Network Working Group                                           R. Droms
Request for Comments: 1531                           Bucknell University
Category: Standards Track                                   October 1993


                 Dynamic Host Configuration Protocol

Status of this memo

  This RFC specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" for the standardization state and status
  of this protocol.  Distribution of this memo is unlimited.

Abstract

  The Dynamic Host Configuration Protocol (DHCP) provides a framework
  for passing configuration information to hosts on a TCP/IP network.
  DHCP is based on the Bootstrap Protocol (BOOTP) [7], adding the
  capability of automatic allocation of reusable network addresses and
  additional configuration options [19].  DHCP captures the behavior of
  BOOTP relay agents [7, 23], and DHCP participants can interoperate
  with BOOTP participants [9].

Table of Contents

  1.  Introduction. . . . . . . . . . . . . . . . . . . . . . . . .  2
  1.1 Related Work. . . . . . . . . . . . . . . . . . . . . . . . .  4
  1.2 Problem definition and issues . . . . . . . . . . . . . . . .  4
  1.3 Requirements. . . . . . . . . . . . . . . . . . . . . . . . .  5
  1.4 Terminology . . . . . . . . . . . . . . . . . . . . . . . . .  6
  1.5 Design goals. . . . . . . . . . . . . . . . . . . . . . . . .  6
  2. Protocol Summary . . . . . . . . . . . . . . . . . . . . . . .  8
  2.1 Configuration parameters repository . . . . . . . . . . . . . 10
  2.2 Dynamic allocation of network addresses . . . . . . . . . . . 11
  3. The Client-Server Protocol . . . . . . . . . . . . . . . . . . 11
  3.1 Client-server interaction - allocating a network address. . . 12
  3.2 Client-server interaction - reusing a  previously allocated
      network address . . . . . . . . . . . . . . . . . . . . . . . 17
  3.3 Interpretation and representation of time values. . . . . . . 19
  3.4 Host parameters in DHCP . . . . . . . . . . . . . . . . . . . 19
  3.5 Use of DHCP in clients with multiple interfaces . . . . . . . 20
  3.6 When clients should use DHCP. . . . . . . . . . . . . . . . . 20
  4. Specification of the DHCP client-server protocol . . . . . . . 21
  4.1 Constructing and sending DHCP messages. . . . . . . . . . . . 21
  4.2 DHCP server administrative controls . . . . . . . . . . . . . 23
  4.3 DHCP server behavior. . . . . . . . . . . . . . . . . . . . . 24



Droms                                                           [Page 1]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  4.3.1 DHCPDISCOVER message. . . . . . . . . . . . . . . . . . . . 24
  4.3.2 DHCPREQUEST message . . . . . . . . . . . . . . . . . . . . 27
  4.3.3 DHCPDECLINE message . . . . . . . . . . . . . . . . . . . . 29
  4.3.4 DHCPRELEASE message . . . . . . . . . . . . . . . . . . . . 29
  4.4 DHCP client behavior. . . . . . . . . . . . . . . . . . . . . 29
  4.4.1 Initialization and allocation of network address. . . . . . 29
  4.4.2 Initialization with known network address . . . . . . . . . 33
  4.4.3 Initialization with a known DHCP server address . . . . . . 34
  4.4.4 Reacquisition and expiration. . . . . . . . . . . . . . . . 34
  4.4.5 DHCPRELEASE . . . . . . . . . . . . . . . . . . . . . . . . 35
  5. Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . 35
  6. References . . . . . . . . . . . . . . . . . . . . . . . . . . 36
  7. Security Considerations. . . . . . . . . . . . . . . . . . . . 37
  8. Author's Address . . . . . . . . . . . . . . . . . . . . . . . 38
  A. Host Configuration Parameters  . . . . . . . . . . . . . . . . 39

List of Figures

  1. Format of a DHCP message . . . . . . . . . . . . . . . . . . .  9
  2. Format of the 'flags' field. . . . . . . . . . . . . . . . . . 10
  3. Timeline diagram of messages exchanged between DHCP client and
     servers when allocating a new network address. . . . . . . . . 15
  4. Timeline diagram of messages exchanged between DHCP client and
     servers when reusing a previously allocated network address. . 18
  5. State-transition diagram for DHCP clients. . . . . . . . . . . 31

List of Tables

  1. Description of fields in a DHCP message. . . . . . . . . . . . 14
  2. DHCP messages. . . . . . . . . . . . . . . . . . . . . . . . . 16
  3. Fields and options used by DHCP servers. . . . . . . . . . . . 25
  4. Fields and options used by DHCP clients. . . . . . . . . . . . 32

1. Introduction

  The Dynamic Host Configuration Protocol (DHCP) provides configuration
  parameters to Internet hosts.  DHCP consists of two components: a
  protocol for delivering host-specific configuration parameters from a
  DHCP server to a host and a mechanism for allocation of network
  addresses to hosts.

  DHCP is built on a client-server model, where designated DHCP server
  hosts allocate network addresses and deliver configuration parameters
  to dynamically configured hosts.  Throughout the remainder of this
  document, the term "server" refers to a host providing initialization
  parameters through DHCP, and the term "client" refers to a host
  requesting initialization parameters from a DHCP server.




Droms                                                           [Page 2]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  A host should not act as a DHCP server unless explicitly configured
  to do so by a system administrator.  The diversity of hardware and
  protocol implementations in the Internet would preclude reliable
  operation if random hosts were allowed to respond to DHCP requests.
  For example, IP requires the setting of many parameters within the
  protocol implementation software.  Because IP can be used on many
  dissimilar kinds of network hardware, values for those parameters
  cannot be guessed or assumed to have correct defaults.  Also,
  distributed address allocation schemes depend on a polling/defense
  mechanism for discovery of addresses that are already in use.  IP
  hosts may not always be able to defend their network addresses, so
  that such a distributed address allocation scheme cannot be
  guaranteed to avoid allocation of duplicate network addresses.

  DHCP supports three mechanisms for IP address allocation.  In
  "automatic allocation", DHCP assigns a permanent IP address to a
  host.  In "dynamic allocation", DHCP assigns an IP address to a host
  for a limited period of time (or until the host explicitly
  relinquishes the address).  In "manual allocation", a host's IP
  address is assigned by the network administrator, and DHCP is used
  simply to convey the assigned address to the host.  A particular
  network will use one or more of these mechanisms, depending on the
  policies of the network administrator.

  Dynamic allocation is the only one of the three mechanisms that
  allows automatic reuse of an address that is no longer needed by the
  host to which it was assigned.  Thus, dynamic allocation is
  particularly useful for assigning an address to a host that will be
  connected to the network only temporarily or for sharing a limited
  pool of IP addresses among a group of hosts that do not need
  permanent IP addresses.  Dynamic allocation may also be a good choice
  for assigning an IP address to a new host being permanently connected
  to a network where IP addresses are sufficiently scarce that it is
  important to reclaim them when old hosts are retired.  Manual
  allocation allows DHCP to be used to eliminate the error-prone
  process of manually configuring hosts with IP addresses in
  environments where (for whatever reasons) it is desirable to manage
  IP address assignment outside of the DHCP mechanisms.

  The format of DHCP messages is based on the format of BOOTP messages,
  to capture the BOOTP relay agent behavior described as part of the
  BOOTP specification [7, 23] and to allow interoperability of existing
  BOOTP clients with DHCP servers.  Using BOOTP relaying agents
  eliminates the necessity of having a DHCP server on each physical
  network segment.






Droms                                                           [Page 3]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


1.1 Related Work

  There are several Internet protocols and related mechanisms that
  address some parts of the dynamic host configuration problem.  The
  Reverse Address Resolution Protocol (RARP) [10] (through the
  extensions defined in the Dynamic RARP (DRARP) [5]) explicitly
  addresses the problem of network address discovery, and includes an
  automatic IP address assignment mechanism.  The Trivial File Transfer
  Protocol (TFTP) [20] provides for transport of a boot image from a
  boot server.  The Internet Control Message Protocol (ICMP) [16]
  provides for informing hosts of additional routers via "ICMP
  redirect" messages.  ICMP also can provide subnet mask information
  through the "ICMP mask request" message and other information through
  the (obsolete) "ICMP information request" message.  Hosts can locate
  routers through the ICMP router discovery mechanism [8].

  BOOTP is a transport mechanism for a collection of configuration
  information.  BOOTP is also extensible, and official extensions [17]
  have been defined for several configuration parameters.  Morgan has
  proposed extensions to BOOTP for dynamic IP address assignment [15].
  The Network Information Protocol (NIP), used by the Athena project at
  MIT, is a distributed mechanism for dynamic IP address assignment
  [19].  The Resource Location Protocol RLP [1] provides for location
  of higher level services.  Sun Microsystems diskless workstations use
  a boot procedure that employs RARP, TFTP and an RPC mechanism called
  "bootparams" to deliver configuration information and operating
  system code to diskless hosts.  (Sun Microsystems, Sun Workstation
  and SunOS are trademarks of Sun Microsystems, Inc.)  Some Sun
  networks also use DRARP and an auto-installation mechanism to
  automate the configuration of new hosts in an existing network.

  In other related work, the path minimum transmission unit (MTU)
  discovery algorithm can determine the MTU of an arbitrary internet
  path [14].  Comer and Droms have proposed the use of the Address
  Resolution Protocol (ARP) as a transport protocol for resource
  location and selection [6].  Finally, the Host Requirements RFCs [3,
  4] mention specific requirements for host reconfiguration and suggest
  a scenario for initial configuration of diskless hosts.

1.2 Problem definition and issues

  DHCP is designed to supply hosts with the configuration parameters
  defined in the Host Requirements RFCs.  After obtaining parameters
  via DHCP, a host should be able to exchange packets with any other
  host in the Internet.  The parameters supplied by DHCP are listed in
  Appendix A.





Droms                                                           [Page 4]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  Not all of these parameters are required for a newly initialized
  host.  A client and server may negotiate for the transmission of only
  those parameters required by the client or specific to a particular
  subnet.

  DHCP allows but does not require the configuration of host parameters
  not directly related to the IP protocol.  DHCP also does not address
  registration of newly configured hosts with the Domain Name System
  (DNS) [12, 13].

  DHCP is not intended for use in configuring routers.

1.3 Requirements

  Throughout this document, the words that are used to define the
  significance of particular requirements are capitalized.  These words
  are:

     o "MUST"

       This word or the adjective "REQUIRED" means that the
       item is an absolute requirement of this specification.

     o "MUST NOT"

       This phrase means that the item is an absolute prohibition
       of this specification.

     o "SHOULD"

       This word or the adjective "RECOMMENDED" means that there
       may exist valid reasons in particular circumstances to ignore
       this item, but the full implications should be understood and
       the case carefully weighed before choosing a different course.

     o "SHOULD NOT"

       This phrase means that there may exist valid reasons in
       particular circumstances when the listed behavior is acceptable
       or even useful, but the full implications should be understood
       and the case carefully weighed before implementing any behavior
       described with this label.









Droms                                                           [Page 5]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


     o "MAY"

       This word or the adjective "OPTIONAL" means that this item is
       truly optional.  One vendor may choose to include the item
       because a particular marketplace requires it or because it
       enhances the product, for example; another vendor may omit the
       same item.

1.4 Terminology

  This document uses the following terms:

     o "DHCP client"

       A DHCP client is an Internet host using DHCP to obtain
       configuration parameters such as a network address.

     o "DHCP server"

       A DHCP server is an Internet host that returns configuration
       parameters to DHCP clients.

     o "BOOTP relay agent"

       A BOOTP relay agent is an Internet host or router that passes
       DHCP messages between DHCP clients and DHCP servers.  DHCP is
       designed to use the same relay agent behavior as specified in
       the BOOTP protocol specification.

     o "binding"

       A binding is a collection of configuration parameters, including
       at least an IP address, associated with or "bound to" a DHCP
       client.  Bindings are managed by DHCP servers.

1.5 Design goals

  The following list gives general design goals for DHCP.

     o DHCP should be a mechanism rather than a policy.  DHCP must
       allow local system administrators control over configuration
       parameters where desired; e.g., local system administrators
       should be able to enforce local policies concerning allocation
       and access to local resources where desired.







Droms                                                           [Page 6]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


     o Hosts should require no manual configuration.  Each host should
       be able to discover appropriate local configuration parameters
       without user intervention and incorporate those parameters into
       its own configuration.

     o Networks should require no hand configuration for individual
       hosts.  Under normal circumstances, the network manager should
       not have to enter any per-host configuration parameters.

     o DHCP should not require a server on each subnet.  To allow for
       scale and economy, DHCP must work across routers or through the
       intervention of BOOTP/DHCP relay agents.

     o A DHCP host must be prepared to receive multiple responses to a
       request for configuration parameters.  Some installations may
       include multiple, overlapping DHCP servers to enhance
       reliability and increase performance.

     o DHCP must coexist with statically configured, non-participating
       hosts and with existing network protocol implementations.

     o DHCP must interoperate with the BOOTP relay agent behavior as
       described by RFC 951 and by Wimer [21].

     o DHCP must provide service to existing BOOTP clients.

  The following list gives design goals specific to the transmission of
  the network layer parameters.  DHCP must:

     o Guarantee that any specific network address will not be in
       use by more than one host at a time,

     o Retain host configuration across host reboot.  A host should,
       whenever possible, be assigned the same configuration parameters
       (e.g., network address) in response to each request,

     o Retain host configuration across server reboots, and, whenever
       possible, a host should be assigned the same configuration
       parameters despite restarts of the DHCP mechanism,

     o Allow automatic assignment of configuration parameters to new
       hosts to avoid hand configuration for new hosts,

     o Support fixed or permanent allocation of configuration
       parameters to specific hosts.






Droms                                                           [Page 7]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


2. Protocol Summary

  From the client's point of view, DHCP is an extension of the BOOTP
  mechanism.  This behavior allows existing BOOTP clients to
  interoperate with DHCP servers without requiring any change to the
  clients' initialization software.  A separate document details the
  interactions between BOOTP and DHCP clients and servers [9].  There
  are some new, optional transactions that optimize the interaction
  between DHCP clients and servers that are described in sections 3 and
  4.

  Figure 1 gives the format of a DHCP message and table 1 describes
  each of the fields in the DHCP message.  The numbers in parentheses
  indicate the size of each field in octets.  The names for the fields
  given in the figure will be used throughout this document to refer to
  the fields in DHCP messages.

  There are two primary differences between DHCP and BOOTP.  First,
  DHCP defines mechanisms through which clients can be assigned a
  network address for a fixed lease, allowing for serial reassignment
  of network addresses to different clients.  Second, DHCP provides the
  mechanism for a client to acquire all of the IP configuration
  parameters that it needs in order to operate.

  DHCP introduces a small change in terminology intended to clarify the
  meaning of one of the fields.  What was the "vendor extensions" field
  in BOOTP has been re-named the "options" field in DHCP. Similarly,
  the tagged data items that were used inside the BOOTP "vendor
  extensions" field, which were formerly referred to as "vendor
  extensions," are now termed simply "options."

  DHCP defines a new 'client identifier' option that is used to pass an
  explicit client identifier to a DHCP server.  This change eliminates
  the overloading of the 'chaddr' field in BOOTP messages, where reply
  messages and as a client identifier.  The 'client identifier' option
  may contain a hardware address, identical to the contents of the
  'chaddr' field, or it may contain another type of identifier, such as
  a DNS name.  Other client identifier types may be defined as needed
  for use with DHCP.  New client identifier types will be registered
  with the IANA [18] and will be included in new revisions of the
  Assigned Numbers document, as well as described in detail in future
  revisions of the DHCP Options [2].









Droms                                                           [Page 8]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |     op (1)    |   htype (1)   |   hlen (1)    |   hops (1)    |
  +---------------+---------------+---------------+---------------+
  |                            xid (4)                            |
  +-------------------------------+-------------------------------+
  |           secs (2)            |           flags (2)           |
  +-------------------------------+-------------------------------+
  |                          ciaddr  (4)                          |
  +---------------------------------------------------------------+
  |                          yiaddr  (4)                          |
  +---------------------------------------------------------------+
  |                          siaddr  (4)                          |
  +---------------------------------------------------------------+
  |                          giaddr  (4)                          |
  +---------------------------------------------------------------+
  |                                                               |
  |                          chaddr  (16)                         |
  |                                                               |
  |                                                               |
  +---------------------------------------------------------------+
  |                                                               |
  |                          sname   (64)                         |
  +---------------------------------------------------------------+
  |                                                               |
  |                          file    (128)                        |
  +---------------------------------------------------------------+
  |                                                               |
  |                          options (312)                        |
  +---------------------------------------------------------------+

                 Figure 1:  Format of a DHCP message

  DHCP clarifies the interpretation of the 'siaddr' field as the
  address of the server to use in the next step of the client's
  bootstrap process.  A DHCP server may return its own address in the
  'siaddr' field, if the server is prepared to supply the next
  bootstrap service (e.g., delivery of an operating system executable
  image).  A DHCP server always returns its own address in the 'server
  identifier' option.

  The options field is now variable length, with the minimum extended
  to 312 octets.  This brings the minimum size of a DHCP message up to
  576 octets, the minimum IP datagram size a host must be prepared to
  accept [3].  DHCP clients may negotiate the use of larger DHCP
  messages through the 'Maximum DHCP message size' option.  The options
  field may be further extended into the 'file' and 'sname' fields.



Droms                                                           [Page 9]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  A new option, called 'vendor specific information', has been added to
  allow for expansion of the number of options that can be supported
  [2].  Options encapsulated as 'vendor specific information' must be
  carefully defined and documented so as to allow for interoperability
  between clients and servers from diferent vendors.  In particular,
  vendors defining 'vendor specific information' MUST document those
  options in the form of the DHCP Options document, MUST choose to
  represent those options either in data types already defined for DHCP
  options or in other well-defined data types, and MUST choose options
  that can be readily encoded in configuration files for exchange with
  servers provided by other vendors.  Options included as 'vendor
  specific options' MUST be readily supportable by all servers.

                                   1 1 1 1 1 1
               0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
               -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
               B|             MBZ             |
               -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               B:  BROADCAST flag

               MBZ:  MUST BE ZERO (reserved for future use)

               Figure 2:  Format of the 'flags' field

  DHCP uses the 'flags' field [21].  The leftmost bit is defined as the
  BROADCAST (B) flag.  The semantics of this flag are discussed in
  section 4.1 of this document.  The remaining bits of the flags field
  are reserved for future use.  They MUST be set to zero by clients and
  ignored by servers and relay agents.  Figure 2 gives the format of
  the

2.1 Configuration parameters repository

  The first service provided by DHCP is to provide persistent storage
  of network parameters for network clients.  The model of DHCP
  persistent storage is that the DHCP service stores a key-value entry
  for each client, where the key is some unique identifier (for
  example, an IP subnet number and a unique identifier within the
  subnet) and the value contains the configuration parameters for the
  client.

  For example, the key might be the pair (IP-subnet-number, hardware-
  address), allowing for serial or concurrent reuse of a hardware
  address on different subnets, and for hardware addresses that may not
  be globally unique.  Alternately, the key might be the pair (IP-
  subnet-number, hostname), allowing the server to assign parameters
  intelligently to a host that has been moved to a different subnet or



Droms                                                          [Page 10]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  has changed hardware addresses (perhaps because the network interface
  failed and was replaced).

  A client can query the DHCP service to retrieve its configuration
  parameters.  The client interface to the configuration parameters
  repository consists of protocol messages to request configuration
  parameters and responses from the server carrying the configuration
  parameters.

2.2 Dynamic allocation of network addresses

  The second service provided by DHCP is the allocation of temporary or
  permanent network (IP) addresses to hosts.  The basic mechanism for
  the dynamic allocation of network addresses is simple: a client
  requests the use of an address for some period of time.  The
  allocation mechanism (the collection of DHCP servers) guarantees not
  to reallocate that address within the requested time and attempts to
  return the same network address each time the client requests an
  address.  In this document, the period over which a network address
  is allocated to a client is referred to as a "lease" [11].  The
  client may extend its lease with subsequent requests.  The client may
  issue a message to release the address back to the server when the
  client no longer needs the address.  The client may ask for a
  permanent assignment by asking for an infinite lease.  Even when
  assigning "permanent" addresses, a server may choose to give out
  lengthy but non-infinite leases to allow detection of the fact that
  the host has been retired.

  In some environments it will be necessary to reassign network
  addresses due to exhaustion of available addresses.  In such
  environments, the allocation mechanism will reuse addresses whose
  lease has expired.  The server should use whatever information is
  available in the configuration information repository to choose an
  address to reuse.  For example, the server may choose the least
  recently assigned address.  As a consistency check, the allocation
  mechanism may probe the reused address, e.g., with an ICMP echo
  request, before allocating the address, and the client will probe the
  newly received address, e.g., with ARP.

3. The Client-Server Protocol

  DHCP uses the BOOTP message format defined in RFC 951 and given in
  table 1 and figure 1.  The 'op' field of each DHCP message sent from
  a client to a server contains BOOTREQUEST. BOOTREPLY is used in the
  'op' field of each DHCP message sent from a server to a client.

  The first four octets of the 'options' field of the DHCP message
  contain the (decimal) values 99, 130, 83 and 99, respectively (this



Droms                                                          [Page 11]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  is the same magic cookie as is defined in RFC 1395).  The remainder
  of the 'options' field consists a list of tagged parameters that are
  called "options".  All of the "vendor extensions" listed in RFC 1395
  are also DHCP options.  A separate document gives the complete set of
  options defined for use with DHCP [2].

  Several options have been defined so far.  One particular option -
  the "DHCP message type" option - must be included in every DHCP
  message.  This option defines the "type" of the DHCP message.
  Additional options may be allowed, required, or not allowed,
  depending on the DHCP message type.

  Throughout this document, DHCP messages that include a 'DHCP message
  type' option will be referred to by the type of the message; e.g., a
  DHCP message with 'DHCP message type' option type 1 will be referred
  to as a "DHCPDISCOVER" message.

3.1 Client-server interaction - allocating a network address

  The following summary of the protocol exchanges between clients and
  servers refers to the DHCP messages described in table 2.  The
  timeline diagram in figure 3 shows the timing relationships in a
  typical client-server interaction.  If the client already knows its
  address, some steps may be omitted; this abbreviated interaction is
  described in section 3.2.

  1. The client broadcasts a DHCPDISCOVER message on its local physical
     subnet.  The DHCPDISCOVER message may include options that suggest
     values for the network address and lease duration.  BOOTP relay
     agents may pass the message on to DHCP servers not on the same
     physical subnet.

  2. Each server may respond with a DHCPOFFER message that includes an
     available network address in the 'yiaddr' field (and other
     configuration parameters in DHCP options).  Servers need not
     reserve the offered network address, although the protocol will
     work more efficiently if the server avoids allocating the offered
     network address to another client.  The server unicasts the
     DHCPOFFER message to the client (using the DHCP/BOOTP relay agent
     if necessary) if possible, or may broadcast the message to a
     broadcast address (preferably 255.255.255.255) on the client's
     subnet.

  3. The client receives one or more DHCPOFFER messages from one or
     more servers.  The client may choose to wait for multiple
     responses.  The client chooses one server from which to request
     configuration parameters, based on the configuration parameters
     offered in the DHCPOFFER messages.  The client broadcasts a



Droms                                                          [Page 12]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


     DHCPREQUEST message that MUST include the 'server identifier'
     option to indicate which server it has selected, and may include
     other options specifying desired configuration values.  This
     DHCPREQUEST message is broadcast and relayed through DHCP/BOOTP
     relay agents.  To help ensure that any DHCP/BOOTP relay agents
     forward the DHCPREQUEST message to the same set of DHCP servers
     that received the original DHCPDISCOVER message, the DHCPREQUEST
     message must use the same value in the DHCP message header's
     'secs' field and be sent to the same IP broadcast address as the
     original DHCPDISCOVER message.  The client times out and
     retransmits the DHCPDISCOVER message if the client receives no
     DHCPOFFER messages.

  4. The servers receive the DHCPREQUEST broadcast from the client.
     Those servers not selected by the DHCPREQUEST message use the
     message as notification that the client has declined that server's
     offer.  The server selected in the DHCPREQUEST message commits the
     binding for the client to persistent storage and responds with a
     DHCPACK message containing the configuration parameters for the
     requesting client.  The combination of 'chaddr' and assigned
     network address constitute an unique identifier for the client's
     lease and are used by both the client and server to identify a
     lease referred to in any DHCP messages.  The 'yiaddr' field in the
     DHCPACK messages is filled in with the selected network address.

     If the selected server is unable to satisfy the DHCPREQUEST message
     (e.g., the requested network address has been allocated), the
     server SHOULD respond with a DHCPNAK message.

     A server may choose to mark addresses offered to clients in
     DHCPOFFER messages as unavailable.  The server should mark an
     address offered to a client in a DHCPOFFER message as available if
     the server receives no DHCPREQUEST message from that client.


















Droms                                                          [Page 13]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  FIELD      OCTETS       DESCRIPTION
  -----      ------       -----------

  op            1  Message op code / message type.
                   1 = BOOTREQUEST, 2 = BOOTREPLY
  htype         1  Hardware address type, see ARP section in "Assigned
                   Numbers" RFC; e.g., '1' = 10mb ethernet.
  hlen          1  Hardware address length (e.g.  '6' for 10mb
                   ethernet).
  hops          1  Client sets to zero, optionally used by relay-agents
                   when booting via a relay-agent.
  xid           4  Transaction ID, a random number chosen by the
                   client, used by the client and server to associate
                   messages and responses between a client and a
                   server.
  secs          2  Filled in by client, seconds elapsed since client
                   started trying to boot.
  flags         2  Flags (see figure 2).
  ciaddr        4  Client IP address; filled in by client in
                   DHCPREQUEST if verifying previously allocated
                   configuration parameters.
  yiaddr        4  'your' (client) IP address.
  siaddr        4  IP address of next server to use in bootstrap;
                   returned in DHCPOFFER, DHCPACK and DHCPNAK by
                   server.
  giaddr        4  Relay agent IP address, used in booting via a
                   relay-agent.
  chaddr       16  Client hardware address.
  sname        64  Optional server host name, null terminated string.
  file        128  Boot file name, null terminated string; "generic"
                   name or null in DHCPDISCOVER, fully qualified
                   directory-path name in DHCPOFFER.
  options     312  Optional parameters field.  See the options
                   documents for a list of defined options.

            Table 1:  Description of fields in a DHCP message















Droms                                                          [Page 14]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


               Server          Client          Server
           (not selected)                    (selected)

                 v               v               v
                 |               |               |
                 |     Begins initialization     |
                 |               |               |
                 | _____________/|\_____________ |
                 |/ DHCPDISCOVER | DHCPDISCOVER \|
                 |               |               |
             Determines          |          Determines
            configuration        |         configuration
                 |               |               |
                 |\              |  ____________/|
                 | \_________    | /DHCPOFFER    |
                 |  DHCPOFFER\   |/              |
                 |            \  |               |
                 |       Collects replies        |
                 |              \|               |
                 |     Selects configuration     |
                 |               |               |
                 | _____________/|\_____________ |
                 |/ DHCPREQUEST  |  DHCPREQUEST \|
                 |               |               |
                 |               |     Commits configuration
                 |               |               |
                 |               | _____________/|
                 |               |/ DHCPACK      |
                 |               |               |
                 |    Initialization complete    |
                 |               |               |
                 .               .               .
                 .               .               .
                 |               |               |
                 |      Graceful shutdown        |
                 |               |               |
                 |               |\_____________ |
                 |               |  DHCPRELEASE \|
                 |               |               |
                 |               |        Discards lease
                 |               |               |
                 v               v               v

    Figure 3: Timeline diagram of messages exchanged between DHCP
              client and servers when allocating a new network address






Droms                                                          [Page 15]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  Message         Use
  -------         ---

  DHCPDISCOVER -  Client broadcast to locate available servers.

  DHCPOFFER    -  Server to client in response to DHCPDISCOVER with
                  offer of configuration parameters.

  DHCPREQUEST  -  Client broadcast to servers requesting offered
                  parameters from one server and implicitly declining
                  offers from all others.

  DHCPACK      -  Server to client with configuration parameters,
                  including committed network address.

  DHCPNAK      -  Server to client refusing request for configuration
                  parameters (e.g., requested network address already
                  allocated).

  DHCPDECLINE  -  Client to server indicating configuration parameters
                  (e.g., network address) invalid.

  DHCPRELEASE  -  Client to server relinquishing network address and
                  cancelling remaining lease.

                         Table 2:  DHCP messages

  5. The client receives the DHCPACK message with configuration
     parameters.  The client performs a final check on the parameters
     (e.g., ARP for allocated network address), and notes the duration
     of the lease and the lease identification cookie specified in the
     DHCPACK message.  At this point, the client is configured.  If the
     client detects a problem with the parameters in the DHCPACK
     message, the client sends a DHCPDECLINE message to the server and
     restarts the configuration process.  The client should wait a
     minimum of ten seconds before restarting the configuration process
     to avoid excessive network traffic in case of looping.

     If the client receives a DHCPNAK message, the client restarts the
     configuration process.

     The client times out and retransmits the DHCPREQUEST message if the
     client receives neither a DHCPACK or a DHCPNAK message.  The client
     retransmits the DHCPREQUEST according to the retransmission
     algorithm in section 4.1.  If the client receives neither a DHCPACK
     or a DHCPNAK message after ten retransmissions of the DHCPREQUEST
     message, the client reverts to INIT state and restarts the
     initialization process.  The client SHOULD notify the user that the



Droms                                                          [Page 16]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


     initialization process has failed and is restarting.

  6. The client may choose to relinquish its lease on a network address
     by sending a DHCPRELEASE message to the server.  The client
     identifies the lease to be released by including its network
     address in the 'ciaddr' field and its hardware address in the
     'chaddr' field.

3.2 Client-server interaction - reusing a previously allocated network
   address

  If a client remembers and wishes to reuse a previously allocated
  network address (allocated either by DHCP or some means outside the
  protocol), a client may choose to omit some of the steps described in
  the previous section.  The timeline diagram in figure 4 shows the
  timing relationships in a typical client-server interaction for a
  client reusing a previously allocated network address.

     1. The client broadcasts a DHCPREQUEST message on its local subnet.
        The DHCPREQUEST message includes the client's network address in
        the 'ciaddr' field.  DHCP/BOOTP relay agents pass the message on
        to DHCP servers not on the same subnet.

     2. Servers with knowledge of the client's configuration parameters
        respond with a DHCPACK message to the client.

        If the client's request is invalid (e.g., the client has moved
        to a new subnet), servers may respond with a DHCPNAK message to
        the client.

     3. The client receives the DHCPACK message with configuration
        prameters.  The client performs a final check on the parameters
        (as in section 3.1), and notes the duration of the lease and
        the lease identification cookie specified in the DHCPACK
        message.  At this point, the client is configured.

        If the client detects a problem with the parameters in the
        DHCPACK message, the client sends a DHCPDECLINE message to the
        server and restarts the configuration process by requesting a
        new network address.  This action corresponds to the client
        moving to the INIT state in the DHCP state diagram, which is
        described in section 4.4.









Droms                                                          [Page 17]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


               Server          Client          Server

                 v               v               v
                 |               |               |
                 |             Begins            |
                 |         initialization        |
                 |               |               |
                 |              /|\              |
                 |  ___________/ | \___________  |
                 | /DHCPREQUEST  |  DHCPREQUEST\ |
                 |/              |              \|
                 |               |               |
              Locates            |            Locates
           configuration         |         configuration
                 |               |               |
                 |\              |              /|
                 | \             |  ___________/ |
                 |  \            | /  DHCPACK    |
                 |   \_______    |/              |
                 |    DHCPACK\   |               |
                 |         Initialization        |
                 |            complete           |
                 |              \|               |
                 |               |               |
                 |          (Subsequent          |
                 |            DHCPACKS           |
                 |            ignored)           |
                 |               |               |
                 |               |               |
                 v               v               v

    Figure 4: Timeline diagram of messages exchanged between DHCP
              client and servers when reusing a previously allocated
              network address

        If the client receives a DHCPNAK message, it cannot reuse its
        remembered network address.  It must instead request a new
        address by restarting the configuration process, this time
        using the (non-abbreviated) procedure described in section
        3.1.  This action also corresponds to the client moving to
        the INIT state in the DHCP state diagram.

        The client times out and retransmits the DHCPREQUEST message if
        the client receives neither a DHCPACK nor a DHCPNAK message.
        The   time between retransmission MUST be chosen according to
        the algorithm given in section 4.1.  If the client receives no
        answer after transmitting 4 DHCPREQUEST messages, the client
        MAY choose to use the previously allocated network address and



Droms                                                          [Page 18]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


        configuration parameters for the remainder of the unexpired
        lease.  This corresponds to moving to BOUND state in the client
        state transition diagram shown in figure 5.

     4. The client may choose to relinquish its lease on a network
        address by sending a DHCPRELEASE message to the server.  The
        client identifies the lease to be released with the lease
        identification cookie.

        Note that in this case, where the client retains its network
        address locally, the client will not normally relinquish its
        lease during a graceful shutdown.  Only in the case where the
        client explicitly needs to relinquish its lease, e.g., the client
        is about to be moved to a different subnet, will the client send
        a DHCPRELEASE message.

3.3 Interpretation and representation of time values

  A client acquires a lease for a network address for a fixed period of
  time (which may be infinite).  Throughout the protocol, times are to
  be represented in units of seconds.  The time value of 0xffffffff is
  reserved to represent "infinity".  The minimum lease duration is one
  hour.

  As clients and servers may not have synchronized clocks, times are
  represented in DHCP messages as relative times, to be interpreted
  with respect to the client's local clock.  Representing relative
  times in units of seconds in an unsigned 32 bit word gives a range of
  relative times from 0 to approximately 100 years, which is sufficient
  for the relative times to be measured using DHCP.

  The algorithm for lease duration interpretation given in the previous
  paragraph assumes that client and server clocks are stable relative
  to each other.  If there is drift between the two clocks, the server
  may consider the lease expired before the client does.  To
  compensate, the server may return a shorter lease duration to the
  client than the server commits to its local database of client
  information.

3.4 Host parameters in DHCP

  Not all clients require initialization of all parameters listed in
  Appendix A.  Two techniques are used to reduce the number of
  parameters transmitted from the server to the client.  First, most of
  the parameters have defaults defined in the Host Requirements RFCs;
  if the client receives no parameters from the server that override
  the defaults, a client uses those default values.  Second, in its
  initial DHCPDISCOVER or DHCPREQUEST message, a client may provide the



Droms                                                          [Page 19]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  server with a list of specific parameters the client is interested
  in.

  The client SHOULD include the 'maximum DHCP message size' option to
  let the server know how large the server may make its DHCP messages.
  The parameters returned to a client may still exceed the space
  allocated to options in a DHCP message.  In this case, two additional
  options flags (which must appear in the 'options' field of the
  message) indicate that the 'file' and 'sname' fields are to be used
  for options.

  The client can inform the server which configuration parameters the
  client is interested in by including the 'parameter request list'
  option.  The data portion of this option explicitly lists the options
  requested by tag number.

  In addition, the client may suggest values for the network address
  and lease time in the DHCPDISCOVER message.  The client may include
  the be assigned, and may include the 'IP address lease time' option
  to suggest the lease time it would like.  No other options
  representing "hints" at configuration parameters are allowed in a
  DHCPDISCOVER or DHCPREQUEST message.  The 'ciaddr' field is to be
  filled in only in a DHCPREQUEST message when the client is requesting
  use of a previously allocated IP address.

  If a server receives a DHCPREQUEST message with an invalid 'ciaddr',
  the server SHOULD respond to the client with a DHCPNAK message and
  may choose to report the problem to the system administrator.  The
  server may include an error message in the 'message' option.

3.5 Use of DHCP in clients with multiple interfaces

  A host with multiple network interfaces must use DHCP through each
  interface independently to obtain configuration information
  parameters for those separate interfaces.

3.6 When clients should use DHCP

  A host should use DHCP to reacquire or verify its IP address and
  network parameters whenever the local network parameters may have
  changed; e.g., at system boot time or after a disconnection from the
  local network, as the local network configuration may change without
  the host's or user's knowledge.

  If a host has knowledge of a previous network address and is unable
  to contact a local DHCP server, the host may continue to use the
  previous network address until the lease for that address expires.
  If the lease expires before the host can contact a DHCP server, the



Droms                                                          [Page 20]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  host must immediately discontinue use of the previous network address
  and may inform local users of the problem.

4. Specification of the DHCP client-server protocol

  In this section, we assume that a DHCP server has a block of network
  addresses from which it can satisfy requests for new addresses.  Each
  server also maintains a database of allocated addresses and leases in
  local permanent storage.

4.1 Constructing and sending DHCP messages

  DHCP clients and servers both construct DHCP messages by filling in
  fields in the fixed format section of the message and appending
  tagged data items in the variable length option area.  The options
  area includes first a four-octet 'magic cookie' (which was described
  in section 3), followed by the options.  The last option must always
  be the 'end' option.

  DHCP uses UDP as its transport protocol.  DHCP messages from a client
  to a server are sent to the 'DHCP server' port (67), and DHCP
  messages from a server to a client are sent to the 'DHCP client' port
  (68).

  DHCP messages broadcast by a client prior to that client obtaining
  its IP address must have the source address field in the IP header
  set to 0.

  If the 'giaddr' field in a DHCP message from a client is non-zero,
  the server sends any return messages to the 'DHCP server' port on the
  DHCP relaying agent whose address appears in 'giaddr'.  If the
  'giaddr' field is zero, the client is on the same subnet, and the
  server sends any return messages to either the client's network
  address, if that address was supplied in the 'ciaddr' field, or to
  the client's hardware address or to the local subnet broadcast
  address.

  If the options in a DHCP message extend into the 'sname' and 'file'
  fields, the 'option overload' option MUST appear in the 'options'
  field, with value 1, 2 or 3, as specified in the DHCP options
  document [2].  If the 'option overload' option is present in the
  'options' field, the options in the 'options' field MUST be
  terminated by an options field.  The options in the 'sname' and
  'file' fields (if in use as indicated by the 'options overload'
  option) MUST begin with the first octet of the field, MUST be
  terminated by an 'end' option, and MUST be followed by 'pad' options
  to fill the remainder of the field.  Any individual option in the
  'options', 'sname' and 'file' fields MUST be entirely contained in



Droms                                                          [Page 21]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  that field.  The options in the 'options' field MUST be interpreted
  first, so that any 'option overload' options may be interpreted.  The
  'file' field MUST be interpreted next (if the options), followed by
  the 'sname' field.

  DHCP clients are responsible for all message retransmission.  The
  client MUST adopt a retransmission strategy that incorporates a
  randomized exponential backoff algorithm to determine the delay
  between retransmissions.  The delay before the first retransmission
  MUST be 4 seconds randomized by the value of a uniform random number
  chosen from the range -1 to +1.  Clients with clocks that provide
  resolution granularity of less than one second may choose a non-
  integer randomization value.  The delay before the next
  retransmission MUST be 8 seconds randomized by the value of a uniform
  number chosen from the range -1 to +1.  The retransmission delay MUST
  be doubled with subsequent retransmissions up to a maximum of 64
  seconds.  The client MAY provide an indication of retransmission
  attempts to the user as an indication of the progress of the
  configuration process.  The protocol specification in the remainder
  of this section will describe, for each DHCP message, when it is
  appropriate for the client to retransmit that message forever, and
  when it is appropriate for a client to abandon that message and
  attempt to use a different DHCP message.

  Normally, DHCP servers and BOOTP relay agents attempt to deliver
  DHCPOFFER, DHCPACK and DHCPNAK messages directly to the client using
  unicast delivery.  The IP destination address (in the IP header) is
  set to the DHCP 'yiaddr' address and the link-layer destination
  address is set to the DHCP 'chaddr' address.  Unfortunately, some
  client implementations are unable to receive such unicast IP
  datagrams until the implementation has been configured with a valid
  IP address (leading to a deadlock in which the client's IP address
  cannot be delivered until the client has been configured with an IP
  address).

  A client that cannot receive unicast IP datagrams until its protocol
  software has been configured with an IP address SHOULD set the
  BROADCAST bit in the 'flags' field to 1 in any DHCPDISCOVER or
  DHCPREQUEST messages that client sends.  The BROADCAST bit will
  provide a hint to the DHCP server and BOOTP relay agent to broadcast
  any messages to the client on the client's subnet.  A client that can
  receive unicast IP datagrams before its protocol software has been
  configured SHOULD clear the BROADCAST bit to 0.  The BOOTP
  clarifications document discusses the ramifications of the use of the
  BROADCAST bit [21].

  A server or relay agent sending or relaying a DHCP message directly
  to a DHCP client (i.e., not to a relay agent specified in the



Droms                                                          [Page 22]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  'giaddr' field) SHOULD examine the BROADCAST bit in the 'flags'
  field.  If this bit is set to 1, the DHCP message SHOULD be sent as
  an IP broadcast using an IP broadcast address (preferably
  255.255.255.255) as the IP destination address and the link-layer
  broadcast address as the link-layer destination address.  If the
  BROADCAST bit is cleared to 0, the message SHOULD be sent as an IP
  unicast to the IP address specified in the 'yiaddr' field and the
  link-layer address specified in the 'chaddr' field.  If unicasting is
  not possible, the message MAY be sent as an IP broadcast using an IP
  broadcast address (preferably 255.255.255.255) as the IP destination
  address and the link-layer broadcast address as the link-layer
  destination address.

4.2 DHCP server administrative controls

  DHCP servers are not required to respond to every DHCPDISCOVER and
  DHCPREQUEST message they receive.  For example, a network
  administrator, to retain stringent control over the hosts attached to
  the network, may choose to configure DHCP servers to respond only to
  hosts that have been previously registered through some external
  mechanism.  The DHCP specification describes only the interactions
  between clients and servers when the clients and servers choose to
  interact; it is beyond the scope of the DHCP specification to
  describe all of the administrative controls that system
  administrators might want to use.  Specific DHCP server
  implementations may incorporate any controls or policies desired by a
  network administrator.

  In some environments, a DHCP server will have to consider the values
  of the 'chaddr' field and/or the 'class-identifier' option included
  in the DHCPDISCOVER or DHCPREQUEST messages when determining the
  correct parameters for a particular client.  For example, an
  organization might have a separate bootstrap server for each type of
  client it uses, requiring the DHCP server to examine the 'class-
  identifier' to determine which bootstrap server address to return in
  the 'siaddr' field of a DHCPOFFER or DHCPACK message.

  A DHCP server must use some unique identifier to associate a client
  with its lease.  The client may choose to explicitly provide the
  identifier through the 'client identifier' option.  If the client
  does not provide a 'client identifier' option, the server MSUT use
  the contents of the 'chaddr' field to identify the client.

  DHCP clients are free to use any strategy in selecting a DHCP server
  among those from which the client receives a DHCPOFFER message.  The
  client implementation of DHCP should provide a mechanism for the user
  to select directly the 'class-identifier' value.




Droms                                                          [Page 23]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


4.3 DHCP server behavior

  A DHCP server processes incoming DHCP messages from a client based on
  the current state of the binding for that client.  A DHCP server can
  receive the following messages from a client:

     o DHCPDISCOVER

     o DHCPREQUEST

     o DHCPDECLINE

     o DHCPRELEASE

  Table 3 gives the use of the fields and options in a DHCP message by
  a server.  The remainder of this section describes the action of the
  DHCP server for each possible incoming message.

4.3.1 DHCPDISCOVER message

  When a server receives a DHCPDISCOVER message from a client, the
  server chooses a network address for the requesting client.  If no
  address is available, the server may choose to report the problem to
  the system administrator and may choose to reply to the client with a
  DHCPNAK message.  If the server chooses to respond to the client, it
  may include an error message in the 'message' option.  If an address
  is available, the new address should be chosen as follows:

  o The client's previous address as recorded in the client's binding,
    if that address is in the server's pool of available addresses and
    not already allocated, else

  o The address requested in the 'Requested IP Address' option, if that
    address is valid and not already allocated, else

  o A new address allocated from the server's pool of available
    addresses.














Droms                                                          [Page 24]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


 Field      DHCPOFFER            DHCPACK             DHCPNAK
 -----      ---------            -------             -------

 'op'       BOOTREPLY            BOOTREPLY           BOOTREPLY
 'htype'    (From "Assigned Numbers" RFC)
 'hlen'     (Hardware address length in octets)
 'hops'     0                    0                   0
 'xid'      'xid' from client    'xid' from client   'xid' from client
            DHCPDISCOVER         DHCPREQUEST         DHCPREQUEST
            message              message             message
 'secs'     0                    0                   0
 'ciaddr'   0                    'ciaddr' from       'ciaddr' from
                                 DHCPREQUEST or 0    DHCPREQUEST or 0
 'yiaddr'   IP address offered   IP address          0
            to client            assigned to client
 'siaddr'   IP address of next   IP address of next  0
            bootstrap server     bootstrap server
 'flags'    if 'giaddr' is not 0 then 'flags' from client message else 0
 'giaddr'   0                    0                   0
 'chaddr'   'chaddr' from        'chaddr' from       'chaddr' from
            client               client DHCPREQUEST  client DHCPREQUEST
            DHCPDISCOVER         message             message
            message
 'sname'    Server host name     Server host name    (unused)
            or options           or options
 'file'     Client boot file     Client boot file    (unused)
            name or options      name or options
 'options'  options              options

 Option                   DHCPOFFER        DHCPACK          DHCPNAK
 ------                   ---------        -------          -------

 Requested IP address     MUST NOT         MUST NOT         MUST NOT
 IP address lease time    MUST             MUST             MUST NOT
 Use 'file'/'sname'       MAY              MAY              MUST NOT
 fields
 DHCP message type        DHCPOFFER        DHCPACK          DHCPNAK
 Parameter request list   MUST NOT         MUST NOT         MUST NOT
 Message                  SHOULD           SHOULD           SHOULD
 Client identifier        MUST NOT         MUST NOT         MUST NOT
 Class identifier         MUST NOT         MUST NOT         MUST NOT
 Server identifier        MUST             MAY              MAY
 Maximum message size     MUST NOT         MUST NOT         MUST NOT
 All others               MAY              MAY              MUST NOT

          Table 3:  Fields and options used by DHCP servers





Droms                                                          [Page 25]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  As described in section 4.2, a server MAY, for administrative
  reasons, assign an address other than the one requested, or may
  refuse to allocate an address to a particular client even though free
  addresses are available.

  While not required for correct operation of DHCP, the server should
  not reuse the selected network address before the client responds to
  the server's DHCPOFFER message.  The server may choose to record the
  address as offered to the client.

  The server must also choose an expiration time for the lease, as
  follows:

  o IF the client has not requested a specific lease in the
    DHCPDISCOVER message and the client already has an assigned network
    address, the server returns the lease expiration time previously
    assigned to that address (note that the client must explicitly
    request a specific lease to extend the expiration time on a
    previously assigned address), ELSE

  o IF the client has not requested a specific lease in the
    DHCPDISCOVER message and the client does not have an assigned
    network address, the server assigns a locally configured default
    lease time, ELSE

  o IF the client has requested a specific lease in the DHCPDISCOVER
    message (regardless of whether the client has an assigned network
    address), the server may choose either to return the requested
    lease (if the lease is acceptable to local policy) or select
    another lease.

  Once the network address and lease have been determined, the server
  constructs a DHCPOFFER message with the offered configuration
  parameters.  It is important for all DHCP servers to return the same
  parameters (with the possible exception of a newly allocated network
  address) to ensure predictable host behavior regardless of the which
  server the client selects.  The configuration parameters MUST be
  selected by applying the following rules in the order given below.
  The network administrator is responsible for configuring multiple
  DHCP servers to ensure uniform responses from those servers.  The
  server MUST return to the client:










Droms                                                          [Page 26]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  o The client's network address, as determined by the rules given
    earlier in this section, and the subnet mask for the network to
    which the client is connected,

  o The expiration time for the client's lease, as determined by the
    rules given earlier in this section,

  o Parameters requested by the client, according to the following
    rules:

       -- IF the server has been explicitly configured with a default
          value for the parameter, the server MUST include that value
          in an appropriate option in the 'option' field, ELSE

       -- IF the server recognizes the parameter as a parameter
          defined in the Host Requirements Document, the server MUST
          include the default value for that parameter as given in the
          Host Requirements Document in an appropriate option in the
          'option' field, ELSE

       -- The server MUST NOT return a value for that parameter,

  o Any parameters from the existing binding that differ from the Host
    Requirements documents defaults,

  o Any parameters specific to this client (as identified by
    the contents of 'chaddr' in the DHCPDISCOVER or DHCPREQUEST
    message), e.g., as configured by the network administrator,

  o Any parameters specific to this client's class (as identified
    by the contents of the 'class identifier' option in the
    DHCPDISCOVER or DHCPREQUEST message), e.g., as configured by
    the network administrator; the parameters MUST be identified
    by an exact match between the client's 'client class' and the
    client class identified in the server,

  o Parameters with non-default values on the client's subnet.

  The server inserts the 'xid' field from the DHCPDISCOVER message into
  the 'xid' field of the DHCPOFFER message and sends the DHCPOFFER
  message to the requesting client.

4.3.2 DHCPREQUEST message

  A DHCPREQUEST message may come from a client responding to a
  DHCPOFFER message from a server, or from a client verifying a
  previously allocated IP address.  If the DHCPREQUEST message contains
  a 'server identifier' option, the message is in response to a



Droms                                                          [Page 27]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  DHCPOFFER message.  Otherwise, the message is a request to renew or
  extend an existing lease.

  Consider first the case of a DHCPREQUEST message in response to a
  DHCPOFFER message.  If the server is identified in the 'server
  identifier' option in the DHCPREQUEST message, the server checks to
  confirm that the requested parameters are acceptable.  Usually, the
  requested parameters will match those returned to the client in the
  DHCPOFFER message; however, the client may choose to request a
  different lease duration.  Also, there is no requirement that the
  server cache the parameters from the DHCPOFFER message.  The server
  must simply check that the parameters requested in the DHCPREQUEST
  are acceptable.  If the parameters are acceptable, the server records
  the new client binding and returns a DHCPACK message to the client.

  If the requested parameters are unacceptable, e.g., the requested
  lease time is unacceptable to local policy, the server sends a
  DHCPNAK message to the client.  The server may choose to return an
  error message in the 'message' option.

  If a different server is identified in the 'server identifier' field,
  the client has selected a different server from which to obtain
  configuration parameters.  The server may discard any information it
  may have cached about the client's request, and may free the network
  address that it had offered to the client.

  Note that the client may choose to collect several DHCPOFFER messages
  and select the "best" offer.  The client indicates its selection by
  identifying the offering server in the DHCPREQUEST message.  If the
  client receives no acceptable offers, the client may choose to try
  another DHCPDISCOVER message.  Therefore, the servers may not receive
  a specific DHCPREQUEST from which they can decide whether or not the
  client has accepted the offer.  Because the servers have not
  committed any network address assignments on the basis of a
  DHCPOFFER, servers are free to reuse offered network addresses in
  response to subsequent requests.  As an implementation detail,
  servers should not reuse offered addresses and may use an
  implementation-specific timeout mechanism to decide when to reuse an
  offered address.

  In the second case, when there is no 'server identifier' option, the
  client is renewing or extending a previously allocated IP address.
  The server checks to confirm that the requested parameters are
  acceptable.  If the parameters specified in the DHCPREQUEST message
  match the previous parameters, or if the request for an extension of
  the lease (indicated by an extended 'IP address lease time' option)
  is acceptable, the server returns a DHCPACK message to the requesting
  client.  Otherwise, the server returns a DHCPNAK message to the



Droms                                                          [Page 28]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  client.  In particular, if the previously allocated network address
  in the 'ciaddr' field from the client does not match the network
  address recorded by the server for that client, the server sends a
  DHCPNAK to the client.

  A DHCP server chooses the parameters to return in a DHCPACK message
  according to the same rules as used in constructing a DHCPOFFER
  message, as given in section 4.3.1.

4.3.3 DHCPDECLINE message

  If the server receives a DHCPDECLINE message, the client has
  discovered through some other means that the suggested network
  address is already in use.  The server MUST mark the network address
  as not allocated and SHOULD notify the local system administrator of
  a possible configuration problem.

4.3.4 DHCPRELEASE message

  Upon receipt of a DHCPRELEASE message, the server marks the network
  address as not allocated.  The server should retain a record of the
  client's initialization parameters for possible reuse in response to
  subsequent requests from the client.

4.4 DHCP client behavior

  Figure 5 gives a state-transition diagram for a DHCP client.  A
  client can receive the following messages from a server:

     o DHCPOFFER

     o DHCPACK

     o DHCPNAK

  Table 4 gives the use of the fields and options in a DHCP message by
  a client.  The remainder of this section describes the action of the
  DHCP client for each possible incoming message.  The description in
  the following section corresponds to the full configuration procedure
  previously described in section 3.1, and the text in the subsequent
  section corresponds to the abbreviated configuration procedure
  described in section 3.2.

4.4.1 Initialization and allocation of network address

  The client begins in INIT state and forms a DHCPDISCOVER message.
  The client should wait a random time between one and ten seconds to
  desynchronize the use of DHCP at startup.  The client sets 'ciaddr'



Droms                                                          [Page 29]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  to all 0x00000000.  The client MAY request specific parameters by
  including the 'parameter request list' option.  The client MAY
  suggest a network address and/or lease time by including the
  'requested IP address' and 'IP address lease time' options.  The
  client MUST include its hardware address in the 'chaddr' field for
  use in delivery of DHCP reply messages.  The client MAY include a
  different unique identifier in the 'client identifier' option.  If
  the client does not include the

  The client generates and records a random transaction identifier and
  inserts that identifier into the 'xid' field.  The client records its
  own local time for later use in computing the lease expiration.  The
  client then broadcasts the DHCPDISCOVER on the local hardware
  broadcast address to the all-ones IP broadcast address and 'DHCP
  server' UDP port.

  If the 'xid' of an arriving DHCPOFFER message does not match the
  'xid' of the most recent DHCPDISCOVER message, the DHCPOFFER message
  must be silently discarded.  Any arriving DHCPACK messages must be
  silently discarded.

  The client collects DHCPOFFER messages over a period of time, selects
  one DHCPOFFER message from the (possibly many) incoming DHCPOFFER
  messages (e.g., the first DHCPOFFER message or the DHCPOFFER message
  from the previously used server) and extracts the server address from
  the 'server identifier' option in the DHCPOFFER message.  The time
  over which the client collects messages and the mechanism used to
  select one DHCPOFFER are implementation dependent.  The client may
  perform a check on the suggested address to ensure that the address
  is not already in use.  For example, if the client is on a network
  that supports ARP, the client may issue an ARP request for the
  suggested request.  When broadcasting an ARP request for the
  suggested address, the client must fill in its own hardware address
  as the sender's hardware address, and 0 as the sender's IP address,
  to avoid confusing ARP caches in other hosts on the same subnet.  If
  the network address appears to be in use, the client sends a
  DHCPDECLINE message to the server and waits for another DHCPOFFER. As
  the client does not have a valid network address, the client must
  broadcast the DHCPDECLINE message.












Droms                                                          [Page 30]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


--------                               -------
|        | +-------------------------->|       |<-------------------+
| INIT/  | |     +-------------------->| INIT  |                    |
| REBOOT |DHCPNAK/         +---------->|       |<---+               |
|        |Restart|         |            -------     |               |
--------  |  DHCPNAK/     |               |                        |
   |      Discard offer   |      -/Send DHCPDISCOVER               |
-/Send DHCPREQUEST         |               |                        |
   |      |     |      DHCPACK            v        |               |
-----------     |   (not accept.)/   -----------   |               |
|           |    |  Send DHCPDECLINE |           |  |               |
| REBOOTING |    |         |         | SELECTING |  |               |
|           |    |        /          |           |  |               |
-----------     |       /            -----------   |               |
   |            |      /                  |        |               |
DHCPACK/         |     /  +----------------+        |               |
Record lease,    |    |   v                         |               |
set timers      ------------                        |               |
   |   +----->|            |             DHCPNAK, Lease expired/   |
   |   |      | REQUESTING |                  Halt network         |
   DHCPOFFER/ |            |                       |               |
   Discard     ------------                        |               |
   |   |        |        |                   -----------           |
   |   +--------+     DHCPACK/              |           |          |
   |              Record lease, set    -----| REBINDING |          |
   |                timers T1, T2     /     |           |          |
   |                     |        DHCPACK/   -----------           |
   |                     v     Record lease, set   ^               |
   +----------------> -------      /Timers T1,T2   |               |
              +----->|       |<---+                |               |
              |      | BOUND |<---+                |               |
 DHCPOFFER, DHCPACK, |       |    |            T2 expires/   DHCPNAK/
  DHCPNAK/Discard     -------     |             Broadcast  Halt network
              |       | |         |            DHCPREQUEST         |
              +-------+ |        DHCPACK/          |               |
                   T1 expires/   Record lease, set |               |
                Send DHCPREQUEST timers T1, T2     |               |
                to leasing server |                |               |
                        |   ----------             |               |
                        |  |          |------------+               |
                        +->| RENEWING |                            |
                           |          |----------------------------+
                            ----------

         Figure 5:  State-transition diagram for DHCP clients






Droms                                                          [Page 31]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


 Field      DHCPDISCOVER          DHCPREQUEST           DHCPDECLINE,
                                                        DHCPRELEASE
 -----      ------------          -----------           -----------

 'op'       BOOTREQUEST           BOOTREQUEST           BOOTREQUEST
 'htype'    (From "Assigned Numbers" RFC)
 'hlen'     (Hardware address length in octets)
 'hops'     0                     0                     0
 'xid'      selected by client    selected by client    selected by
                                                        client
 'secs'     (opt.)                (opt.)                0
 'flags'    Set 'BROADCAST'       Set 'BROADCAST'
            flag if client        flag if client
            requires broadcast    requires broadcast
            reply                 reply
            0
 'ciaddr'   0                     previously            ciaddr
                                  allocated newtork
                                  address
 'yiaddr'   0                     0                     0
 'siaddr'   0                     0                     0
 'giaddr'   0                     0                     0
 'chaddr'   client's hardware     client's hardware     client's
                                                        hardware
            address               address               address
 'sname'    options, if           options, if           (unused)
            indicated in          indicated in
            'sname/file'          'sname/file'
            option; otherwise     option; otherwise
            unused                unused
 'file'     options, if           options, if           (unused)
            indicated in          indicated in
            'sname/file'          'sname/file'
            option; otherwise     option; otherwise
            'generic' name or     'generic' name or
            null                  null
 'options'  options               options               (unused)














Droms                                                          [Page 32]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


 Option                     DHCPDISCOVER  DHCPREQUEST      DHCPDECLINE,
                                                           DHCPRELEASE
 ------                     ------------  -----------      -----------

 Requested IP address       MAY           MUST NOT         MUST NOT
 IP address lease time      MAY           MAY              MUST NOT
 Use 'file'/'sname' fields  MAY           MAY              MAY
 DHCP message type          DHCPDISCOVER  DHCPREQUEST      DHCPDECLINE/
                                                           DHCPRELEASE
 Client identifier          MAY           MAY              MAY
 Class identifier           SHOULD        SHOULD           MUST NOT
 Server identifier          MUST NOT      MUST (after      MUST
                                          DHCPDISCOVER),
                                          MUST NOT (when
                                          renewing)
 Parameter request list     MAY           MAY              MUST NOT
 Maximum message size       MAY           MAY              MUST NOT
 Message                    SHOULD NOT    SHOULD NOT       SHOULD
 Site-specific              MAY           MAY              MUST NOT
 All others                 MUST NOT      MUST NOT         MUST NOT

          Table 4:  Fields and options used by DHCP clients

  If the parameters are acceptable, the client records the address of
  the server that supplied the parameters from the 'server identifier'
  field and sends that address in the 'server identifier' field of a
  DHCPREQUEST broadcast message.  Once the DHCPACK message from the
  server arrives, the client is initialized and moves to BOUND state.
  The DHCPREQUEST message contains the same 'xid' as the DHCPOFFER
  message.  The client records the lease expiration time as the sum of
  the time at which the original request was sent and the duration of
  the lease from the DHCPOFFER message.  The client SHOULD broadcast an
  ARP reply to announce the client's new IP address and clear any
  outdated ARP cache entries in hosts on the client's subnet.

4.4.2 Initialization with known network address

  The client begins in INIT-REBOOT state and sends a DHCPREQUEST message
  with the 'ciaddr' field set to the client's network address.  The
  client may request specific configuration parameters by including the
  random transaction identifier and inserts that identifier into the
  computing the lease expiration.  The client MUST NOT incldue a 'server
  identifier' in the DHCPREQUEST message.  The client then broadcasts
  the DHCPREQUEST on the local hardware broadcast address to the 'DHCP
  server' UDP port.

  Once a DHCPACK message with an 'xid' field matching that in the
  client's DHCPREQUEST message arrives from any server, the client is



Droms                                                          [Page 33]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  initialized and moves to BOUND state.  The client records the lease
  expiration time as the sum of the time at which the DHCPREQUEST
  message was sent and the duration of the lease from the DHCPACK
  message.

4.4.3 Initialization with a known DHCP server address

  When the DHCP client knows the address of a DHCP server, in either
  INIT or REBOOTING state, the client may use that address in the
  DHCPDISCOVER or DHCPREQUEST rather than the IP broadcast address.  If
  the client receives no response to DHCP messages sent to the IP
  address of a known DHCP server, the DHCP client reverts to using the
  IP broadcast address.

4.4.4 Reacquisition and expiration

  The client maintains two times, T1 and T2, that specify the times at
  which the client tries to extend its lease on its network address.  T1
  is the time at which the client enters the RENEWING state and attempts
  to contact the server that originally issued the client's network
  address.  T2 is the time at which the client enters the REBINDING
  state and attempts to contact any server.

  At time T1 after the client accepts the lease on its network address,
  the client moves to RENEWING state and sends (via unicast) a
  DHCPREQUEST message to the server to extend its lease.  The client
  generates a random transaction identifier and inserts that identifier
  into the 'xid' field in the DHCPREQUEST. The client records the local
  time at which the DHCPREQUEST message is sent for computation of the
  lease expiration time.  The client MUST NOT include a 'server
  identifier' in the DHCPREQUEST message.

  Any DHCPACK messages that arrive with an 'xid' that does not match the
  When the client receives a DHCPACK from the server, the client
  computes the lease expiration time as the sum of the time at which the
  client sent the DHCPREQUEST message and the duration of the lease in
  the DHCPACK message.  The client has successfully reacquired its
  network address, returns to BOUND state and may continue network
  processing.

  If no DHCPACK arrives before time T2 (T2 > T1) before the expiration
  of the client's lease on its network address, the client moves to
  REBINDING state and sends (via broadcast) a DHCPREQUEST message to
  extend its lease.  The client sets the 'ciaddr' field in the
  DHCPREQUEST to its current network address.  The client MUST NOT
  include a 'server identifier' in the DHCPREQUEST message.

  Times T1 and T2 are configurable by the server through options.  T1



Droms                                                          [Page 34]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


  defaults to (0.5 * duration_of_lease).  T2 defaults to (0.875 *
  duration_of_lease).  Times T1 and T2 should be chosen with some random
  "fuzz" around a fixed value, to avoid synchronization of client
  reacquisition.

  In both RENEWING and REBINDING state, if the client receives no
  response to its DHCPREQUEST message, the client should wait one-half
  the remaining time until the expiration of T1 (in RENEWING state) and
  T2 (in REBINDING state) down to a minimum of 60 seconds, before
  retransmitting the DHCPREQUEST message.

  If the lease expires before the client receives a DHCPACK, the client
  moves to INIT state, MUST immediately stop any other network
  processing and requests network initialization parameters as if the
  client were uninitialized.  If the client then receives a DHCPACK
  allocating that client its previous network address, the client SHOULD
  continue network processing.  If the client is given a new network
  address, it MUST NOT continue using the previous network address and
  SHOULD notify the local users of the problem.

4.4.5 DHCPRELEASE

  If the client no longer requires use of its assigned network address
  (e.g., the client is gracefully shut down), the client sends a
  DHCPRELEASE message to the server.  Note that the correct operation of
  DHCP does not depend on the transmission of DHCPRELEASE messages.

5. Acknowledgments

  Greg Minshall, Leo McLaughlin and John Veizades have patiently
  contributed to the the design of DHCP through innumerable discussions,
  meetings and mail conversations.  Jeff Mogul first proposed the
  client-server based model for DHCP.  Steve Deering searched the
  various IP RFCs to put together the list of network parameters
  supplied by DHCP.  Walt Wimer contributed a wealth of practical
  experience with BOOTP and wrote a document clarifying the behavior of
  BOOTP/DHCP relay agents.  Jesse Walker analyzed DHCP in detail,
  pointing out several inconsistencies in earlier specifications of the
  protocol.  Steve Alexander reviewed Walker's analysis and the fixes to
  the protocol based on Walker's work.  And, of course, all the members
  of the Dynamic Host Configuration Working Group of the IETF have
  contributed to the design of the protocol through discussion and
  review of the protocol design.








Droms                                                          [Page 35]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


6. References

  [1] Acetta, M., "Resource Location Protocol", RFC 887, CMU, December
      1983.

  [2] Alexander, S., and R. Droms, "DHCP Options and BOOTP Vendor
      Extensions", RFC 1533, Lachman Technology, Inc., Bucknell
      University, October 1993.

  [3] Braden, R., Editor, "Requirements for Internet Hosts --
      Communication Layers", STD 3, RFC 1122, USC/Information Sciences
      Institute, October 1989.

  [4] Braden, R., Editor, "Requirements for Internet Hosts --
      Application and Support, STD 3, RFC 1123, USC/Information
      Sciences Institute, October 1989.

  [5] Brownell, D, "Dynamic Reverse Address Resolution Protocol
      (DRARP)", Work in Progress.

  [6] Comer, D., and R. Droms, "Uniform Access to Internet Directory
      Services", Proc. of ACM SIGCOMM '90 (Special issue of Computer
      Communications Review), 20(4):50--59, 1990.

  [7] Croft, B., and J. Gilmore, "Bootstrap Protocol (BOOTP)", RFC 951,
      Stanford and SUN Microsystems, September 1985.

  [8] Deering, S., "ICMP Router Discovery Messages", RFC 1256, Xerox
      PARC, September 1991.

  [9] Droms, D., "Interoperation between DHCP an BOOTP" RFC 1534,
      Bucknell University, October 1993.

 [10] Finlayson, R., Mann, T., Mogul, J., and M. Theimer, "A Reverse
      Address Resolution Protocol", RFC 903, Stanford, June 1984.

 [11] Gray C., and D. Cheriton, "Leases: An Efficient Fault-Tolerant
      Mechanism for Distributed File Cache Consistency", In Proc. of
      the Twelfth ACM Symposium on Operating Systems Design, 1989.

 [12] Mockapetris, P., "Domain Names -- Concepts and Facilities", STD
      13, RFC 1034, USC/Information Sciences Institute, November 1987.

 [13] Mockapetris, P., "Domain Names -- Implementation and
      Specification", STD 13, RFC 1035, USC/Information Sciences
      Institute, November 1987.





Droms                                                          [Page 36]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


 [14] Mogul J., and S. Deering, "Path MTU Discovery", RFC 1191,
      November 1990.

 [15] Morgan, R., "Dynamic IP Address Assignment for Ethernet Attached
      Hosts", Work in Progress.

 [16] Postel, J., "Internet Control Message Protocol", STD 5, RFC 792,
      USC/Information Sciences Institute, September 1981.

 [17] Reynolds, J., "BOOTP Vendor Information Extensions", RFC 1497,
      USC/Information Sciences Institute, August 1993.

 [18] Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC 1340,
      USC/Information Sciences Institute, July 1992.

 [19] Jeffrey Schiller and Mark Rosenstein. A Protocol for the Dynamic
      Assignment of IP Addresses for use on an Ethernet. (Available
      from the Athena Project, MIT), 1989.

 [20] Sollins, K., "The TFTP Protocol (Revision 2)",  RFC 783, NIC,
      June 1981.

 [21] Wimer, W., "Clarifications and Extensions for the Bootstrap
      Protocol", RFC 1532, Carnegie Mellon University, October 1993.

7. Security Considerations

  DHCP is built directly on UDP and IP which are as yet inherently
  insecure.  Furthermore, DHCP is generally intended to make
  maintenance of remote and/or diskless hosts easier.  While perhaps
  not impossible, configuring such hosts with passwords or keys may be
  difficult and inconvenient.  Therefore, DHCP in its current form is
  quite insecure.

  Unauthorized DHCP servers may be easily set up.  Such servers can
  then send false and potentially disruptive information to clients
  such as incorrect or duplicate IP addresses, incorrect routing
  information (including spoof routers, etc.), incorrect domain
  nameserver addresses (such as spoof nameservers), and so on.
  Clearly, once this seed information is in place, an attacker can
  further compromise affected systems.

  Malicious DHCP clients could masquerade as legitimate clients and
  retrieve information intended for those legitimate clients.  Where
  dynamic allocation of resources is used, a malicious client could
  claim all resources for itself, thereby denying resources to
  legitimate clients.




Droms                                                          [Page 37]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


8. Author's Address

  Ralph Droms
  Computer Science Department
  323 Dana Engineering
  Bucknell University
  Lewisburg, PA 17837

  Phone: (717) 524-1145
  EMail: [email protected]









































Droms                                                          [Page 38]

RFC 1531          Dynamic Host Configuration Protocol       October 1993


A. Host Configuration Parameters

  IP-layer_parameters,_per_host:_

  Be a router                     on/off                 HRC 3.1
  Non-local source routing        on/off                 HRC 3.3.5
  Policy filters for
  non-local source routing        (list)                 HRC 3.3.5
  Maximum reassembly size         integer                HRC 3.3.2
  Default TTL                     integer                HRC 3.2.1.7
  PMTU aging timeout              integer                MTU 6.6
  MTU plateau table               (list)                 MTU 7
  IP-layer_parameters,_per_interface:_
  IP address                      (address)              HRC 3.3.1.6
  Subnet mask                     (address mask)         HRC 3.3.1.6
  MTU                             integer                HRC 3.3.3
  All-subnets-MTU                 on/off                 HRC 3.3.3
  Broadcast address flavor        0x00000000/0xffffffff  HRC 3.3.6
  Perform mask discovery          on/off                 HRC 3.2.2.9
  Be a mask supplier              on/off                 HRC 3.2.2.9
  Perform router discovery        on/off                 RD 5.1
  Router solicitation address     (address)              RD 5.1
  Default routers, list of:
         router address          (address)              HRC 3.3.1.6
         preference level        integer                HRC 3.3.1.6
  Static routes, list of:
         destination             (host/subnet/net)      HRC 3.3.1.2
         destination mask        (address mask)         HRC 3.3.1.2
         type-of-service         integer                HRC 3.3.1.2
         first-hop router        (address)              HRC 3.3.1.2
         ignore redirects        on/off                 HRC 3.3.1.2
         PMTU                    integer                MTU 6.6
         perform PMTU discovery  on/off                 MTU 6.6

  Link-layer_parameters,_per_interface:_
  Trailers                       on/off                 HRC 2.3.1
  ARP cache timeout              integer                HRC 2.3.2.1
  Ethernet encapsulation         (RFC 894/RFC 1042)     HRC 2.3.3

  TCP_parameters,_per_host:_
  TTL                            integer                HRC 4.2.2.19
  Keep-alive interval            integer                HRC 4.2.3.6
  Keep-alive data size           0/1                    HRC 4.2.3.6

Key:

  MTU = Path MTU Discovery (RFC 1191, Proposed Standard)
  RD = Router Discovery (RFC 1256, Proposed Standard)



Droms                                                          [Page 39]