Network Working Group                                      D. Piscitello
Request for Comments: 1526                                      Bellcore
Category: Informational                                   September 1993


         Assignment of System Identifiers for TUBA/CLNP Hosts

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard.  Distribution of this memo is
  unlimited.

Abstract

  This document describes conventions whereby the system identifier
  portion of an RFC 1237 style NSAP address may be guaranteed
  uniqueness within a routing domain for the purpose of
  autoconfiguration in TUBA/CLNP internets. The mechanism is extensible
  and can provide a basis for assigning system identifiers in a
  globally unique fashion.

Introduction

  This memo specifies methods for assigning a 6 octet system identifier
  portion of the OSI NSAP address formats described in "Guidelines for
  OSI NSAP Allocation in the Internet" [1], in a fashion that ensures
  that the ID is unique within a routing domain. It also recommends
  methods for assigning system identifiers having lengths other than 6
  octets. The 6 octet system identifiers recommended in this RFC are
  assigned from 2 globally administered spaces (IEEE 802 or "Ethernet",
  and IP numbers, administered by the Internet Assigned Numbers
  Authority, IANA).

  At this time, the primary purpose for assuring uniqueness of system
  identifiers is to aid in autoconfiguration of NSAP addresses in
  TUBA/CLNP internets [2]. The guidelines in this paper also establish
  an initial framework within which globally unique system identifiers,
  also called endpoint identifiers, may be assigned.

Acknowledgments

  Many thanks to Radia Perlman, Allison Mankin, and Ross Callon of for
  their insights and assistance. Thanks also to the Ethernet connector
  to my MAC, which conveniently and quite inobtrusively fell out,
  enabling me to get an entire day's worth of work done without email
  interruptions.




Piscitello                                                      [Page 1]

RFC 1526              System Identifiers for TUBA         September 1993


1.  Background

  The general format of OSI network service access point (NSAP)
  addresses is illustrated in Figure 1.

         _______________________________________________
         |____IDP_____|_______________DSP______________|
         |__AFI_|_IDI_|_____HO-DSP______|___ID___|_SEL_|

               IDP     Initial Domain Part
               AFI     Authority and Format Identifier
               IDI     Initial Domain Identifier
               DSP     Domain Specific Part
               HO-DSP  High-order DSP
               ID      System Identifier
               SEL     NSAP Selector

               Figure 1: OSI NSAP Address Structure.

  The recommended encoding and allocation of NSAP addresses in the
  Internet is specified in RFC 1237. RFC 1237 makes the following
  statements regarding the system identifier (ID) field of the NSAPA:

 1.  the ID field may be from one to eight octets in length

 2.  the ID must have a single known length in any particular
     routing domain

 3.  the ID field must be unique within an area for ESs and
     level 1 ISs, and unique within the routing domain for level
     2 ISs.

 4.  the ID field is assumed to be flat

  RFC 1237 further indicates that, within a routing domain that
  conforms to the OSI intradomain routing protocol [3] the lower-order
  octets of the NSAP should be structured as the ID and SEL fields
  shown in Figure 1 to take full advantage of intradomain IS-IS
  routing. (End systems with addresses which do not conform may require
  additional manual configuration and be subject to inferior routing
  performance.)

  Both GOSIP Version 2 (under DFI-80h, see Figure 2a) and ANSI DCC NSAP
  addressing (Figure 2b) define a common DSP structure in which the
  system identifier is assumed to be a fixed length of 6 octets.






Piscitello                                                      [Page 2]

RFC 1526              System Identifiers for TUBA         September 1993


              _______________
              |<--__IDP_-->_|___________________________________
              |AFI_|__IDI___|___________<--_DSP_-->____________|
              |_47_|__0005__|DFI_|AA_|Rsvd_|_RD_|Area_|ID_|Sel_|
       octets |_1__|___2____|_1__|_3_|__2__|_2__|_2___|_6_|_1__|

                   Figure 2 (a): GOSIP Version 2 NSAP structure.
              ______________
              |<--_IDP_-->_|_____________________________________
              |AFI_|__IDI__|____________<--_DSP_-->_____________|
              |_39_|__840__|DFI_|_ORG_|Rsvd_|RD_|Area_|_ID_|Sel_|
       octets |_1__|___2___|_1__|__3__|_2___|_2_|__2__|_6__|_1__|

                    IDP   Initial Domain Part
                    AFI   Authority and Format Identifier
                    IDI   Initial Domain Identifier
                    DSP   Domain Specific Part
                    DFI   DSP Format Identifier
                    ORG   Organization Name (numeric form)
                    Rsvd  Reserved
                    RD    Routing Domain Identifier
                    Area  Area Identifier
                    ID    System Identifier
                    SEL   NSAP Selector


                Figure 2(b): ANSI NSAP address format for DCC=840

2.  Autoconfiguration

  There are provisions in OSI for the autoconfiguration of area
  addresses. OSI end systems may learn their area addresses
  automatically by observing area address identified in the IS-Hello
  packets transmitted by routers using the ISO 9542 End System to
  Intermediate System Routing Protocol, and may then insert their own
  system identifier. (In particular, RFC 1237 explains that when the ID
  portion of the address is assigned using IEEE style 48-bit
  identifiers, an end system can reconfigure its entire NSAP address
  automatically without the need for manual intervention.) End systems
  that have not been pre-configured with an NSAPA may also request an
  address from an intermediate system their area using [5].

2.1  Autoconfiguration and 48-bit addresses

  There is a general misassumption that the 6-octet system identifier
  must be a 48-bit IEEE assigned (ethernet) address.  Generally
  speaking, autoconfiguration does not rely on the use of a 48-bit
  ethernet style address; any system identifier that is globally



Piscitello                                                      [Page 3]

RFC 1526              System Identifiers for TUBA         September 1993


  administered and is unique will do. The use of 48-bit/6 octet system
  identifiers is "convenient...because it is the same length as an 802
  address", but more importantly, choice of a single, uniform ID length
  allows for "efficient packet forwarding", since routers won't have to
  make on the fly decisions about ID length (see [6], pages 156-157).
  Still, it is not a requirement that system identifiers be 6 octets to
  operate the the IS-IS protocol, and IS-IS allows for the use of IDs
  with lengths from 1 to 8 octets.

3.  System Identifiers for TUBA/CLNP

  Autoconfiguration is a desirable feature for TUBA/CLNP, and is viewed
  by some as "essential if a network is to scale to a truly large size"
  [6].

  For this purpose, and to accommodate communities who do not wish to
  use ethernet style addresses, a generalized format that satisfies the
  following criteria is desired:

  o the format is compatible with installed end systems
    complying to RFC 1237

  o the format accommodates 6 octet, globally unique system
    identifiers that do not come from the ethernet address space

  o the format accommodates globally unique system identifiers
    having lengths other than 6 octets

  The format and encoding of a globally unique system identifier that
  meets these requirements is illustrated in Figure 3:

     Octet 1     Octet 2     Octet 3 ...     Octet LLL-1  Octet LLLL
  +-----------+-----------+-----------+- ...-+-----------+-----------+
  | xxxx TTGM | xxxx xxxx | xxxx xxxx |      | xxxx xxxx | xxxx xxxx |
  +-----------+-----------+-----------+- ...-+-----------+-----------+

                  Figure 3. General format of the system identifier

3.1  IEEE 802 Form of System Identifier

  The format is compatible with globally assigned IEEE 802 addresses,
  since it carefully preserves the semantics of the global/local and
  group/individual bits.  Octet 1 identifies 2 qualifier bits, G and M,
  and a subtype (TT) field whose semantics are associated with the
  qualifier bits.  When a globally assigned IEEE 802 address is used as
  a system identifier, the qualifier bit M, representing the
  multicast/unicast bit, must always be set to zero to denote a unicast
  address. The qualifier bit G may be either 0 or 1, depending on



Piscitello                                                      [Page 4]

RFC 1526              System Identifiers for TUBA         September 1993


  whether the individual address is globally or locally assigned.  In
  these circumstances, the subtype bits are "don't care", and the
  system identifier shall be interpreted as a 48-bit, globally unique
  identifier assigned from the IEEE 802 committee (an ethernet
  address).  The remaining bits in octet 1, together with octets 2 and
  3 are the vendor code or OUI (organizationally unique identifier), as
  illustrated in Figure 4.  The ID is encoded in IEEE 802 canonical
  form (low order bit of low order hex digit of leftmost octet is the
  first bit transmitted).

  Octet 1     Octet 2     Octet 3     Octet 4     Octet 5   Octet 6
+-----------+-----------+-----------+-----------+-----------+-----------+
| VVVV VV00 | VVVV VVVV | VVVV VVVV | SSSS SSSS | SSSS SSSS | SSSS SSSS |
+-----------+-----------+-----------+-----------+-----------+-----------+

|------------vendor code -----------|--------station code---------------|

               Figure 4. IEEE 802 form of system identifier

4.  Embedded IP Address as System Identifier

  To distinguish 48-bit IEEE 802 addresses used as system identifiers
  from other forms of globally admininistered system identifiers, the
  qualifer bit M shall be set to 1. The correct interpretation of the M
  bit set to 1 should be, "this can't be an IEEE 802 multicast address,
  since use of multicast addresses is by convention illegal, so it must
  be some other form of system identifier". The subtype (TT) bits
  illustrated in Figure 3 thus become relevant.

  When the subtype bits (TT) are set to a value of 0, the system
  identifier contains an embedded IP address. The remainder of the 48-
  bit system identifier is encoded as follows. The remaining nibble in
  octet 1 shall be set to zero.  Octet 2 is reserved and shall be set
  to a pre-assigned value (see Figure 5).  Octets 3 through 6 shall
  contain a valid IP address, assigned by IANA.  Each octet of the IP
  address is encoded in binary, in internet canonical form, i.e., the
  leftmost bit of the network number first.

  Octet 1     Octet 2     Octet 3     Octet 4     Octet 5   Octet 6
+-----------+-----------+-----------+-----------+-----------+-----------+
| 0000 0001 | 1010 1010 | aaaa aaaa | bbbb bbbb | cccc cccc | dddd dddd |
+-----------+-----------+-----------+-----------+-----------+-----------+

|-len&Type--|--reserved-|---------IP address----------------------------|

               Figure 5. Embedded IP address as system identifier





Piscitello                                                      [Page 5]

RFC 1526              System Identifiers for TUBA         September 1993


  As an example, the host "eve.bellcore.com = 128.96.90.55" could retain
  its IP address as a system identifier in a TUBA/CLNP network. The
  encoded ID is illustrated in Figure 6.


  Octet 1     Octet 2     Octet 3     Octet 4     Octet 5   Octet 6
+-----------+-----------+-----------+-----------+-----------+-----------+
| 0000 0001 | 1010 1010 | 1000 0000 | 0110 0000 | 0101 1010 | 0011 0111 |
+-----------+-----------+-----------+-----------+-----------+-----------+

|-len&Type--|--reserved-|---------IP address----------------------------|

               Figure 6. Example of IP address encoded as ID

H 2 "Other forms of System Identifiers"

  To allow for the future definition of additional 6-octet system
  identifiers, the remaining subtype values are reserved.

  It is also possible to identify system identifiers with lengths other
  than 6 octets. Communities who wish to use 8 octet identifiers (for
  example, embedded E.164 international numbers for the ISDN ERA) must
  use a GOSIP/ANSI DSP format that allows for the specification of 2
  additional octets in the ID field, perhaps at the expense of the
  "Rsvd" fields; this document recommends that a separate Domain Format
  Indicator value be assigned for such purposes; i.e., a DFI value that
  is interpreted as saying, among other things, "the system identifier
  encoded in this DSP is 64-bits/8 octets. The resulting ANSI/GOSIP DSP
  formats under such circumstances are illustrated in Figure 7:






















Piscitello                                                      [Page 6]

RFC 1526              System Identifiers for TUBA         September 1993


              ______________
              |<--_IDP_-->_|______________________________
              |AFI_|__IDI__|____________<--_DSP_-->_______|
              |_39_|__840__|DFI_|_ORG_|RD_|Area_|_ID_|Sel_|
       octets |_1__|___2___|_1__|__3__|_2_|__2__|_8__|_1__|

       Figure 7a: ANSI NSAP address format for DCC=840, DFI=foo

              _______________
              |<--__IDP_-->_|___________________________________
              |AFI_|__IDI___|___________<--_DSP_-->____________|
              |_47_|__0005__|DFI_|AA_|_RD_|Area_|ID_|Sel_|
       octets |_1__|___2____|_1__|_3_|_2__|_2___|_8_|_1__|

                     IDP   Initial Domain Part
                     AFI   Authority and Format Identifier
                     IDI   Initial Domain Identifier
                     DSP   Domain Specific Part
                     DFI   DSP Format Identifier
                     AA    Administrative Authority
                     RD    Routing Domain Identifier
                     Area  Area Identifier
                     ID    System Identifier
                     SEL   NSAP Selector

      Figure 7b: GOSIP Version 2 NSAP structure, DFI=bar

  Similar address engineering can be applied for those communities who
  wish to have shorter system identifiers; have another DFI assigned,
  and expand the reserved field.

5.  Conclusions

  This proposal should debunk the "if it's 48-bits, it's gotta be an
  ethernet address" myth. It demonstrates how IP addresses may be
  encoded within the 48-bit system identifier field in a compatible
  fashion with IEEE 802 addresses, and offers guidelines for those who
  wish to use system identifiers other than those enumerated here.













Piscitello                                                      [Page 7]

RFC 1526              System Identifiers for TUBA         September 1993


6.  References

  [1] Callon, R., Gardner, E., and R. Colella, "Guidelines for OSI NSAP
      Allocation in the Internet", RFC 1237, NIST, Mitre, DEC, June
      1991.

  [2] Callon, R., "TCP and UDP with Bigger Addresses (TUBA), A Simple
      Proposal for Internet Addressing and Routing", RFC 1347, DEC,
      June 1992.

  [3] ISO, "Intradomain routing protocol for use in conjunction with
      ISO 8473, Protocol for providing the OSI connectionless network
      service", ISO 10589.

  [4] ISO, End-system and intermediate-system routing protocol for use
      in conjunction with ISO 8473, Protocol for providing the OSI
      connectionless network service, ISO 9542.

  [5] ISO, "End-system and intermediate-system routing protocol for use
      in conjunction with ISO 8473, Protocol for providing the OSI
      connectionless network service.  Amendment 1: Dynamic Discovery
      of OSI NSAP Addresses End Systems", ISO 9542/DAM1.

  [6] Perlman, R., "Interconnections: Bridges and Routers", Addison-
      Wesley Publishers, Reading, MA. 1992.

7.  Security Considerations

  Security issues are not discussed in this memo.

8.  Author's Address

  David M. Piscitello
  Bell Communications Research
  NVC 1C322
  331 Newman Springs Road
  Red Bank, NJ 07701

  EMail: [email protected]












Piscitello                                                      [Page 8]