which does not include any of the
     Configuration Options listed in the Configure-Reject.

  A summary of the Configure-Reject packet format is shown below.  The
  fields are transmitted from left to right.









Simpson                                                        [Page 33]

RFC 1548              The Point-to-Point Protocol          December 1993


  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Code      |  Identifier   |            Length             |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Options ...
 +-+-+-+-+

   Code

     4 for Configure-Reject.

   Identifier

     The Identifier field is a copy of the Identifier field of the
     Configure-Request which caused this Configure-Reject.

   Options

     The Options field is variable in length and contains the list of
     zero or more Configuration Options that the sender is rejecting.
     All Configuration Options are always rejected simultaneously.

5.5 Terminate-Request and Terminate-Ack

  Description

     LCP includes Terminate-Request and Terminate-Ack Codes in order to
     provide a mechanism for closing a connection.

     A LCP implementation wishing to close a connection SHOULD transmit
     a LCP packet with the Code field set to 5 (Terminate-Request), and
     the Data field filled with any desired data.  Terminate-Request
     packets SHOULD continue to be sent until Terminate-Ack is
     received, the lower layer indicates that it has gone down, or a
     sufficiently large number have been transmitted such that the peer
     is down with reasonable certainty.

     Upon reception of a Terminate-Request, a LCP packet MUST be
     transmitted with the Code field set to 6 (Terminate-Ack), the
     Identifier field copied from the Terminate-Request packet, and the
     Data field filled with any desired data.

     Reception of an unelicited Terminate-Ack indicates that the peer
     is in the Closed or Stopped states, or is otherwise in need of
     re-negotiation.

  A summary of the Terminate-Request and Terminate-Ack packet formats



Simpson                                                        [Page 34]

RFC 1548              The Point-to-Point Protocol          December 1993


  is shown below.  The fields are transmitted from left to right.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Code      |  Identifier   |            Length             |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |    Data ...
 +-+-+-+-+

   Code

     5 for Terminate-Request;

     6 for Terminate-Ack.

   Identifier

     On transmission, the Identifier field MUST be changed whenever the
     content of the Data field changes, and whenever a valid reply has
     been received for a previous request.  For retransmissions, the
     Identifier MAY remain unchanged.  On reception, the Identifier
     field of the Terminate-Request is copied into the Identifier field
     of the Terminate-Ack packet.

   Data

     The Data field is zero or more octets and contains uninterpreted
     data for use by the sender.  The data may consist of any binary
     value and may be of any length from zero to the peer's established
     MRU minus four.


5.6 Code-Reject

  Description

     Reception of a LCP packet with an unknown Code indicates that one
     of the communicating LCP implementations is faulty or incomplete.
     This error MUST be reported back to the sender of the unknown Code
     by transmitting a LCP packet with the Code field set to 7 (Code-
     Reject), and the inducing packet copied to the Rejected-
     Information field.

     Upon reception of a Code-Reject, the implementation SHOULD report
     the error, since it is unlikely that the situation can be
     rectified automatically.




Simpson                                                        [Page 35]

RFC 1548              The Point-to-Point Protocol          December 1993


  A summary of the Code-Reject packet format is shown below.  The
  fields are transmitted from left to right.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Code      |  Identifier   |            Length             |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Rejected-Packet ...
 +-+-+-+-+-+-+-+-+

   Code

     7 for Code-Reject.

   Identifier

     The Identifier field MUST be changed for each Code-Reject sent.

   Rejected-Information

     The Rejected-Information field contains a copy of the LCP packet
     which is being rejected.  It begins with the Information field,
     and does not include any Data Link Layer headers nor an FCS.  The
     Rejected-Information MUST be truncated to comply with the peer's
     established MRU.


5.7 Protocol-Reject

   Description

     Reception of a PPP packet with an unknown Protocol field indicates
     that the peer is attempting to use a protocol which is
     unsupported.  This usually occurs when the peer attempts to
     configure a new protocol.  If the LCP state machine is in the
     Opened state, then this error MUST be reported back to the peer by
     transmitting a LCP packet with the Code field set to 8 (Protocol-
     Reject), the Rejected-Protocol field set to the received Protocol,
     and the inducing packet copied to the Rejected-Information field.

     Upon reception of a Protocol-Reject, the implementation MUST stop
     sending packets of the indicated protocol at the earliest
     opportunity.

     Protocol-Reject packets can only be sent in the LCP Opened state.
     Protocol-Reject packets received in any state other than the LCP
     Opened state SHOULD be silently discarded.



Simpson                                                        [Page 36]

RFC 1548              The Point-to-Point Protocol          December 1993


  A summary of the Protocol-Reject packet format is shown below.  The
  fields are transmitted from left to right.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Code      |  Identifier   |            Length             |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |       Rejected-Protocol       |      Rejected-Information ...
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Code

     8 for Protocol-Reject.

   Identifier

     The Identifier field MUST be changed for each Protocol-Reject
     sent.

   Rejected-Protocol

     The Rejected-Protocol field is two octets and contains the PPP
     Protocol field of the packet which is being rejected.

   Rejected-Information

     The Rejected-Information field contains a copy of the packet which
     is being rejected.  It begins with the Information field, and does
     not include any Data Link Layer headers nor an FCS.  The
     Rejected-Information MUST be truncated to comply with the peer's
     established MRU.

5.8 Echo-Request and Echo-Reply

  Description

     LCP includes Echo-Request and Echo-Reply Codes in order to provide
     a Data Link Layer loopback mechanism for use in exercising both
     directions of the link.  This is useful as an aid in debugging,
     link quality determination, performance testing, and for numerous
     other functions.

     An Echo-Request sender transmits a LCP packet with the Code field
     set to 9 (Echo-Request), the Identifier field set, the local
     Magic-Number (if any) inserted, and the Data field filled with any
     desired data, but not exceeding the peer's established MRU minus
     eight.



Simpson                                                        [Page 37]

RFC 1548              The Point-to-Point Protocol          December 1993


     Upon reception of an Echo-Request, a LCP packet MUST be
     transmitted with the Code field set to 10 (Echo-Reply), the
     Identifier field copied from the received Echo-Request, the local
     Magic-Number (if any) inserted, and the Data field copied from the
     Echo-Request, truncating as necessary to avoid exceeding the
     peer's established MRU.

     Echo-Request and Echo-Reply packets may only be sent in the LCP
     Opened state.  Echo-Request and Echo-Reply packets received in any
     state other than the LCP Opened state SHOULD be silently
     discarded.

  A summary of the Echo-Request and Echo-Reply packet formats is shown
  below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Code      |  Identifier   |            Length             |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |                         Magic-Number                          |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Data ...
  +-+-+-+-+

   Code

     9 for Echo-Request;

     10 for Echo-Reply.

   Identifier

     On transmission, the Identifier field MUST be changed whenever the
     content of the Data field changes, and whenever a valid reply has
     been received for a previous request.  For retransmissions, the
     Identifier MAY remain unchanged.

     On reception, the Identifier field of the Echo-Request is copied
     into the Identifier field of the Echo-Reply packet.

   Magic-Number

     The Magic-Number field is four octets and aids in detecting links
     which are in the looped-back condition.  Until the Magic-Number
     Configuration Option has been successfully negotiated, the Magic-
     Number MUST be transmitted as zero.  See the Magic-Number
     Configuration Option for further explanation.



Simpson                                                        [Page 38]

RFC 1548              The Point-to-Point Protocol          December 1993


   Data

     The Data field is zero or more octets and contains uninterpreted
     data for use by the sender.  The data may consist of any binary
     value and may be of any length from zero to the peer's established
     MRU minus eight.

5.9 Discard-Request

  Description

     LCP includes a Discard-Request Code in order to provide a Data
     Link Layer sink mechanism for use in exercising the local to
     remote direction of the link.  This is useful as an aid in
     debugging, performance testing, and for numerous other functions.

     The sender transmits a LCP packet with the Code field set to 11
     (Discard-Request), the Identifier field set, the local Magic-
     Number (if any) inserted, and the Data field filled with any
     desired data, but not exceeding the peer's established MRU minus
     eight.

     Discard-Request packets may only be sent in the LCP Opened state.
     On reception, the receiver MUST simply throw away any Discard-
     Request that it receives.

  A summary of the Discard-Request packet format is shown below.  The
  fields are transmitted from left to right.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Code      |  Identifier   |            Length             |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                         Magic-Number                          |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |    Data ...
 +-+-+-+-+


   Code

     11 for Discard-Request.

   Identifier

     The Identifier field MUST be changed for each Discard-Request
     sent.



Simpson                                                        [Page 39]

RFC 1548              The Point-to-Point Protocol          December 1993


   Magic-Number

     The Magic-Number field is four octets and aids in detecting links
     which are in the looped-back condition.  Until the Magic-Number
     Configuration Option has been successfully negotiated, the Magic-
     Number MUST be transmitted as zero.  See the Magic-Number
     Configuration Option for further explanation.

   Data

     The Data field is zero or more octets and contains uninterpreted
     data for use by the sender.  The data may consist of any binary
     value and may be of any length from zero to the peer's established
     MRU minus four.

6.  LCP Configuration Options

  LCP Configuration Options allow negotiation of modifications to the
  default characteristics of a point-to-point link.  If a Configuration
  Option is not included in a Configure-Request packet, the default
  value for that Configuration Option is assumed.

  Some Configuration Options MAY be listed more than once.  The effect
  of this is Configuration Option specific, and is specified by each
  such Configuration Option description.  (None of the Configuration
  Options in this specification can be listed more than once.)

  The end of the list of Configuration Options is indicated by the
  length of the LCP packet.

  Unless otherwise specified, all Configuration Options apply in a
  half-duplex fashion; typically, in the receive direction of the link
  from the point of view of the Configure-Request sender.

  A summary of the Configuration Option format is shown below.  The
  fields are transmitted from left to right.

          0                   1
          0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
         |     Type      |    Length     |    Data ...
         +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type

     The Type field is one octet and indicates the type of
     Configuration Option.  Up-to-date values of the LCP Option Type
     field are specified in the most recent "Assigned Numbers" RFC [2].



Simpson                                                        [Page 40]

RFC 1548              The Point-to-Point Protocol          December 1993


     This specification concerns the following values:

              1       Maximum-Receive-Unit
              2       Async-Control-Character-Map
              3       Authentication-Protocol
              4       Quality-Protocol
              5       Magic-Number
              6       RESERVED
              7       Protocol-Field-Compression
              8       Address-and-Control-Field-Compression

   Length

     The Length field is one octet and indicates the length of this
     Configuration Option including the Type, Length and Data fields.
     If a negotiable Configuration Option is received in a Configure-
     Request but with an invalid Length, a Configure-Nak SHOULD be
     transmitted which includes the desired Configuration Option with
     an appropriate Length and Data.

   Data

     The Data field is zero or more octets and information specific to
     the Configuration Option.  The format and length of the Data field
     is determined by the Type and Length fields.

6.1 Maximum-Receive-Unit

  Description

     This Configuration Option may be sent to inform the peer that the
     implementation can receive larger packets, or to request that the
     peer send smaller packets.

     The default value is 1500 octets.  If smaller packets are
     requested, an implementation MUST still be able to receive the
     full 1500 octet information field in case link synchronization is
     lost.

   Implementation Note:

     This option is used to indicate an implementation capability.  The
     peer is not required to maximize the use of the capacity.  For
     example, when a MRU is indicated which is 2048 octets, the peer is
     not required to send any packet with 2048 octets.  The peer need
     not Configure-Nak to indicate that it will only send smaller
     packets, since the implementation will always require support for
     at least 1500 octets.



Simpson                                                        [Page 41]

RFC 1548              The Point-to-Point Protocol          December 1993


  A summary of the Maximum-Receive-Unit Configuration Option format is
  shown below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |      Maximum-Receive-Unit     |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


   Type

     1

   Length

     4

   Maximum-Receive-Unit

     The Maximum-Receive-Unit field is two octets, and specifies the
     maximum number of octets in the Information and Padding fields.
     It does not include the framing, Protocol field, FCS, nor any
     transparency bits or bytes.

6.2 Async-Control-Character-Map

  Description

     This Configuration Option provides a method to negotiate the use
     of control character transparency on asynchronous links.

     For asynchronous links, the default value is 0xffffffff, which
     causes all octets less than 0x20 to be mapped into an appropriate
     two octet sequence.  For most other links, the default value is 0,
     since there is no need for mapping.

     However, it is rarely necessary to map all control characters, and
     often it is unnecessary to map any control characters.  The
     Configuration Option is used to inform the peer which control
     characters MUST remain mapped when the peer sends them.

     The peer MAY still send any other octets in mapped format, if it
     is necessary because of constraints known to the peer.  The peer
     SHOULD Configure-Nak with the logical union of the sets of mapped
     octets, so that when such octets are spuriously introduced they
     can be ignored on receipt.




Simpson                                                        [Page 42]

RFC 1548              The Point-to-Point Protocol          December 1993


  A summary of the Async-Control-Character-Map Configuration Option
  format is shown below.  The fields are transmitted from left to
  right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |  Async-Control-Character-Map
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |         ACCM (cont)           |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type

     2

   Length

     6

   Async-Control-Character-Map

     The Async-Control-Character-Map field is four octets and indicates
     the set of control characters to be mapped.  The map is sent most
     significant octet first.

     Each numbered bit corresponds to the octet of the same value.  If
     the bit is cleared to zero, then that octet need not be mapped.
     If the bit is set to one, then that octet MUST remain mapped.  For
     example, if bit 19 is set to zero, then the ASCII control
     character 19 (DC3, Control-S) MAY be sent in the clear.

        Note: The least significant bit of the least significant octet
        (the final octet transmitted) is numbered bit 0, and would map
        to the ASCII control character NUL.

6.3 Authentication-Protocol

  Description

     On some links it may be desirable to require a peer to
     authenticate itself before allowing network-layer protocol packets
     to be exchanged.

     This Configuration Option provides a method to negotiate the use
     of a specific authentication protocol.  By default, authentication
     is not required.




Simpson                                                        [Page 43]

RFC 1548              The Point-to-Point Protocol          December 1993


     An implementation MUST NOT include multiple Authentication-
     Protocol Configuration Options in its Configure-Request packets.
     Instead, it SHOULD attempt to configure the most desirable
     protocol first.  If that protocol is Configure-Nak'd, then the
     implementation SHOULD attempt the next most desirable protocol in
     the next Configure-Request.

     If an implementation sends a Configure-Ack with this Configuration
     Option, then it is agreeing to authenticate with the specified
     protocol.  An implementation receiving a Configure-Ack with this
     Configuration Option SHOULD expect the peer to authenticate with
     the acknowledged protocol.

     There is no requirement that authentication be full duplex or that
     the same protocol be used in both directions.  It is perfectly
     acceptable for different protocols to be used in each direction.
     This will, of course, depend on the specific protocols negotiated.

  A summary of the Authentication-Protocol Configuration Option format
  is shown below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |     Authentication-Protocol   |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |    Data ...
  +-+-+-+-+

   Type

     3

   Length

     >= 4

   Authentication-Protocol

     The Authentication-Protocol field is two octets and indicates the
     authentication protocol desired.  Values for this field are always
     the same as the PPP Protocol field values for that same
     authentication protocol.

     Up-to-date values of the Authentication-Protocol field are
     specified in the most recent "Assigned Numbers" RFC [2].  Current
     values are assigned as follows:




Simpson                                                        [Page 44]

RFC 1548              The Point-to-Point Protocol          December 1993


       Value (in hex)    Protocol

       c023              Password Authentication Protocol
       c223              Challenge Handshake Authentication Protocol

   Data

     The Data field is zero or more octets and contains additional data
     as determined by the particular protocol.

6.4 Quality-Protocol

   Description

     On some links it may be desirable to determine when, and how
     often, the link is dropping data.  This process is called link
     quality monitoring.

     This Configuration Option provides a method to negotiate the use
     of a specific protocol for link quality monitoring.  By default,
     link quality monitoring is disabled.

     There is no requirement that quality monitoring be full duplex or
     that the same protocol be used in both directions.  It is
     perfectly acceptable for different protocols to be used in each
     direction.  This will, of course, depend on the specific protocols
     negotiated.

  A summary of the Quality-Protocol Configuration Option format is
  shown below.  The fields are transmitted from left to right.

  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |     Type      |    Length     |        Quality-Protocol       |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |    Data ...
 +-+-+-+-+

   Type

     4

   Length

     >= 4





Simpson                                                        [Page 45]

RFC 1548              The Point-to-Point Protocol          December 1993


   Quality-Protocol

     The Quality-Protocol field is two octets and indicates the link
     quality monitoring protocol desired.  Values for this field are
     always the same as the PPP Protocol field values for that same
     monitoring protocol.

     Up-to-date values of the Quality-Protocol field are specified in
     the most recent "Assigned Numbers" RFC [2].  Current values are
     assigned as follows:

              Value (in hex)          Protocol

              c025                    Link Quality Report

   Data

     The Data field is zero or more octets and contains additional data
     as determined by the particular protocol.

6.5 Magic-Number

  Description

     This Configuration Option provides a method to detect looped-back
     links and other Data Link Layer anomalies.  This Configuration
     Option MAY be required by some other Configuration Options such as
     the Quality-Protocol Configuration Option.  By default, the
     Magic-Number is not negotiated, and zero is inserted where a
     Magic-Number might otherwise be used.

     Before this Configuration Option is requested, an implementation
     MUST choose its Magic-Number.  It is recommended that the Magic-
     Number be chosen in the most random manner possible in order to
     guarantee with very high probability that an implementation will
     arrive at a unique number.  A good way to choose a unique random
     number is to start with an unique seed.  Suggested sources of
     uniqueness include machine serial numbers, other network hardware
     addresses, time-of-day clocks, etc.  Particularly good random
     number seeds are precise measurements of the inter-arrival time of
     physical events such as packet reception on other connected
     networks, server response time, or the typing rate of a human
     user.  It is also suggested that as many sources as possible be
     used simultaneously.

     When a Configure-Request is received with a Magic-Number
     Configuration Option, the received Magic-Number is compared with
     the Magic-Number of the last Configure-Request sent to the peer.



Simpson                                                        [Page 46]

RFC 1548              The Point-to-Point Protocol          December 1993


     If the two Magic-Numbers are different, then the link is not
     looped-back, and the Magic-Number SHOULD be acknowledged.  If the
     two Magic-Numbers are equal, then it is possible, but not certain,
     that the link is looped-back and that this Configure-Request is
     actually the one last sent.  To determine this, a Configure-Nak
     MUST be sent specifying a different Magic-Number value.  A new
     Configure-Request SHOULD NOT be sent to the peer until normal
     processing would cause it to be sent (that is, until a Configure-
     Nak is received or the Restart timer runs out).

     Reception of a Configure-Nak with a Magic-Number different from
     that of the last Configure-Nak sent to the peer proves that a link
     is not looped-back, and indicates a unique Magic-Number.  If the
     Magic-Number is equal to the one sent in the last Configure-Nak,
     the possibility of a looped-back link is increased, and a new
     Magic-Number MUST be chosen.  In either case, a new Configure-
     Request SHOULD be sent with the new Magic-Number.

     If the link is indeed looped-back, this sequence (transmit
     Configure-Request, receive Configure-Request, transmit Configure-
     Nak, receive Configure-Nak) will repeat over and over again.  If
     the link is not looped-back, this sequence might occur a few
     times, but it is extremely unlikely to occur repeatedly.  More
     likely, the Magic-Numbers chosen at either end will quickly
     diverge, terminating the sequence.  The following table shows the
     probability of collisions assuming that both ends of the link
     select Magic-Numbers with a perfectly uniform distribution:

              Number of Collisions        Probability
              --------------------   ---------------------
                      1              1/2**32    = 2.3 E-10
                      2              1/2**32**2 = 5.4 E-20
                      3              1/2**32**3 = 1.3 E-29

     Good sources of uniqueness or randomness are required for this
     divergence to occur.  If a good source of uniqueness cannot be
     found, it is recommended that this Configuration Option not be
     enabled; Configure-Requests with the option SHOULD NOT be
     transmitted and any Magic-Number Configuration Options which the
     peer sends SHOULD be either acknowledged or rejected.  In this
     case, loop-backs cannot be reliably detected by the
     implementation, although they may still be detectable by the peer.

     If an implementation does transmit a Configure-Request with a
     Magic-Number Configuration Option, then it MUST NOT respond with a
     Configure-Reject if it receives a Configure-Request with a Magic-
     Number Configuration Option.  That is, if an implementation
     desires to use Magic Numbers, then it MUST also allow its peer to



Simpson                                                        [Page 47]

RFC 1548              The Point-to-Point Protocol          December 1993


     do so.  If an implementation does receive a Configure-Reject in
     response to a Configure-Request, it can only mean that the link is
     not looped-back, and that its peer will not be using Magic-
     Numbers.  In this case, an implementation SHOULD act as if the
     negotiation had been successful (as if it had instead received a
     Configure-Ack).

     The Magic-Number also may be used to detect looped-back links
     during normal operation as well as during Configuration Option
     negotiation.  All LCP Echo-Request, Echo-Reply, and Discard-
     Request packets have a Magic-Number field.  If Magic-Number has
     been successfully negotiated, an implementation MUST transmit
     these packets with the Magic-Number field set to its negotiated
     Magic-Number.

     The Magic-Number field of these packets SHOULD be inspected on
     reception.  All received Magic-Number fields MUST be equal to
     either zero or the peer's unique Magic-Number, depending on
     whether or not the peer negotiated a Magic-Number.  Reception of a
     Magic-Number field equal to the negotiated local Magic-Number
     indicates a looped-back link.  Reception of a Magic- Number other
     than the negotiated local Magic-Number or the peer's negotiated
     Magic-Number, or zero if the peer didn't negotiate one, indicates
     a link which has been (mis)configured for communications with a
     different peer.

     Procedures for recovery from either case are unspecified and may
     vary from implementation to implementation.  A somewhat
     pessimistic procedure is to assume a LCP Down event.  A further
     Open event will begin the process of re-establishing the link,
     which can't complete until the loop-back condition is terminated
     and Magic-Numbers are successfully negotiated.  A more optimistic
     procedure (in the case of a loop-back) is to begin transmitting
     LCP Echo-Request packets until an appropriate Echo-Reply is
     received, indicating a termination of the loop-back condition.

  A summary of the Magic-Number Configuration Option format is shown
  below.  The fields are transmitted from left to right.

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Type      |    Length     |          Magic-Number
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     Magic-Number (cont)       |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+





Simpson                                                        [Page 48]

RFC 1548              The Point-to-Point Protocol          December 1993


   Type

     5

   Length

     6

   Magic-Number

     The Magic-Number field is four octets and indicates a number which
     is very likely to be unique to one end of the link.  A Magic-
     Number of zero is illegal and MUST always be Nak'd, if it is not
     Rejected outright.

6.6 Protocol-Field-Compression

  Description

     This Configuration Option provides a method to negotiate the
     compression of the PPP Protocol field.  By default, all
     implementations MUST transmit packets with two octet PPP Protocol
     fields.

     PPP Protocol field numbers are chosen such that some values may be
     compressed into a single octet form which is clearly
     distinguishable from the two octet form.  This Configuration
     Option is sent to inform the peer that the implementation can
     receive such single octet Protocol fields.

     As previously mentioned, the Protocol field uses an extension
     mechanism consistent with the ISO 3309 extension mechanism for the
     Address field; the Least Significant Bit (LSB) of each octet is
     used to indicate extension of the Protocol field.  A binary "0" as
     the LSB indicates that the Protocol field continues with the
     following octet.  The presence of a binary "1" as the LSB marks
     the last octet of the Protocol field.  Notice that any number of
     "0" octets may be prepended to the field, and will still indicate
     the same value (consider the two binary representations for 3,
     00000011 and 00000000 00000011).

     When using low speed links, it is desirable to conserve bandwidth
     by sending as little redundant data as possible.  The Protocol-
     Field-Compression Configuration Option allows a trade-off between
     implementation simplicity and bandwidth efficiency.  If
     successfully negotiated, the ISO 3309 extension mechanism may be
     used to compress the Protocol field to one octet instead of two.
     The large majority of packets are compressible since data



Simpson                                                        [Page 49]

RFC 1548              The Point-to-Point Protocol          December 1993


     protocols are typically assigned with Protocol field values less
     than 256.

     Compressed Protocol fields MUST NOT be transmitted unless this
     Configuration Option has been negotiated.  When negotiated, PPP
     implementations MUST accept PPP packets with either double-octet
     or single-octet Protocol fields, and MUST NOT distinguish between
     them.

     The Protocol field is never compressed when sending any LCP
     packet.  This rule guarantees unambiguous recognition of LCP
     packets.

     When a Protocol field is compressed, the Data Link Layer FCS field
     is calculated on the compressed frame, not the original
     uncompressed frame.

  A summary of the Protocol-Field-Compression Configuration Option
  format is shown below.  The fields are transmitted from left to
  right.

               0                   1
               0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
              |     Type      |    Length     |
              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type

     7

   Length

     2

6.7 Address-and-Control-Field-Compression

  Description

     This Configuration Option provides a method to negotiate the
     compression of the Data Link Layer Address and Control fields.  By
     default, all implementations MUST transmit frames with Address and
     Control fields appropriate to the link framing.

     Since these fields usually have constant values for point-to-point
     links, they are easily compressed.  This Configuration Option is
     sent to inform the peer that the implementation can receive
     compressed Address and Control fields.



Simpson                                                        [Page 50]

RFC 1548              The Point-to-Point Protocol          December 1993


     If a compressed frame is received when Address-and-Control-Field-
     Compression has not been negotiated, the implementation MAY
     silently discard the frame.

     The Address and Control fields MUST NOT be compressed when sending
     any LCP packet.  This rule guarantees unambiguous recognition of
     LCP packets.

     When the Address and Control fields are compressed, the Data Link
     Layer FCS field is calculated on the compressed frame, not the
     original uncompressed frame.

  A summary of the Address-and-Control-Field-Compression configuration
  option format is shown below.  The fields are transmitted from left
  to right.

               0                   1
               0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
              |     Type      |    Length     |
              +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   Type

     8

   Length

     2

A. LCP Recommended Options

  The following Configurations Options are recommended:

     SYNC LINES

     Magic Number Link Quality Monitoring No Address and Control Field
     Compression No Protocol Field Compression

     ASYNC LINES

     Async Control Character Map Magic Number Address and Control Field
     Compression Protocol Field Compression

Security Considerations

  Security issues are briefly discussed in sections concerning the
  Authentication Phase, the Close event, and the Authentication-



Simpson                                                        [Page 51]

RFC 1548              The Point-to-Point Protocol          December 1993


  Protocol Configuration Option.  Further discussion is in a companion
  document entitled PPP Authentication Protocols.


References

   [1] Perkins, D., "Requirements for an Internet Standard
       Point-to-Point Protocol", RFC 1547, December 1993.

   [2] Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC 1340,
       USC/Information Sciences Institute, July 1992.

Acknowledgments

  Much of the text in this document is taken from the WG Requirements,
  and RFCs 1171 & 1172, by Drew Perkins of Carnegie Mellon University,
  and by Russ Hobby of the University of California at Davis.

  Many people spent significant time helping to develop the Point-to-
  Point Protocol.  The complete list of people is too numerous to list,
  but the following people deserve special thanks: Rick Adams (UUNET),
  Ken Adelman (TGV), Fred Baker (ACC), Mike Ballard (Telebit), Craig
  Fox (Network Systems), Karl Fox (Morning Star Technologies), Phill
  Gross (AN&S), former WG chair Russ Hobby (UC Davis), David Kaufman
  (Proteon), former WG chair Steve Knowles (FTP Software), former WG
  chair Brian Lloyd (L&A), John LoVerso (Xylogics), Bill Melohn (Sun
  Microsystems), Mike Patton (MIT), former WG chair Drew Perkins
  (Fore), Greg Satz (cisco systems), John Shriver (Proteon), Vernon
  Schryver (Silicon Graphics), and Asher Waldfogel (Wellfleet).

  The "Day in the Life" example was instigated by Kory Hamzeh (Avatar).
  In this version, improvements in wording were also provided by Scott
  Ginsburg, Mark Moraes, and Timon Sloan, as they worked on
  implementations.

  Special thanks to Morning Star Technologies for providing computing
  resources and network access support for writing this specification.

Chair's Address

  The working group can be contacted via the current chair:

     Fred Baker
     Advanced Computer Communications
     315 Bollay Drive
     Santa Barbara, California, 93111

     EMail: [email protected]



Simpson                                                        [Page 52]

RFC 1548              The Point-to-Point Protocol          December 1993


Editor's Address

  Questions about this memo can also be directed to:

     William Allen Simpson
     Daydreamer
     Computer Systems Consulting Services
     1384 Fontaine
     Madison Heights, Michigan  48071

     EMail: [email protected]








































Simpson                                                        [Page 53]