Network Working Group                                        D. McMaster
Request for Comments: 1516                SynOptics Communications, Inc.
Obsoletes: 1368                                            K. McCloghrie
                                               Hughes LAN Systems, Inc.
                                                         September 1993


                    Definitions of Managed Objects
                   for IEEE 802.3 Repeater Devices

Status of this Memo

  This RFC specifies an Internet standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "Internet
  Official Protocol Standards" for the standardization state and status
  of this protocol.  Distribution of this memo is unlimited.

Abstract

  This memo defines a portion of the Management Information Base (MIB)
  for use with network management protocols in the Internet community.
  In particular, it defines objects for managing IEEE 802.3 10
  Mb/second baseband repeaters, sometimes referred to as "hubs."

Table of Contents

  1. The Network Management Framework ......................    2
  1.1 Object Definitions ...................................    2
  2. Overview ..............................................    2
  2.1 Terminology ..........................................    3
  2.1.1 Repeaters, Hubs and Concentrators ..................    3
  2.1.2 Repeaters, Ports, and MAUs .........................    3
  2.1.3 Ports and Groups ...................................    5
  2.1.4 Internal Ports and MAUs ............................    6
  2.2 Supporting Functions .................................    7
  2.3 Structure of MIB .....................................    9
  2.3.1 The Basic Group Definitions ........................   10
  2.3.2 The Monitor Group Definitions ......................   10
   2.3.3 The Address Tracking Group Definitions ............   10
  2.4 Relationship to Other MIBs ...........................   10
  2.4.1 Relationship to the 'system' group .................   10
  2.4.2 Relationship to the 'interfaces' group .............   10
  2.5 Textual Conventions ..................................   11
  3. Definitions ...........................................   11
  3.1 MIB Groups in the Repeater MIB .......................   12
  3.2 The Basic Group Definitions ..........................   13
  3.3 The Monitor Group Definitions ........................   23



McMaster & McCloghrie                                           [Page 1]

RFC 1516                   802.3 Repeater MIB             September 1993


  3.4 The Address Tracking Group Definitions ...............   34
  3.5 Traps for use by Repeaters ...........................   36
  4. Changes from RFC 1368 .................................   38
  5. Acknowledgments .......................................   39
  6. References ............................................   39
  7. Security Considerations ...............................   40
  8. Authors' Addresses ....................................   40

1.  The Network Management Framework

  The Internet-standard Network Management Framework consists of
   three components.  They are:

     o STD 16, RFC 1155 which defines the SMI, the mechanisms used for
       describing and naming objects for the purpose of management.
       STD 16, RFC 1212 defines a more concise description mechanism,
       which is wholly consistent with the SMI.

     o STD 17, RFC 1213 defines MIB-II, the core set of managed objects
       for the Internet suite of protocols.

     o STD 15, RFC 1157 which defines the SNMP, the protocol used for
       network access to managed objects.

  The Framework permits new objects to be defined for the purpose of
  experimentation and evaluation.

1.1.  Object Definitions

  Managed objects are accessed via a virtual information store, termed
  the Management Information Base or MIB.  Objects in the MIB are
  defined using the subset of Abstract Syntax Notation One (ASN.1)
  defined in the SMI.  In particular, each object object type is named
  by an OBJECT IDENTIFIER, an administratively assigned name.  The
  object type together with an object instance serves to uniquely
  identify a specific instantiation of the object.  For human
  convenience, we often use a textual string, termed the descriptor, to
  refer to the object type.

2.  Overview

  Instances of the object types defined in this memo represent
  attributes of an IEEE 802.3 (Ethernet-like) repeater, as defined by
  Section 9, "Repeater Unit for 10 Mb/s Baseband Networks" in the IEEE
  802.3/ISO 8802-3 CSMA/CD standard [7].

  These Repeater MIB objects may be used to manage non-standard
  repeater-like devices, but defining objects to describe



McMaster & McCloghrie                                           [Page 2]

RFC 1516                   802.3 Repeater MIB             September 1993


  implementation-specific properties of non-standard repeater-like
  devices is outside the scope of this memo.

  The definitions presented here are based on the IEEE draft standard
  P802.3K, "Layer Management for 10 Mb/s Baseband Repeaters" [8].
  Implementors of these MIB objects should note that [8] explicitly
  describes when, where, and how various repeater attributes are
  measured.  The IEEE document also describes the effects of repeater
  actions that may be invoked by manipulating instances of the MIB
  objects defined here.

  The counters in this document are defined to be the same as those
  counters in the IEEE 802.3 Repeater Management draft, with the
  intention that the same instrumentation can be used to implement both
  the IEEE and IETF management standards.

2.1.  Terminology

2.1.1.  Repeaters, Hubs and Concentrators

  In late 1988, the IEEE 802.3 Hub Management task force was chartered
  to define managed objects for both 802.3 repeaters and the proposed
  10BASE-FA synchronous active stars.  The term "hub" was used to cover
  both repeaters and active stars.

  In March, 1991, the active star proposal was dropped from the
  10BASE-F draft.  Subsequently the 802.3 group changed the name of the
  task force to be the IEEE 802.3 Repeater Management Task Force, and
  likewise renamed their draft.

  The use of the term "hub" has led to some confusion, as the terms
  "hub," "intelligent hub," and "concentrator" are often used to
  indicate a modular chassis with plug-in modules that provide
  generalized LAN/WAN connectivity, often with a mix of 802.3 repeater,
  token ring, and FDDI connectivity, internetworked by bridges,
  routers, and terminal servers.

  To be clear that this work covers the management of IEEE 802.3
  repeaters only, the editors of this MIB definitions document chose to
  call this a "Repeater MIB" instead of a "Hub MIB."

2.1.2.  Repeaters, Ports, and MAUs

  The following text roughly defines the terms "repeater," "port," and
  "MAU" as used in the context of this memo.  This text is imprecise
  and omits many technical details.  For a more complete and precise
  definition of these terms, refer to Section 9 of [7].




McMaster & McCloghrie                                           [Page 3]

RFC 1516                   802.3 Repeater MIB             September 1993


  An IEEE 802.3 repeater connects "Ethernet-like" media segments
  together to extend the network length and topology beyond what can be
  achieved with a single coax segment.  It can be pictured as a star
  structure with two or more input/output ports.  The diagram below
  illustrates a 6-port repeater:

                          ^      ^
                          |      |
                         \ \   / /
                          \ \ / /
                      _____\ v /_____
                   -> ______   ______ ->
                           / ^ \
                          / / \ \
                         / /   \ \
                          |      |
                          v      v

                   Figure 1.  Repeater Unit

  All the stations on the media segments connected to a given
  repeater's ports participate in a single collision domain.  A packet
  transmitted by any of these stations is seen by all of these
  stations.

  Data coming in on any port in the repeater is transmitted out through
  each of the remaining n-1 ports.  If data comes in to the repeater on
  two or more ports simultaneously or the repeater detects a collision
  on the incoming port, the repeater transmits a jamming signal out on
  all ports for the duration of the collision.

  A repeater is a bit-wise store-and-forward device.  It is
  differentiated from a bridge (a frame store-and-forward device) in
  that it is primarily concerned with carrier sense and data bits, and
  does not make data-handling decisions based on the legality or
  contents of a packet.  A repeater retransmits data bits as they are
  received.  Its data FIFO holds only enough bits to make sure that the
  FIFO does not underflow when the data rate of incoming bits is
  slightly slower than the repeater's transmission rate.

  A repeater is not an end-station on the network, and does not count
  toward the overall limit of 1024 stations.  A repeater has no MAC
  address associated with it, and therefore packets may not be
  addressed to the repeater or to its ports.  (Packets may be addressed
  to the MAC address of a management entity that is monitoring a
  repeater.  This management entity may or may not be connected to the
  network through one of the repeater's ports.  How the management
  entity obtains information about the activity on the repeater is an



McMaster & McCloghrie                                           [Page 4]

RFC 1516                   802.3 Repeater MIB             September 1993


  implementation issue, and is not discussed in this memo.)

  A repeater is connected to the network with Medium Attachment Units
  (MAUs), and sometimes through Attachment Unit Interfaces (AUIs) as
  well.  ("MAUs" are also known as transceivers, and an "AUI" is the
  same as a 15-pin Ethernet or DIX connector.)

  The 802.3 standard defines a "repeater set" as the "repeater unit"
  plus its associated MAUs (and AUIs if present).  The "repeater unit"
  is defined as the portion of the repeater set that is inboard of the
  physical media interfaces.  The MAUs may be physically separate from
  the repeater unit, or they may be integrated into the same physical
  package.

                       (MAU)   (MAU)
                         \ \   / /
                          \ \ / /
                      _____\ v /_____
                (MAU) ______   ______ (MAU)
                           / ^ \
                          / / \ \
                         / /   \ \
                       (MAU)   (MAU)

                   Figure 2.  Repeater Set

  The most commonly-used MAUs are the 10BASE-5 (AUI to thick "yellow"
  coax), 10BASE-2 (BNC to thin coax), 10BASE-T (unshielded twisted-
  pair), and FOIRL (asynchronous fiber optic inter-repeater link, which
  is being combined into the 10BASE-F standard as 10BASE-FL).  The
  draft 10BASE-F standard also includes the definition for a new
  synchronous fiber optic attachment, known as 10BASE-FB.

  It should be stressed that the repeater MIB being defined by the IEEE
  covers only the repeater unit management - it does not include
  management of the MAUs that form the repeater set.  The IEEE
  recognizes that MAU management should be the same for MAUs connected
  to end-stations (DTEs) as it is for MAUs connected to repeaters.
  This memo follows the same strategy; the definition of management
  information for MAUs is being addressed in a separate memo.

2.1.3.  Ports and Groups

  Repeaters are often implemented in modular "concentrators," where a
  card cage holds several field-replaceable cards.  Several cards may
  form a single repeater unit, with each card containing one or more of
  the repeater's ports.  Because of this modular architecture, users
  typically identify these repeater ports with a card number plus the



McMaster & McCloghrie                                           [Page 5]

RFC 1516                   802.3 Repeater MIB             September 1993


  port number relative to the card, e.g., Card 3, Port 11.

  To support this modular numbering scheme, this document follows the
  example of the IEEE Repeater Management draft [8], allowing an
  implementor to separate the ports in a repeater into "groups", if
  desired.  For example, an implementor might choose to represent
  field-replaceable units as groups of ports so that the port numbering
  would match the modular hardware implementation.

  This group mapping is recommended but optional.  An implementor may
  choose to put all of a modular repeater's ports into a single group,
  or to divide the ports into groups that do not match physical
  divisions.

  The object rptrGroupCapacity, which has a maximum value of 1024,
  indicates the maximum number of groups that a given repeater may
  contain.  The value of rptrGroupCapacity must remain constant from
  one management restart to the next.

  Each group within the repeater is uniquely identified by a group
  number in the range 1..rptrGroupCapacity.  Groups may come and go
  without causing a management reset, and may be sparsely numbered
  within the repeater.  For example, in a 12- card cage, cards 3, 5, 6,
  and 7 may together form a single repeater, and the implementor may
  choose to number them as groups 3, 5, 6, and 7, respectively.

  The object rptrGroupPortCapacity, which also has a maximum value of
  1024, indicates the maximum number of ports that a given group may
  contain.  The value of rptrGroupPortCapacity must not change for a
  given group.  However, a group may be deleted from the repeater and
  replaced with a group containing a different number of ports.  The
  value of rptrGroupLastOperStatusChange will indicate that a change
  took place.

  Each port within the repeater is uniquely identified by a combination
  of group number and port number, where port number is an integer in
  the range 1..rptrGroupPortCapacity.  As with groups within a
  repeater, ports within a group may be sparsely numbered.  Likewise,
  ports may come and go within a group without causing a management
  reset.

2.1.4.  Internal Ports and MAUs

  Repeater ports may be thought of as sources of traffic into the
  repeater.  In addition to the externally visible ports mentioned
  above, such as those with 10BASE-T MAUs, or AUI ports with external
  transceivers, some implementations may have internal ports that are
  not obvious to the end-user but are nevertheless sources of traffic



McMaster & McCloghrie                                           [Page 6]

RFC 1516                   802.3 Repeater MIB             September 1993


  into the repeater.  Examples include internal management ports,
  through which an agent communicates, and ports connecting to a
  backplane internal to the implementation.

  Some implementations may not manage all of a repeater's ports.  For
  managed ports, there must be entries in the port table; unmanaged
  ports will not show up in the table.

  It is the decision of the implementor to select the appropriate
  group(s) in which to place internal ports.  GroupCapacity for a given
  group always reflects the number of MANAGED ports in that group.

  If some ports are unmanaged such that not all packet sources are
  represented by managed ports, then the sum of the input counters for
  the repeater will not equal the actual output of the repeater.

2.2.  Supporting Functions

  The IEEE 802.3 Hub Management draft [8] defines the following seven
  functions and seven signals used to describe precisely when port
  counters are incremented.  The relationship between the functions and
  signals is shown in Figure 3.

  The CollisionEvent, ActivityDuration, CarrierEvent, FramingError,
  OctetCount, FCSError, and SourceAddress output signals defined here
  are not retrievable MIB objects, but rather are concepts used in
  defining the MIB objects.  The inputs are defined in Section 9 of the
  IEEE 802.3 standard [7].























McMaster & McCloghrie                                           [Page 7]

RFC 1516                   802.3 Repeater MIB             September 1993


             +---------+
             |Collision|--------------------->CollisionEvent
  CollIn(X)+>|Event    |
           | |Funct    |          +--------+
           | +---------+          |Activity|
           | +-------+            |Timing  |->ActivityDuration
           +>|Carrier|      +---->|Funct   |
             |Event  |      |     +--------+
  DataIn(X)->|Funct  |+-----+---------------->CarrierEvent
             +-------+|
                      | +-------+
                      +>|Framing|------------>FramingError
                        |Funct  |  +-------+
  decodedData---------->|       |+>|Octet  |
                        +-------+| |Count  |->OctetCount
                                 | |Funct  |
                                 | +-------+
                                 | +-------+
                          Octet  | |Cyclic |
                          Stream +>|Redund.|
                                 | |Check  |->FCSError
                                 | |Funct  |
                                 | +-------+
                                 | +-------+
                                 | |Source |
                                 +>|Address|->SourceAddress
                                   |Funct  |
                                   +-------+

            Figure 3.  Port Functions Relationship

  Collision Event Function:  The collision event function asserts the
  CollisionEvent signal when the CollIn(X) variable has the value
  SQE.  The CollisionEvent signal remains asserted until the assertion
  of any CarrierEvent signal due to the reception of the following
  event.

  Carrier Event Function:  The carrier event function asserts the
  CarrierEvent signal when the repeater exits the IDLE state, Fig 9-2
  [7], and the port has been determined to be port N.  It deasserts
  the CarrierEvent signal when, for a duration of at least Carrier
  Recovery Time (Ref: 9.5.6.5 [7]), both the DataIn(N) variable has
  the value II and the CollIn(N) variable has the value -SQE.  The
  value N is the port assigned at the time of transition from the IDLE
  state.

  Framing Function:  The framing function recognizes the boundaries of
  an incoming frame by monitoring the CarrierEvent signal and the



McMaster & McCloghrie                                           [Page 8]

RFC 1516                   802.3 Repeater MIB             September 1993


  decoded data stream.  Data bits are accepted while the CarrierEvent
  signal is asserted.  The framing function strips preamble and start
  of frame delimiter from the received data stream.  The remaining
  bits are aligned along octet boundaries.  If there is not an
  integral number of octets, then FramingError shall be asserted.  The
  FramingError signal is cleared upon the assertion of the
  CarrierEvent signal due to the reception of the following event.

  Activity Timing Function:  The activity timing function measures the
  duration of the assertion of the CarrierEvent signal.  This duration
  value must be adjusted by removing the value of Carrier Recovery
  Time (Ref: 9.5.6.5 [7]) to obtain the true duration of activity on
  the network.  The output of the Activity Timing function is the
  ActivityDuration value, which represents the duration of the
  CarrierEvent signal as expressed in units of bit times.

  Octet Counting Function:  The octet counting function counts the
  number of complete octets received from the output of the framing
  function.  The output of the octet counting function is the
  OctetCount value.  The OctetCount value is reset to zero upon the
  assertion of the CarrierEvent signal due to the reception of the
  following event.

  Cyclic Redundancy Check Function:  The cyclic redundancy check
  function verifies that the sequence of octets output by the framing
  function contains a valid frame check sequence field.  The frame
  check sequence field is the last four octets received from the
  output of the framing function.  The algorithm for generating an FCS
  from the octet stream is specified in 3.2.8 [7].  If the FCS
  generated according to this algorithm is not the same as the last
  four octets received from the framing function then the FCSError
  signal is asserted.  The FCSError signal is cleared upon the
  assertion of the CarrierEvent signal due to the reception of the
  following event.

  Source Address Function:  The source address function extracts
  octets from the stream output by the framing function.  The seventh
  through twelfth octets shall be extracted from the octet stream and
  output as the SourceAddress variable.  The SourceAddress variable is
  set to an invalid state upon the assertion of the CarrierEvent
  signal due to the reception of the following event.

2.3.  Structure of MIB

  Objects in this MIB are arranged into MIB groups.  Each MIB group is
  organized as a set of related objects.





McMaster & McCloghrie                                           [Page 9]

RFC 1516                   802.3 Repeater MIB             September 1993


2.3.1.  The Basic Group Definitions

  This mandatory group contains the objects which are applicable to
  all repeaters.  It contains status, parameter and control objects
  for the repeater as a whole, the port groups within the repeater, as
  well as for the individual ports themselves.

2.3.2.  The Monitor Group Definitions

  This optional group contains monitoring statistics for the repeater
  as a whole and for individual ports.

2.3.3.  The Address Tracking Group Definitions

  This optional group contains objects for tracking the MAC addresses
  of the DTEs attached to the ports of the repeater.

2.4.  Relationship to Other MIBs

  It is assumed that a repeater implementing this MIB will also
  implement (at least) the 'system' group defined in MIB-II [3].

2.4.1.  Relationship to the 'system' group

  In MIB-II, the 'system' group is defined as being mandatory for all
  systems such that each managed entity contains one instance of each
  object in the 'system' group.  Thus, those objects apply to the
  entity even if the entity's sole functionality is management of a
  repeater.

2.4.2.  Relationship to the 'interfaces' group

  In MIB-II, the 'interfaces' group is defined as being mandatory for
  all systems and contains information on an entity's interfaces,
  where each interface is thought of as being attached to a
  the Internet suite of protocols.)

  This Repeater MIB uses the notion of ports on a repeater.  The
  concept of a MIB-II interface has NO specific relationship to a
  repeater's port.  Therefore, the 'interfaces' group applies only to
  the one (or more) network interfaces on which the entity managing
  the repeater sends and receives management protocol operations, and
  does not apply to the repeater's ports.

  This is consistent with the physical-layer nature of a repeater.  A
  repeater is a bitwise store-and-forward device.  It recognizes
  activity and bits, but does not process incoming data based on any
  packet-related information (such as checksum or addresses).  A



McMaster & McCloghrie                                          [Page 10]

RFC 1516                   802.3 Repeater MIB             September 1993


  repeater has no MAC address, no MAC implementation, and does not
  pass packets up to higher-level protocol entities for processing.

  (When a network management entity is observing the repeater, it may
  appear as though the repeater is passing packets to a higher-level
  protocol entity.  However, this is only a means of implementing
  management, and this passing of management information is not part
  of the repeater functionality.)

2.5.  Textual Conventions

  The datatype MacAddress is used as a textual convention in this
  document.  This textual convention has NO effect on either the
  syntax nor the semantics of any managed object.  Objects defined
  using this convention are always encoded by means of the rules that
  define their primitive type.  Hence, no changes to the SMI or the
  SNMP are necessary to accommodate this textual convention which is
  adopted merely for the convenience of readers.

3.  Definitions

  SNMP-REPEATER-MIB DEFINITIONS ::= BEGIN

  IMPORTS
      Counter, TimeTicks, Gauge
                                          FROM RFC1155-SMI
      DisplayString                       FROM RFC1213-MIB
      TRAP-TYPE                           FROM RFC-1215
      OBJECT-TYPE                         FROM RFC-1212;


  snmpDot3RptrMgt OBJECT IDENTIFIER ::= { mib-2 22 }


  -- All representations of MAC addresses in this MIB Module use,
  -- as a textual convention (i.e., this convention does not affect
  -- their encoding), the data type:

  MacAddress ::= OCTET STRING (SIZE (6))    -- a 6 octet address in
                                            -- the "canonical" order
  -- defined by IEEE 802.1a, i.e., as if it were transmitted least
  -- significant bit first.


  --                      References
  --
  -- The following references are used throughout this MIB:
  --



McMaster & McCloghrie                                          [Page 11]

RFC 1516                   802.3 Repeater MIB             September 1993


  -- [IEEE 802.3 Std]
  --    refers to IEEE 802.3/ISO 8802-3 Information processing
  --    systems - Local area networks - Part 3: Carrier sense
  --    multiple access with collision detection (CSMA/CD)
  --    access method and physical layer specifications
  --    (2nd edition, September 21, 1990).
  --
  -- [IEEE 802.3 Rptr Mgt]
  --    refers to IEEE P802.3K, 'Layer Management for 10 Mb/s
  --    Baseband Repeaters, Section 19,' Draft Supplement to
  --    ANSI/IEEE 802.3, (Draft 8, April 9, 1992)


  --                      MIB Groups
  --
  -- The rptrBasicPackage group is mandatory.
  -- The rptrMonitorPackage and rptrAddrTrackPackage
  -- groups are optional.


  rptrBasicPackage
      OBJECT IDENTIFIER ::= { snmpDot3RptrMgt 1 }

  rptrMonitorPackage
      OBJECT IDENTIFIER ::= { snmpDot3RptrMgt 2 }

  rptrAddrTrackPackage
      OBJECT IDENTIFIER ::= { snmpDot3RptrMgt 3 }


  -- object identifiers for organizing the information
  -- in the groups by repeater, port-group, and port

  rptrRptrInfo
      OBJECT IDENTIFIER ::= { rptrBasicPackage 1 }
  rptrGroupInfo
      OBJECT IDENTIFIER ::= { rptrBasicPackage 2 }
  rptrPortInfo
      OBJECT IDENTIFIER ::= { rptrBasicPackage 3 }

  rptrMonitorRptrInfo
      OBJECT IDENTIFIER ::= { rptrMonitorPackage 1 }
  rptrMonitorGroupInfo
      OBJECT IDENTIFIER ::= { rptrMonitorPackage 2 }
  rptrMonitorPortInfo
      OBJECT IDENTIFIER ::= { rptrMonitorPackage 3 }

  rptrAddrTrackRptrInfo     -- this subtree is currently unused



McMaster & McCloghrie                                          [Page 12]

RFC 1516                   802.3 Repeater MIB             September 1993


      OBJECT IDENTIFIER ::= { rptrAddrTrackPackage 1 }
  rptrAddrTrackGroupInfo    -- this subtree is currently unused
      OBJECT IDENTIFIER ::= { rptrAddrTrackPackage 2 }
  rptrAddrTrackPortInfo
      OBJECT IDENTIFIER ::= { rptrAddrTrackPackage 3 }


  --
  --                    The BASIC GROUP
  --
  -- Implementation of the Basic Group is mandatory for all
  -- managed repeaters.

  --
  -- Basic Repeater Information
  --
  -- Configuration, status, and control objects for the overall
  -- repeater
  --

  rptrGroupCapacity OBJECT-TYPE
      SYNTAX    INTEGER (1..1024)
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "The rptrGroupCapacity is the number of groups
              that can be contained within the repeater.  Within
              each managed repeater, the groups are uniquely
              numbered in the range from 1 to rptrGroupCapacity.

              Some groups may not be present in the repeater, in
              which case the actual number of groups present
              will be less than rptrGroupCapacity.  The number
              of groups present will never be greater than
              rptrGroupCapacity.

              Note:  In practice, this will generally be the
              number of field-replaceable units (i.e., modules,
              cards, or boards) that can fit in the physical
              repeater enclosure, and the group numbers will
              correspond to numbers marked on the physical
              enclosure."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.3.2,
              aRepeaterGroupCapacity."
      ::= { rptrRptrInfo 1 }

  rptrOperStatus OBJECT-TYPE



McMaster & McCloghrie                                          [Page 13]

RFC 1516                   802.3 Repeater MIB             September 1993


      SYNTAX  INTEGER {
                  other(1),            -- undefined or unknown status
                  ok(2),               -- no known failures
                  rptrFailure(3),      -- repeater-related failure
                  groupFailure(4),     -- group-related failure
                  portFailure(5),      -- port-related failure
                  generalFailure(6)    -- failure, unspecified type
              }
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "The rptrOperStatus object indicates the
              operational state of the repeater.  The
              rptrHealthText object may be consulted for more
              specific information about the state of the
              repeater's health.

              In the case of multiple kinds of failures (e.g.,
              repeater failure and port failure), the value of
              this attribute shall reflect the highest priority
              failure in the following order, listed highest
              priority first:

                  rptrFailure(3)
                  groupFailure(4)
                  portFailure(5)
                  generalFailure(6)."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.3.2,
              aRepeaterHealthState."
      ::= { rptrRptrInfo 2 }

  rptrHealthText OBJECT-TYPE
      SYNTAX    DisplayString (SIZE (0..255))
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "The health text object is a text string that
              provides information relevant to the operational
              state of the repeater.  Agents may use this string
              to provide detailed information on current
              failures, including how they were detected, and/or
              instructions for problem resolution.  The contents
              are agent-specific."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.3.2,
              aRepeaterHealthText."
      ::= { rptrRptrInfo 3 }



McMaster & McCloghrie                                          [Page 14]

RFC 1516                   802.3 Repeater MIB             September 1993


  rptrReset OBJECT-TYPE
      SYNTAX    INTEGER {
                    noReset(1),
                    reset(2)
                }
      ACCESS    read-write
      STATUS    mandatory
      DESCRIPTION
              "Setting this object to reset(2) causes a
              transition to the START state of Fig 9-2 in
              section 9 [IEEE 802.3 Std].

              Setting this object to noReset(1) has no effect.
              The agent will always return the value noReset(1)
              when this object is read.

              After receiving a request to set this variable to
              reset(2), the agent is allowed to delay the reset
              for a short period.  For example, the implementor
              may choose to delay the reset long enough to allow
              the SNMP response to be transmitted.  In any
              event, the SNMP response must be transmitted.

              This action does not reset the management counters
              defined in this document nor does it affect the
              portAdminStatus parameters.  Included in this
              action is the execution of a disruptive Self-Test
              with the following characteristics:  a) The nature
              of the tests is not specified.  b) The test resets
              the repeater but without affecting management
              information about the repeater.  c) The test does
              not inject packets onto any segment.  d) Packets
              received during the test may or may not be
              transferred.  e) The test does not interfere with
              management functions.

              After performing this self-test, the agent will
              update the repeater health information (including
              rptrOperStatus and rptrHealthText), and send a
              rptrHealth trap."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.3.3,
              acResetRepeater."
      ::= { rptrRptrInfo 4 }

  rptrNonDisruptTest OBJECT-TYPE
      SYNTAX    INTEGER {
                    noSelfTest(1),



McMaster & McCloghrie                                          [Page 15]

RFC 1516                   802.3 Repeater MIB             September 1993


                    selfTest(2)
                }
      ACCESS    read-write
      STATUS    mandatory
      DESCRIPTION
              "Setting this object to selfTest(2) causes the
              repeater to perform a agent-specific, non-
              disruptive self-test that has the following
              characteristics:  a) The nature of the tests is
              not specified.  b) The test does not change the
              state of the repeater or management information
              about the repeater.  c) The test does not inject
              packets onto any segment.  d) The test does not
              prevent the relay of any packets.  e) The test
              does not interfere with management functions.

              After performing this test, the agent will update
              the repeater health information (including
              rptrOperStatus and rptrHealthText) and send a
              rptrHealth trap.

              Note that this definition allows returning an
              'okay' result after doing a trivial test.

              Setting this object to noSelfTest(1) has no
              effect.  The agent will always return the value
              noSelfTest(1) when this object is read."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.3.3,
              acExecuteNonDisruptiveSelfTest."
      ::= { rptrRptrInfo 5 }

  rptrTotalPartitionedPorts OBJECT-TYPE
      SYNTAX    Gauge
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This object returns the total number of ports in
              the repeater whose current state meets all three
              of the following criteria:  rptrPortOperStatus
              does not have the value notPresent(3),
              rptrPortAdminStatus is enabled(1), and
              rptrPortAutoPartitionState is autoPartitioned(2)."
      ::= { rptrRptrInfo 6 }







McMaster & McCloghrie                                          [Page 16]

RFC 1516                   802.3 Repeater MIB             September 1993


  --
  -- The Basic Port Group Table
  --

  rptrGroupTable OBJECT-TYPE
      SYNTAX    SEQUENCE OF RptrGroupEntry
      ACCESS    not-accessible
      STATUS    mandatory
      DESCRIPTION
              "Table of descriptive and status information about
              the groups of ports."
      ::= { rptrGroupInfo 1 }

  rptrGroupEntry OBJECT-TYPE
      SYNTAX    RptrGroupEntry
      ACCESS    not-accessible
      STATUS    mandatory
      DESCRIPTION
              "An entry in the table, containing information
              about a single group of ports."
      INDEX    { rptrGroupIndex }
      ::= { rptrGroupTable 1 }

  RptrGroupEntry ::=
      SEQUENCE {
          rptrGroupIndex
              INTEGER,
          rptrGroupDescr
              DisplayString,
          rptrGroupObjectID
              OBJECT IDENTIFIER,
          rptrGroupOperStatus
              INTEGER,
          rptrGroupLastOperStatusChange
              TimeTicks,
          rptrGroupPortCapacity
              INTEGER
      }

  rptrGroupIndex OBJECT-TYPE
      SYNTAX    INTEGER (1..1024)
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This object identifies the group within the
              repeater for which this entry contains
              information.  This value is never greater than
              rptrGroupCapacity."



McMaster & McCloghrie                                          [Page 17]

RFC 1516                   802.3 Repeater MIB             September 1993


      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.5.2,
              aGroupID."
      ::= { rptrGroupEntry 1 }

  rptrGroupDescr OBJECT-TYPE
      SYNTAX    DisplayString (SIZE (0..255))
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "A textual description of the group.  This value
              should include the full name and version
              identification of the group's hardware type and
              indicate how the group is differentiated from
              other types of groups in the repeater.  Plug-in
              Module, Rev A' or 'Barney Rubble 10BASE-T 4-port
              SIMM socket Version 2.1' are examples of valid
              group descriptions.

              It is mandatory that this only contain printable
              ASCII characters."
      ::= { rptrGroupEntry 2 }

  rptrGroupObjectID OBJECT-TYPE
      SYNTAX    OBJECT IDENTIFIER
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "The vendor's authoritative identification of the
              group.  This value may be allocated within the SMI
              enterprises subtree (1.3.6.1.4.1) and provides a
              straight-forward and unambiguous means for
              determining what kind of group is being managed.

              For example, this object could take the value
              1.3.6.1.4.1.4242.1.2.14 if vendor 'Flintstones,
              Inc.' was assigned the subtree 1.3.6.1.4.1.4242,
              and had assigned the identifier
              1.3.6.1.4.1.4242.1.2.14 to its 'Wilma Flintstone
              6-Port FOIRL Plug-in Module.'"
      ::= { rptrGroupEntry 3 }

  rptrGroupOperStatus OBJECT-TYPE
      SYNTAX    INTEGER {
                    other(1),
                    operational(2),
                    malfunctioning(3),
                    notPresent(4),



McMaster & McCloghrie                                          [Page 18]

RFC 1516                   802.3 Repeater MIB             September 1993


                    underTest(5),
                    resetInProgress(6)
                }
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "An object that indicates the operational status
              of the group.

              A status of notPresent(4) indicates that the group
              is temporarily or permanently physically and/or
              logically not a part of the repeater.  It is an
              implementation-specific matter as to whether the
              agent effectively removes notPresent entries from
              the table.

              A status of operational(2) indicates that the
              group is functioning, and a status of
              malfunctioning(3) indicates that the group is
              malfunctioning in some way."
      ::= { rptrGroupEntry 4 }

  rptrGroupLastOperStatusChange OBJECT-TYPE
      SYNTAX    TimeTicks
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "An object that contains the value of sysUpTime at
              the time that the value of the rptrGroupOperStatus
              object for this group last changed.

              A value of zero indicates that the group's
              operational status has not changed since the agent
              last restarted."
      ::= { rptrGroupEntry 5 }

  rptrGroupPortCapacity OBJECT-TYPE
      SYNTAX    INTEGER (1..1024)
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "The rptrGroupPortCapacity is the number of ports
              that can be contained within the group.  Valid
              range is 1-1024.  Within each group, the ports are
              uniquely numbered in the range from 1 to
              rptrGroupPortCapacity.

              Note:  In practice, this will generally be the



McMaster & McCloghrie                                          [Page 19]

RFC 1516                   802.3 Repeater MIB             September 1993


              number of ports on a module, card, or board, and
              the port numbers will correspond to numbers marked
              on the physical embodiment."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.5.2,
              aGroupPortCapacity."
      ::= { rptrGroupEntry 6 }


  --
  -- The Basic Port Table
  --

  rptrPortTable OBJECT-TYPE
      SYNTAX    SEQUENCE OF RptrPortEntry
      ACCESS    not-accessible
      STATUS    mandatory
      DESCRIPTION
              "Table of descriptive and status information about
              the ports."
      ::= { rptrPortInfo 1 }

  rptrPortEntry OBJECT-TYPE
      SYNTAX    RptrPortEntry
      ACCESS    not-accessible
      STATUS    mandatory
      DESCRIPTION
              "An entry in the table, containing information
              about a single port."
      INDEX    { rptrPortGroupIndex, rptrPortIndex }
      ::= { rptrPortTable 1 }

  RptrPortEntry ::=
      SEQUENCE {
          rptrPortGroupIndex
              INTEGER,
          rptrPortIndex
              INTEGER,
          rptrPortAdminStatus
              INTEGER,
          rptrPortAutoPartitionState
              INTEGER,
          rptrPortOperStatus
              INTEGER
      }

  rptrPortGroupIndex OBJECT-TYPE
      SYNTAX    INTEGER (1..1024)



McMaster & McCloghrie                                          [Page 20]

RFC 1516                   802.3 Repeater MIB             September 1993


      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This object identifies the group containing the
              port for which this entry contains information."
      ::= { rptrPortEntry 1 }

  rptrPortIndex OBJECT-TYPE
      SYNTAX    INTEGER (1..1024)
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This object identifies the port within the group
              for which this entry contains information.  This
              value can never be greater than
              rptrGroupPortCapacity for the associated group."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,
              aPortID."
      ::= { rptrPortEntry 2 }

  rptrPortAdminStatus OBJECT-TYPE
      SYNTAX    INTEGER {
                    enabled(1),
                    disabled(2)
                }
      ACCESS    read-write
      STATUS    mandatory
      DESCRIPTION
              "Setting this object to disabled(2) disables the
              port.  A disabled port neither transmits nor
              receives.  Once disabled, a port must be
              explicitly enabled to restore operation.  A port
              which is disabled when power is lost or when a
              reset is exerted shall remain disabled when normal
              operation resumes.

              The admin status takes precedence over auto-
              partition and functionally operates between the
              auto-partition mechanism and the AUI/PMA.

              Setting this object to enabled(1) enables the port
              and exerts a BEGIN on the port's auto-partition
              state machine.

              (In effect, when a port is disabled, the value of
              rptrPortAutoPartitionState for that port is frozen
              until the port is next enabled.  When the port



McMaster & McCloghrie                                          [Page 21]

RFC 1516                   802.3 Repeater MIB             September 1993


              becomes enabled, the rptrPortAutoPartitionState
              becomes notAutoPartitioned(1), regardless of its
              pre-disabling state.)"
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,
              aPortAdminState and 19.2.6.3, acPortAdminControl."
      ::= { rptrPortEntry 3 }

  rptrPortAutoPartitionState OBJECT-TYPE
      SYNTAX    INTEGER {
                    notAutoPartitioned(1),
                    autoPartitioned(2)
                }
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "The autoPartitionState flag indicates whether the
              port is currently partitioned by the repeater's
              auto-partition protection.

              The conditions that cause port partitioning are
              specified in partition state machine in Section 9
              [IEEE 802.3 Std].  They are not differentiated
              here."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,
              aAutoPartitionState."
      ::= { rptrPortEntry 4 }

  rptrPortOperStatus  OBJECT-TYPE
      SYNTAX    INTEGER {
                    operational(1),
                    notOperational(2),
                    notPresent(3)
                }
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This object indicates the port's operational
              status.  The notPresent(3) status indicates the
              port is physically removed (note this may or may
              not be possible depending on the type of port.)
              The operational(1) status indicates that the port
              is enabled (see rptrPortAdminStatus) and working,
              even though it might be auto-partitioned (see
              rptrPortAutoPartitionState).

              If this object has the value operational(1) and



McMaster & McCloghrie                                          [Page 22]

RFC 1516                   802.3 Repeater MIB             September 1993


              rptrPortAdminStatus is set to disabled(2), it is
              expected that this object's value will soon change
              to notOperational(2)."
      ::= { rptrPortEntry 5 }


  --
  --                    The MONITOR GROUP
  --
  -- Implementation of this group is optional, but within the
  -- group all elements are mandatory.  If a managed repeater
  -- implements any part of this group, the entire group shall
  -- be implemented.

  --
  -- Repeater Monitor Information
  --
  -- Performance monitoring statistics for the repeater
  --

  rptrMonitorTransmitCollisions OBJECT-TYPE
      SYNTAX    Counter
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This counter is incremented every time the
              repeater state machine enters the TRANSMIT
              COLLISION state from any state other than ONE PORT
              LEFT (Ref: Fig 9-2, IEEE 802.3 Std).

              The approximate minimum time for rollover of this
              counter is 16 hours."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.3.2,
              aTransmitCollisions."
      ::= { rptrMonitorRptrInfo 1 }


  --
  -- The Group Monitor Table
  --

  rptrMonitorGroupTable OBJECT-TYPE
      SYNTAX    SEQUENCE OF RptrMonitorGroupEntry
      ACCESS    not-accessible
      STATUS    mandatory
      DESCRIPTION
              "Table of performance and error statistics for the



McMaster & McCloghrie                                          [Page 23]

RFC 1516                   802.3 Repeater MIB             September 1993


              groups."
      ::= { rptrMonitorGroupInfo 1 }

  rptrMonitorGroupEntry OBJECT-TYPE
      SYNTAX    RptrMonitorGroupEntry
      ACCESS    not-accessible
      STATUS    mandatory
      DESCRIPTION
              "An entry in the table, containing total
              performance and error statistics for a single
              group.  Regular retrieval of the information in
              this table provides a means of tracking the
              performance and health of the networked devices
              attached to this group's ports.

              The counters in this table are redundant in the
              sense that they are the summations of information
              already available through other objects.  However,
              these sums provide a considerable optimization of
              network management traffic over the otherwise
              necessary retrieval of the individual counters
              included in each sum."
      INDEX    { rptrMonitorGroupIndex }
      ::= { rptrMonitorGroupTable 1 }

  RptrMonitorGroupEntry ::=
      SEQUENCE {
          rptrMonitorGroupIndex
              INTEGER,
          rptrMonitorGroupTotalFrames
              Counter,
          rptrMonitorGroupTotalOctets
              Counter,
          rptrMonitorGroupTotalErrors
              Counter
      }

  rptrMonitorGroupIndex OBJECT-TYPE
      SYNTAX    INTEGER (1..1024)
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This object identifies the group within the
              repeater for which this entry contains
              information."
      ::= { rptrMonitorGroupEntry 1 }

  rptrMonitorGroupTotalFrames OBJECT-TYPE



McMaster & McCloghrie                                          [Page 24]

RFC 1516                   802.3 Repeater MIB             September 1993


      SYNTAX    Counter
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "The total number of frames of valid frame length
              that have been received on the ports in this group
              and for which the FCSError and CollisionEvent
              signals were not asserted.  This counter is the
              summation of the values of the
              rptrMonitorPortReadableFrames counters for all of
              the ports in the group.

              This statistic provides one of the parameters
              necessary for obtaining the packet error rate.
              The approximate minimum time for rollover of this
              counter is 80 hours."
      ::= { rptrMonitorGroupEntry 2 }

  rptrMonitorGroupTotalOctets OBJECT-TYPE
      SYNTAX    Counter
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "The total number of octets contained in the valid
              frames that have been received on the ports in
              this group.  This counter is the summation of the
              values of the rptrMonitorPortReadableOctets
              counters for all of the ports in the group.

              This statistic provides an indicator of the total
              data transferred.  The approximate minimum time
              for rollover of this counter is 58 minutes."
      ::= { rptrMonitorGroupEntry 3 }

  rptrMonitorGroupTotalErrors OBJECT-TYPE
      SYNTAX    Counter
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "The total number of errors which have occurred on
              all of the ports in this group.  This counter is
              the summation of the values of the
              rptrMonitorPortTotalErrors counters for all of the
              ports in the group."
      ::= { rptrMonitorGroupEntry 4 }

  --
  -- The Port Monitor Table



McMaster & McCloghrie                                          [Page 25]

RFC 1516                   802.3 Repeater MIB             September 1993


  --

  rptrMonitorPortTable OBJECT-TYPE
      SYNTAX    SEQUENCE OF RptrMonitorPortEntry
      ACCESS    not-accessible
      STATUS    mandatory
      DESCRIPTION
              "Table of performance and error statistics for the
              ports."
      ::= { rptrMonitorPortInfo 1 }

  rptrMonitorPortEntry OBJECT-TYPE
      SYNTAX    RptrMonitorPortEntry
      ACCESS    not-accessible
      STATUS    mandatory
      DESCRIPTION
              "An entry in the table, containing performance and
              error statistics for a single port."
      INDEX    { rptrMonitorPortGroupIndex, rptrMonitorPortIndex }
      ::= { rptrMonitorPortTable 1 }

  RptrMonitorPortEntry ::=
      SEQUENCE {
          rptrMonitorPortGroupIndex
              INTEGER,
          rptrMonitorPortIndex
              INTEGER,
          rptrMonitorPortReadableFrames
              Counter,
          rptrMonitorPortReadableOctets
              Counter,
          rptrMonitorPortFCSErrors
              Counter,
          rptrMonitorPortAlignmentErrors
              Counter,
          rptrMonitorPortFrameTooLongs
              Counter,
          rptrMonitorPortShortEvents
              Counter,
          rptrMonitorPortRunts
              Counter,
          rptrMonitorPortCollisions
              Counter,
          rptrMonitorPortLateEvents
              Counter,
          rptrMonitorPortVeryLongEvents
              Counter,
          rptrMonitorPortDataRateMismatches



McMaster & McCloghrie                                          [Page 26]

RFC 1516                   802.3 Repeater MIB             September 1993


              Counter,
          rptrMonitorPortAutoPartitions
              Counter,
          rptrMonitorPortTotalErrors
              Counter
      }

  rptrMonitorPortGroupIndex OBJECT-TYPE
      SYNTAX    INTEGER (1..1024)
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This object identifies the group containing the
              port for which this entry contains information."
      ::= { rptrMonitorPortEntry 1 }

  rptrMonitorPortIndex OBJECT-TYPE
      SYNTAX    INTEGER (1..1024)
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This object identifies the port within the group
              for which this entry contains information."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,
              aPortID."
      ::= { rptrMonitorPortEntry 2 }

  rptrMonitorPortReadableFrames OBJECT-TYPE
      SYNTAX    Counter
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This object is the number of frames of valid
              frame length that have been received on this port.
              This counter is incremented by one for each frame
              received on this port whose OctetCount is greater
              than or equal to minFrameSize and less than or
              equal to maxFrameSize (Ref: IEEE 802.3 Std,
              4.4.2.1) and for which the FCSError and
              CollisionEvent signals are not asserted.

              This statistic provides one of the parameters
              necessary for obtaining the packet error rate.
              The approximate minimum time for rollover of this
              counter is 80 hours."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,



McMaster & McCloghrie                                          [Page 27]

RFC 1516                   802.3 Repeater MIB             September 1993


              aReadableFrames."
      ::= { rptrMonitorPortEntry 3 }

  rptrMonitorPortReadableOctets OBJECT-TYPE
      SYNTAX    Counter
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This object is the number of octets contained in
              valid frames that have been received on this port.
              This counter is incremented by OctetCount for each
              frame received on this port which has been
              determined to be a readable frame (i.e., including
              FCS octets but excluding framing bits and dribble
              bits).

              This statistic provides an indicator of the total
              data transferred.  The approximate minimum time
              for rollover of this counter is 58 minutes."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,
              aReadableOctets."
      ::= { rptrMonitorPortEntry 4 }

  rptrMonitorPortFCSErrors OBJECT-TYPE
      SYNTAX    Counter
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This counter is incremented by one for each frame
              received on this port with the FCSError signal
              asserted and the FramingError and CollisionEvent
              signals deasserted and whose OctetCount is greater
              than or equal to minFrameSize and less than or
              equal to maxFrameSize (Ref: 4.4.2.1, IEEE 802.3
              Std).

              The approximate minimum time for rollover of this
              counter is 80 hours."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,
              aFrameCheckSequenceErrors."
      ::= { rptrMonitorPortEntry 5 }

  rptrMonitorPortAlignmentErrors OBJECT-TYPE
      SYNTAX    Counter
      ACCESS    read-only
      STATUS    mandatory



McMaster & McCloghrie                                          [Page 28]

RFC 1516                   802.3 Repeater MIB             September 1993


      DESCRIPTION
              "This counter is incremented by one for each frame
              received on this port with the FCSError and
              FramingError signals asserted and CollisionEvent
              signal deasserted and whose OctetCount is greater
              than or equal to minFrameSize and less than or
              equal to maxFrameSize (Ref: IEEE 802.3 Std,
              4.4.2.1).  If rptrMonitorPortAlignmentErrors is
              incremented then the rptrMonitorPortFCSErrors
              Counter shall not be incremented for the same
              frame.

              The approximate minimum time for rollover of this
              counter is 80 hours."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,
              aAlignmentErrors."
      ::= { rptrMonitorPortEntry 6 }

  rptrMonitorPortFrameTooLongs OBJECT-TYPE
      SYNTAX    Counter
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This counter is incremented by one for each frame
              received on this port whose OctetCount is greater
              than maxFrameSize (Ref: 4.4.2.1, IEEE 802.3 Std).
              If rptrMonitorPortFrameTooLongs is incremented
              then neither the rptrMonitorPortAlignmentErrors
              nor the rptrMonitorPortFCSErrors counter shall be
              incremented for the frame.

              The approximate minimum time for rollover of this
              counter is 61 days."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,
              aFramesTooLong."
      ::= { rptrMonitorPortEntry 7 }

  rptrMonitorPortShortEvents OBJECT-TYPE
      SYNTAX    Counter
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This counter is incremented by one for each
              CarrierEvent on this port with ActivityDuration
              less than ShortEventMaxTime.  ShortEventMaxTime is
              greater than 74 bit times and less than 82 bit



McMaster & McCloghrie                                          [Page 29]

RFC 1516                   802.3 Repeater MIB             September 1993


              times.  ShortEventMaxTime has tolerances included
              to provide for circuit losses between a
              conformance test point at the AUI and the
              measurement point within the state machine.

              Note:  shortEvents may indicate externally
              generated noise hits which will cause the repeater
              to transmit Runts to its other ports, or propagate
              a collision (which may be late) back to the
              transmitting DTE and damaged frames to the rest of
              the network.

              Implementors may wish to consider selecting the
              ShortEventMaxTime towards the lower end of the
              allowed tolerance range to accommodate bit losses
              suffered through physical channel devices not
              budgeted for within this standard.

              The approximate minimum time for rollover of this
              counter is 16 hours."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,
              aShortEvents."
      ::= { rptrMonitorPortEntry 8 }

  rptrMonitorPortRunts OBJECT-TYPE
      SYNTAX    Counter
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This counter is incremented by one for each
              CarrierEvent on this port that meets one of the
              following two conditions.  Only one test need be
              made.  a) The ActivityDuration is greater than
              ShortEventMaxTime and less than ValidPacketMinTime
              and the CollisionEvent signal is deasserted.  b)
              The OctetCount is less than 64, the
              ActivityDuration is greater than ShortEventMaxTime
              and the CollisionEvent signal is deasserted.
              ValidPacketMinTime is greater than or equal to 552
              bit times and less than 565 bit times.

              An event whose length is greater than 74 bit times
              but less than 82 bit times shall increment either
              the shortEvents counter or the runts counter but
              not both.  A CarrierEvent greater than or equal to
              552 bit times but less than 565 bit times may or
              may not be counted as a runt.



McMaster & McCloghrie                                          [Page 30]

RFC 1516                   802.3 Repeater MIB             September 1993


              ValidPacketMinTime has tolerances included to
              provide for circuit losses between a conformance
              test point at the AUI and the measurement point
              within the state machine.

              Runts usually indicate collision fragments, a
              normal network event.  In certain situations
              associated with large diameter networks a
              percentage of collision fragments may exceed
              ValidPacketMinTime.

              The approximate minimum time for rollover of this
              counter is 16 hours."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2, aRunts."
      ::= { rptrMonitorPortEntry 9 }

  rptrMonitorPortCollisions OBJECT-TYPE
      SYNTAX    Counter
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This counter is incremented by one for any
              CarrierEvent signal on any port for which the
              CollisionEvent signal on this port is also
              asserted.

              The approximate minimum time for rollover of this
              counter is 16 hours."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,
              aCollisions."
      ::= { rptrMonitorPortEntry 10 }

  rptrMonitorPortLateEvents OBJECT-TYPE
      SYNTAX    Counter
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This counter is incremented by one for each
              CarrierEvent on this port in which the CollIn(X)
              variable transitions to the value SQE (Ref:
              9.6.6.2, IEEE 802.3 Std) while the
              ActivityDuration is greater than the
              LateEventThreshold.  Such a CarrierEvent is
              counted twice, as both a collision and as a
              lateEvent.




McMaster & McCloghrie                                          [Page 31]

RFC 1516                   802.3 Repeater MIB             September 1993


              The LateEventThreshold is greater than 480 bit
              times and less than 565 bit times.
              LateEventThreshold has tolerances included to
              permit an implementation to build a single
              threshold to serve as both the LateEventThreshold
              and ValidPacketMinTime threshold.

              The approximate minimum time for rollover of this
              counter is 81 hours."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,
              aLateEvents."
      ::= { rptrMonitorPortEntry 11 }

  rptrMonitorPortVeryLongEvents OBJECT-TYPE
      SYNTAX    Counter
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This counter is incremented by one for each
              CarrierEvent on this port whose ActivityDuration
              is greater than the MAU Jabber Lockup Protection
              timer TW3 (Ref: 9.6.1 & 9.6.5, IEEE 802.3 Std).
              Other counters may be incremented as appropriate."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,
              aVeryLongEvents."
      ::= { rptrMonitorPortEntry 12 }

  rptrMonitorPortDataRateMismatches OBJECT-TYPE
      SYNTAX    Counter
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This counter is incremented by one for each frame
              received on this port that meets all of the
              following conditions:  a) The CollisionEvent
              signal is not asserted.  b) The ActivityDuration
              is greater than ValidPacketMinTime.  c) The
              frequency (data rate) is detectably mismatched
              from the local transmit frequency.  The exact
              degree of mismatch is vendor specific and is to be
              defined by the vendor for conformance testing.

              When this event occurs, other counters whose
              increment conditions were satisfied may or may not
              also be incremented, at the implementor's
              discretion.  Whether or not the repeater was able



McMaster & McCloghrie                                          [Page 32]

RFC 1516                   802.3 Repeater MIB             September 1993


              to maintain data integrity is beyond the scope of
              this standard."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,
              aDataRateMismatches."
      ::= { rptrMonitorPortEntry 13 }

  rptrMonitorPortAutoPartitions OBJECT-TYPE
      SYNTAX    Counter
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This counter is incremented by one for each time
              the repeater has automatically partitioned this
              port.  The conditions that cause port partitioning
              are specified in the partition state machine in
              Section 9 [IEEE 802.3 Std].  They are not
              differentiated here."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,
              aAutoPartitions."
      ::= { rptrMonitorPortEntry 14 }

  rptrMonitorPortTotalErrors OBJECT-TYPE
      SYNTAX    Counter
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "The total number of errors which have occurred on
              this port.  This counter is the summation of the
              values of other error counters (for the same
              port), namely:

                  rptrMonitorPortFCSErrors,
                  rptrMonitorPortAlignmentErrors,
                  rptrMonitorPortFrameTooLongs,
                  rptrMonitorPortShortEvents,
                  rptrMonitorPortLateEvents,
                  rptrMonitorPortVeryLongEvents, and
                  rptrMonitorPortDataRateMismatches.

              This counter is redundant in the sense that it is
              the summation of information already available
              through other objects.  However, it is included
              specifically because the regular retrieval of this
              object as a means of tracking the health of a port
              provides a considerable optimization of network
              management traffic over the otherwise necessary



McMaster & McCloghrie                                          [Page 33]

RFC 1516                   802.3 Repeater MIB             September 1993


              retrieval of the summed counters."
      ::= { rptrMonitorPortEntry 15 }


  --
  --                    The ADDRESS TRACKING GROUP
  --
  -- Implementation of this group is optional; it is appropriate
  -- for all systems which have the necessary instrumentation.  If a
  -- managed repeater implements any part of this group, the entire
  -- group shall be implemented.

  --
  -- The Port Address Tracking Table
  --

  rptrAddrTrackTable OBJECT-TYPE
      SYNTAX    SEQUENCE OF RptrAddrTrackEntry
      ACCESS    not-accessible
      STATUS    mandatory
      DESCRIPTION
              "Table of address mapping information about the
              ports."
      ::= { rptrAddrTrackPortInfo 1 }

  rptrAddrTrackEntry OBJECT-TYPE
      SYNTAX    RptrAddrTrackEntry
      ACCESS    not-accessible
      STATUS    mandatory
      DESCRIPTION
              "An entry in the table, containing address mapping
              information about a single port."
      INDEX    { rptrAddrTrackGroupIndex, rptrAddrTrackPortIndex }
      ::= { rptrAddrTrackTable 1 }

  RptrAddrTrackEntry ::=
      SEQUENCE {
          rptrAddrTrackGroupIndex
              INTEGER,
          rptrAddrTrackPortIndex
              INTEGER,
          rptrAddrTrackLastSourceAddress     -- DEPRECATED OBJECT
              MacAddress,
          rptrAddrTrackSourceAddrChanges
              Counter,
          rptrAddrTrackNewLastSrcAddress
              OCTET STRING
      }



McMaster & McCloghrie                                          [Page 34]

RFC 1516                   802.3 Repeater MIB             September 1993


  rptrAddrTrackGroupIndex OBJECT-TYPE
      SYNTAX    INTEGER (1..1024)
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This object identifies the group containing the
              port for which this entry contains information."
      ::= { rptrAddrTrackEntry 1 }

  rptrAddrTrackPortIndex OBJECT-TYPE
      SYNTAX    INTEGER (1..1024)
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This object identifies the port within the group
              for which this entry contains information."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,
              aPortID."
      ::= { rptrAddrTrackEntry 2 }

  rptrAddrTrackLastSourceAddress OBJECT-TYPE
      SYNTAX    MacAddress
      ACCESS    read-only
      STATUS    deprecated
      DESCRIPTION
              "This object is the SourceAddress of the last
              readable frame (i.e., counted by
              rptrMonitorPortReadableFrames) received by this
              port.

              This object has been deprecated because its value
              is undefined when no frames have been observed on
              this port.  The replacement object is
              rptrAddrTrackNewLastSrcAddress."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,
              aLastSourceAddress."
      ::= { rptrAddrTrackEntry 3 }

  rptrAddrTrackSourceAddrChanges OBJECT-TYPE
      SYNTAX    Counter
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This counter is incremented by one for each time
              that the rptrAddrTrackLastSourceAddress attribute
              for this port has changed.



McMaster & McCloghrie                                          [Page 35]

RFC 1516                   802.3 Repeater MIB             September 1993


              This may indicate whether a link is connected to a
              single DTE or another multi-user segment.

              The approximate minimum time for rollover of this
              counter is 81 hours."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,
              aSourceAddressChanges."
      ::= { rptrAddrTrackEntry 4 }

  rptrAddrTrackNewLastSrcAddress OBJECT-TYPE
      SYNTAX    OCTET STRING (SIZE(0 | 6))
      ACCESS    read-only
      STATUS    mandatory
      DESCRIPTION
              "This object is the SourceAddress of the last
              readable frame (i.e., counted by
              rptrMonitorPortReadableFrames) received by this
              port.  If no frames have been received by this
              port since the agent began monitoring the port
              activity, the agent shall return a string of
              length zero."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.6.2,
              aLastSourceAddress."
      ::= { rptrAddrTrackEntry 5 }


  -- Traps for use by Repeaters

  -- Traps are defined using the conventions in RFC 1215 [6].

  rptrHealth TRAP-TYPE
      ENTERPRISE  snmpDot3RptrMgt
      VARIABLES   { rptrOperStatus }
      DESCRIPTION
              "The rptrHealth trap conveys information related
              to the operational status of the repeater.  This
              trap is sent either when the value of
              rptrOperStatus changes, or upon completion of a
              non-disruptive test.

              The rptrHealth trap must contain the
              rptrOperStatus object.  The agent may optionally
              include the rptrHealthText object in the varBind
              list.  See the rptrOperStatus and rptrHealthText
              objects for descriptions of the information that
              is sent.



McMaster & McCloghrie                                          [Page 36]

RFC 1516                   802.3 Repeater MIB             September 1993


              The agent must throttle the generation of
              consecutive rptrHealth traps so that there is at
              least a five-second gap between traps of this
              type.  When traps are throttled, they are dropped,
              not queued for sending at a future time.  (Note
              that 'generating' a trap means sending to all
              configured recipients.)"
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.3.4,
              hubHealth notification."
      ::= 1

  rptrGroupChange TRAP-TYPE
      ENTERPRISE  snmpDot3RptrMgt
      VARIABLES   { rptrGroupIndex }
      DESCRIPTION
              "This trap is sent when a change occurs in the
              group structure of a repeater.  This occurs only
              when a group is logically or physically removed
              from or added to a repeater.  The varBind list
              contains the identifier of the group that was
              removed or added.

              The agent must throttle the generation of
              consecutive rptrGroupChange traps for the same
              group so that there is at least a five-second gap
              between traps of this type.  When traps are
              throttled, they are dropped, not queued for
              sending at a future time.  (Note that 'generating'
              a trap means sending to all configured
              recipients.)"
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.3.4,
              groupMapChange notification."
      ::= 2

  rptrResetEvent TRAP-TYPE
      ENTERPRISE  snmpDot3RptrMgt
      VARIABLES   { rptrOperStatus }
      DESCRIPTION
              "The rptrResetEvent trap conveys information
              related to the operational status of the repeater.
              This trap is sent on completion of a repeater
              reset action.  A repeater reset action is defined
              as an a transition to the START state of Fig 9-2
              in section 9 [IEEE 802.3 Std], when triggered by a
              management command (e.g., an SNMP Set on the
              rptrReset object).



McMaster & McCloghrie                                          [Page 37]

RFC 1516                   802.3 Repeater MIB             September 1993


              The agent must throttle the generation of
              consecutive rptrResetEvent traps so that there is
              at least a five-second gap between traps of this
              type.  When traps are throttled, they are dropped,
              not queued for sending at a future time.  (Note
              that 'generating' a trap means sending to all
              configured recipients.)

              The rptrResetEvent trap is not sent when the agent
              restarts and sends an SNMP coldStart or warmStart
              trap.  However, it is recommended that a repeater
              agent send the rptrOperStatus object as an
              optional object with its coldStart and warmStart
              trap PDUs.

              The rptrOperStatus object must be included in the
              varbind list sent with this trap.  The agent may
              optionally include the rptrHealthText object as
              well."
      REFERENCE
              "Reference IEEE 802.3 Rptr Mgt, 19.2.3.4, hubReset
              notification."
      ::= 3

  END


4.  Changes from RFC 1368

  (1)  Added section 2.1.4, "Internal Ports and MAUs," that defines
       internal ports and clarifies how they may or may not be
       managed.

  (2)  Noted that the failure list for rptrOperStatus is ordered
       highest priority first.

  (3)  Clarified rptrReset description to indicate that the agent
       may briefly delay the reset action.

  (4)  For rptrReset, clarified the actions that the agent should
       take after performing the reset and self-test.

  (5)  For rptrNonDisruptTest, similar change to (3).

  (6)  Clarified that the rptrNonDisruptTest description allows
       returning "ok" after doing only a trivial test.

  (7)  Deprecated rptrAddrTrackLastSourceAddress and defined a



McMaster & McCloghrie                                          [Page 38]

RFC 1516                   802.3 Repeater MIB             September 1993


       replacement object that has a zero-length value until the
       first frame is seen on the port.

  (8)  Clarified that rptrHealth trap is sent after
       rptrNonDisruptTest even if repeater health information
       doesn't change as a result of the test.

  (9)  Clarified text on throttling traps.

5.  Acknowledgments

  This document is the work of the IETF Hub MIB Working Group.  It is
  based on drafts of the IEEE 802.3 Repeater Management Task Force.

6.  References

  [1]  Rose M., and K. McCloghrie, "Structure and Identification of
       Management Information for TCP/IP-based internets", STD 16, RFC
       1155, Performance Systems International, Hughes LAN Systems, May
       1990.

  [2]  Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple
       Network Management Protocol", STD 15, RFC 1157, SNMP Research,
       Performance Systems International, Performance Systems
       International, MIT Laboratory for Computer Science, May 1990.

  [3]  McCloghrie K., and M. Rose, Editors, "Management Information
       Base for Network Management of TCP/IP-based internets", STD 17,
       RFC 1213, Performance Systems International, March 1991.

  [4]  Information processing systems - Open Systems Interconnection -
       Specification of Abstract Syntax Notation One (ASN.1),
       International Organization for Standardization, International
       Standard 8824, December 1987.

  [5]  Rose, M., and K. McCloghrie, Editors, "Concise MIB Definitions",
       STD 16, RFC 1212, Performance Systems International, Hughes LAN
       Systems, March 1991.

  [6]  Rose, M., Editor, "A Convention for Defining Traps for use with
       the SNMP", RFC 1215, Performance Systems International, March
       1991.

  [7]  IEEE 802.3/ISO 8802-3 - Information processing systems - Local
       area networks - Part 3: Carrier sense multiple access with
       collision detection (CSMA/CD) access method and physical layer
       specifications, 2nd edition, 21 September 1990.




McMaster & McCloghrie                                          [Page 39]

RFC 1516                   802.3 Repeater MIB             September 1993


  [8]  IEEE P802.3K - Layer Management for 10 Mb/s Baseband Repeaters,
       Section 19, Draft Supplement to ANSI/IEEE 802.3, Draft 8, 9
       April 1992.

7.  Security Considerations

  Security issues are not discussed in this memo.

8.  Authors' Addresses

  Donna McMaster
  SynOptics Communications, Inc.
  4401 Great America Parkway
  P.O. Box 58185
  Santa Clara, CA 95052-8185

  Phone: (408) 764-1206
  EMail: [email protected]


  Keith McCloghrie
  Hughes LAN Systems, Inc.
  1225 Charleston Road
  Mountain View, CA 94043

  Phone: (415) 966-7934
  EMail: [email protected]
























McMaster & McCloghrie                                          [Page 40]