Network Working Group                                      K. McCloghrie
Request for Comments: 1503                            Hughes LAN Systems
                                                                M. Rose
                                           Dover Beach Consulting, Inc.
                                                            August 1993


               Algorithms for Automating Administration
                          in SNMPv2 Managers

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard.  Distribution of this memo is
  unlimited.

Table of Contents

  1. Introduction ..........................................    1
  2. Implementation Model ..................................    1
  3. Configuration Assumptions .............................    3
  4. Normal Operations .....................................    4
  4.1 Getting a Context Handle .............................    4
  4.2 Requesting an Operation ..............................    7
  5. Determining and Using Maintenance Knowledge ...........    8
  5.1 Determination of Synchronization Knowledge ...........    9
  5.2 Use of Clock Synchronization Knowledge ...............   10
  5.3 Determination of Secret Update Knowledge .............   11
  5.4 Use of Secret Update Knowledge .......................   13
  6. Other Kinds and Uses of Maintenance Knowledge .........   13
  7. Security Considerations ...............................   13
  8. Acknowledgements ......................................   13
  9. References ............................................   14
  10. Authors' Addresses ...................................   14

1.  Introduction

  When a user invokes an SNMPv2 [1] management application, it may be
  desirable for the user to specify the minimum amount of information
  necessary to establish and maintain SNMPv2 communications.  This memo
  suggests an approach to achieve this goal.

2.  Implementation Model

  In order to discuss the approach outlined in this memo, it is useful
  to have a model of how the various parts of an SNMPv2 manager fit
  together.  The model assumed in this memo is depicted in Figure 2.1.
  This model is, of course, merely for expository purposes, and the



McCloghrie & Rose                                               [Page 1]

RFC 1503      Automating Administration in SNMPv2 Manager    August 1993


  approach should be readily adaptable to other models.

                                (Human) User
                                     *
                                     *
                  ===========User Interface (UI)===========
                                     *
                             +--------------------------+
                         ... | Management Application N |
                      +---------------------------+     |
                      | Management Application 2  |-----+
                  +--------------------------+    |   *
                  | Management Application 1 |----+   *
                  +--------------------------+  *     *
                                          *     *     *
                 ========Management API======================
                     *                                  *
                     *             ________             *
               +-------------+    / Local  \    +---------------+
               | Context     |***/  Party   \***| SNMP protocol |
               | Resolver(s) |   \ Database /   |   engine(s)   |
               +-------------+    \________/    +---------------+
                                                        *
                                                        *
                           ===========Transport APIs============
                                            *
                            +---------------------------------+
                            | Transport Stacks (e.g., UDP/IP) |
                            +---------------------------------+
                                            *
                                        Network(s)

                Figure 2.1  SNMPv2 Manager Implementation Model

  Note that there might be just one SNMP protocol engine and one
  "context resolver" which are accessed by all local management
  applications, or, each management application might have its own SNMP
  protocol engine and its own "context resolver", all of which have
  shared access to the local party database [2].

  In addition to the elements shown in the figure, there would need to
  be an interface for the administrator to access the local party
  database, e.g., for configuring initial information, including
  secrets.  There might also be facilities for different users to have
  different access privileges, and/or other reasons for there to be
  multiple (coordinated) subsets of the local party database.





McCloghrie & Rose                                               [Page 2]

RFC 1503      Automating Administration in SNMPv2 Manager    August 1993


3.  Configuration Assumptions

  Now, let's assume that the administrator has already configured a
  local party database for the management application, e.g.,

              partyIdentifier:         initialPartyId.a.b.c.d.1
              partyIndex:              1
              partyTAddress:           a.b.c.d:161
              partyLocal:              false
              partyAuthProtocol:       noAuth
              partyPrivProtocol:       noPriv

              partyIdentifier:         initialPartyId.a.b.c.d.2
              partyIndex:              2
              partyTAddress:           local address
              partyLocal:              true
              partyAuthProtocol:       noAuth
              partyPrivProtocol:       noPriv

              partyIdentifier:         initialPartyId.a.b.c.d.3
              partyIndex:              3
              partyTAddress:           a.b.c.d:161
              partyLocal:              false
              partyAuthProtocol:       md5Auth
              partyPrivProtocol:       noPriv

              partyIdentifier:         initialPartyId.a.b.c.d.4
              partyIndex:              4
              partyTAddress:           local address
              partyLocal:              true
              partyAuthProtocol:       md5Auth
              partyPrivProtocol:       noPriv

              contextIdentifier:       initialContextId.a.b.c.d.1
              contextIndex:            1
              contextLocal:            false
              textual handle:          router.xyz.com-public

              contextIdentifier:       initialContextId.a.b.c.d.2
              contextIndex:            2
              contextLocal:            false
              textual handle:          router.xyz.com-all

              aclTarget (dest. party): 1
              aclSubject (src party):  2
              aclResources (context):  1
              aclPrivileges:           get, get-next, get-bulk




McCloghrie & Rose                                               [Page 3]

RFC 1503      Automating Administration in SNMPv2 Manager    August 1993


              aclTarget (dest. party): 3
              aclSubject (src party):  4
              aclResources (context):  2
              aclPrivileges:           get, get-next, get-bulk, set

  Note that each context has associated with it a "textual handle".
  This is simply a string chosen by the administrator to aid in
  selecting a context.

4.  Normal Operations

  When the user tells the management application to do something, the
  user shouldn't have to specify party or context information.

  One approach to achieve this is as follows: the user provides a
  textual string indicating the managed objects to be manipulated, and
  the management application invokes the "context resolver" to map this
  into a "context handle", and later, when an SNMPv2 operation is
  performed, the "context handle" and a minimal set of security
  requirements are provided to the management API.

4.1.  Getting a Context Handle

  A "context handle" is created when the management application
  supplies a textual string, that was probably given to it by the user.
  The "context resolver" performs these steps based on the
  application's input:

         (1)  In the local party database, each context has associated
              with it a unique string, termed its "textual handle".  If
              a context in the local database has a textual handle
              which exactly matches the textual string, then the
              "context resolver" returns a handle identifying that
              context.

              So, if the application supplies "router.xyz.com-public",
              then the "context resolver" returns a handle to the first
              context; instead, if the application supplies
              "router.xyz.com-all", then the "context resolver" returns
              a handle to the second context.

         (2)  Otherwise, if any contexts are present whose textual
              handle is longer than the textual string, and whose
              initial characters exactly match the entire textual
              string, then the "context resolver" returns a handle
              identifying all of those contexts.

              So, if the application supplies "router.xyz.com", then



McCloghrie & Rose                                               [Page 4]

RFC 1503      Automating Administration in SNMPv2 Manager    August 1993


              the "context resolver" returns a handle to both contexts.

         (3)  Otherwise, if the textual string specifies an IP address
              or a domain name which resolves to a single IP address,
              then the "context resolver" adds to the local party
              database, a volatile noAuth/noPriv party pair, a volatile
              context, and a volatile access control entry allowing
              interrogation operations, using the "initialPartyId" and
              "initialContextId" conventions.  The "context resolver"
              returns a handle identifying the newly created context.

              So, if the application supplies "89.0.0.1", then the
              "context resolver" adds the following information to the
              local party database:

                   partyIdentifier:         initialPartyId.89.0.0.1.1
                   partyIndex:              101
                   partyTAddress:           89.0.0.1:161
                   partyLocal:              false
                   partyAuthProtocol:       noAuth
                   partyPrivProtocol:       noPriv
                   partyStorageType:        volatile

                   partyIdentifier:         initialPartyId.89.0.0.1.2
                   partyIndex:              102
                   partyTAddress:           local address
                   partyLocal:              true
                   partyAuthProtocol:       noAuth
                   partyPrivProtocol:       noPriv
                   partyStorageType:        volatile

                   contextIdentifier:       initialContextId.89.0.0.1.1
                   contextIndex:            101
                   contextLocal:            false
                   contextStorageType:      volatile
                   textual handle:          89.0.0.1

                   aclTarget (dest. party): 101
                   aclSubject (src party):  102
                   aclResources (context):  101
                   aclPrivileges:           get, get-next, get-bulk
                   aclStorageType:          volatile

              and the "context resolver" returns a handle to the newly
              created context.

         (4)  Otherwise, if the textual string specifies a domain name
              which resolves to multiple IP addresses, then for each



McCloghrie & Rose                                               [Page 5]

RFC 1503      Automating Administration in SNMPv2 Manager    August 1993


              such IP address, the "context resolver" adds to the local
              party database, a volatile noAuth/noPriv party pair, a
              volatile context, and a volatile access control entry
              allowing interrogation operations, using the
              "initialPartyId" and "initialContextId" conventions.
              Then, the "context resolver" returns a handle identifying
              all of those newly created contexts.

         (5)  Otherwise, if the textual string contains a '/'-
              character, and everything to the left of the first
              occurrence of this character specifies an IP address or a
              domain name which resolves to a single IP address, then
              the "context resolver" adds to the local party database,
              a volatile SNMPv1 party, a volatile context, and a
              volatile access control entry allowing interrogation
              operations.  (The SNMPv1 community string consists of any
              characters following the first occurrence of the '/'-
              character in the textual string.) Then, the "context
              resolver" returns a handle identifying the newly created
              context.

              So, if the application supplied "89.0.0.2/public", then
              the "context resolver" adds the following information to
              the local party database:

                   partyIdentifier:         initialPartyId.89.0.0.2.1
                   partyIndex:              201
                   partyTDomain:            rfc1157Domain
                   partyTAddress:           89.0.0.2:161
                   partyLocal:              false
                   partyAuthProtocol:       rfc1157noAuth
                   partyAuthPrivate:        public
                   partyPrivProtocol:       noPriv
                   partyStorageType:        volatile

                   contextIdentifier:       initialContextId.89.0.0.2.1
                   contextIndex:            201
                   contextLocal:            false
                   contextStorageType:      volatile
                   textual handle:          89.0.0.2

                   aclTarget (dest. party): 201
                   aclSubject (src party):  201
                   aclResources (context):  201
                   aclPrivileges:           get, get-next, get-bulk
                   aclStorageType:          volatile

              and the "context resolver" returns a handle to the the



McCloghrie & Rose                                               [Page 6]

RFC 1503      Automating Administration in SNMPv2 Manager    August 1993


              newly created context.

         (6)  Otherwise, if the textual string contains a '/'-
              character, and everything to the left of the first
              occurrence of this character specifies a domain name
              which resolves to multiple IP addresses, then for each
              such IP address, the "context resolver" adds to the local
              party database, a volatile SNMPv1 party, a volatile
              context, and a volatile access control entry allowing
              interrogation operations.  (The SNMPv1 community string
              consists of any characters following the first occurrence
              of the '/'-character in the textual string.) Then, the
              "context resolver" returns a handle identifying all of
              those newly created contexts.

         (7)  Otherwise, an error is raised.

4.2.  Requesting an Operation

  Later, when an SNMPv2 operation is to be performed, the management
  application supplies a "context handle" and a minimal set of security
  requirements to the management API:

         (1)  If the "context handle" refers to a single context, then
              all access control entries having that context as its
              aclResources, allowing the specified operation, having a
              non-local SNMPv2 party as its aclTarget, which satisfies
              the privacy requirements, and having a local party as its
              aclSubject, which satisfies the authentication
              requirements, are identified.

              So, if the application wanted to issue a get-next
              operation, with no security requirements, and supplied a
              "context handle" identifying context #1, then acl #1
              would be identified.

         (2)  For each such access control entry, the one which
              minimally meets the security requirements is selected for
              use.  If no such entry is identified, and authentication
              requirements are present, then the operation will be not
              performed.

              So, if the application requests a get-next operation,
              with no security requirements, and supplies a "context
              handle" identifying context #1, and step 1 above
              identified acl #1, then because acl #1 satisfies the no-
              security requirements, the operation would be generated
              using acl #1, i.e., using party #1, party #2, and context



McCloghrie & Rose                                               [Page 7]

RFC 1503      Automating Administration in SNMPv2 Manager    August 1993


              #1.

         (3)  Otherwise, all access control entries having the (single)
              context as its aclResources, allowing the specified
              operation, and having a non-local SNMPv1 party as its
              aclTarget, are identified.  If no such entry is
              identified, then the operation will not performed.
              Otherwise, any of the identified access control entries
              may be selected for use.

              The effect of separating out step 3 is to prefer SNMPv2
              communications over SNMPv1 communications.

         (4)  If the "context handle" refers to more than one context,
              then all access control entries whose aclResources refers
              any one of the contexts, are identified.  For each such
              context, step 2 is performed, and any (e.g., the first)
              access control entry identified is selected for use.  If
              no access control entry is identified, then step 3 is
              performed for each such context, and any (e.g., the
              first) access control entry identified is selected for
              use.

              So, if the application wanted to issue a get-bulk
              operation, with no security requirements, and supplied a
              "context handle" identifying contexts #1 and #2, then
              acls #1 and #2 would be identified in step 1; and, in
              step 2, party #1, party #2, and context #1 would be
              selected.

              However, if the application wanted to issue an
              authenticated get-bulk operation, and supplied a "context
              handle" identifying contexts #1 and #2, then acls #1 and
              #2 would still be identified in step 1; but, in step 2,
              only acl #2 satisfies the security requirement, and so,
              party #3, party #4, and context #2 would be selected.

         (5)  If no access control entry is identified, then an error
              is raised.

  Note that for steps 1 and 3, an implementation might choose to pre-
  compute (i.e., cache) for each context those access control entries
  having that context as its aclResources.

5.  Determining and Using Maintenance Knowledge

  When using authentication services, two "maintenance" tasks may have
  to be performed: clock synchronization and secret update.  These



McCloghrie & Rose                                               [Page 8]

RFC 1503      Automating Administration in SNMPv2 Manager    August 1993


  tasks should be performed transparently, independent of the
  management applications, and without user/administrator intervention.
  In order to operate transparently, the SNMP protocol engine must
  maintain "maintenance knowledge" (knowledge of which parties and
  contexts to use).  It is useful for this maintenance knowledge to be
  determined at run-time, rather than being directly configured by an
  administrator.

  One approach to achieve this is as follows: the first time that the
  SNMP protocol engine determines that it will be communicating with
  another SNMPv2 entity, the SNMP protocol engine first consults its
  local party database and then interrogates its peer, before engaging
  in the actual communications.

  Note that with such an approach, both the clock synchronization
  knowledge, and the secret update knowledge, associated with a party,
  can each be represented as (a pointer to) an access control entry.
  Further note that once an implementation has computed this knowledge,
  it might choose to retain this knowledge across restarts.

5.1.  Determination of Synchronization Knowledge

  To determine maintenance knowledge for clock synchronization:

         (1)  The SNMP protocol engine examines each active, non-local,
              noAuth party.

              So, this would be party #1.

         (2)  For each such party, P, all access control entries having
              that party as its aclTarget, and allowing the get-bulk
              operation, are identified.

              So, for party #1, this would be acl #1.

         (3)  For each such access control entry, A, at least one
              active, non-local, md5Auth party, Q, must be present
              which meets the following criteria:

           -  the transport domain and address of P and Q are
              identical;

           -  an access control entry, B, exists having either: Q as
              its aclTarget and a local party, R, as its aclSubject,
              or, Q as its aclSubject and a local party, R, as its
              aclTarget; and,

           -  no clock synchronization knowledge is known for R.



McCloghrie & Rose                                               [Page 9]

RFC 1503      Automating Administration in SNMPv2 Manager    August 1993


              So, for acl #1, party #3 is identified as having the same
              transport domain and address as party #1, and being
              present as the aclTarget in acl #2, which has local party
              #4 as the aclSubject.

         (4)  Whenever such a party, Q, is present, then all instances
              of the "partyAuthProtocol" and "partyAuthClock" objects
              are retrieved via the get-bulk operator using the parties
              and context identified by the access control entry, A.

              So, party #1, party #2, and context #1 would be used to
              sweep these two columns on the agent.

         (5)  Only those instances corresponding to parties in the
              local database, which have no clock synchronization
              knowledge, and are local mdAuth parties, are examined.

              So, only instances corresponding to party #4 are
              examined.

         (6)  For each instance of "partyAuthProtocol", if the
              corresponding value does not match the value in the local
              database, then a configuration error is signalled, and
              the corresponding party is marked as being unavailable
              for maintenance knowledge.

              So, we make sure that the manager and the agent agree
              that party #4 is an md5Auth party.

         (7)  For each instance of "partyAuthClock", if the
              corresponding value is greater than the value in the
              local database, then the authentication clock of the
              party is warped according to the procedures defined in
              Section 5.3 of [3].  Regardless, A is recorded as the
              clock synchronization knowledge for the corresponding
              party.

              So, if the column sweep returns information for party #4,
              then party #4's authentication clock is advanced if
              necessary, and the clock synchronization knowledge for
              party #4 is recorded as acl #1.

5.2.  Use of Clock Synchronization Knowledge

  Whenever a response to an authenticated operation is not received,
  the SNMP protocol engine may suspect that a clock synchronization
  problem for the source party is the cause [3].  The SNMP protocol
  engine may use different criteria when making this determination; for



McCloghrie & Rose                                              [Page 10]

RFC 1503      Automating Administration in SNMPv2 Manager    August 1993


  example: on a retrieval operation, the operation might be retried
  using an exponential back-off algorithm; in contrast, on a
  modification operation, the operation would not be automatically
  retried.

  When clock mis-synchronization for a source party, S, is suspected,
  if clock synchronization knowledge for S is present, then this
  knowledge is used to perform steps 4-7 above, which should retrieve
  the instances of the "partyAuthProtocol" and "partyAuthClock" objects
  which correspond to S (and perhaps other parties as well).  If
  information on these objects cannot be determined, then S is marked
  as no longer having clock synchronization knowledge.  Otherwise, if
  the value of the corresponding instance of "partyAuthClock" is
  greater than the value in the local database, then the authentication
  clock of the party is warped according to the procedures defined in
  Section 5.3 of [3], and the original operation is retried, if
  appropriate.

  So, if traffic from party #4 times out, then a column sweep is
  automatically initiated, using acl #1 (party #1, party #2, context
  #1).

  When clock mis-synchronization for a source party, S, is suspected,
  and clock synchronization knowledge for S is not present, then the
  full algorithm above can be used.  In this case, if clock
  synchronization knowledge for S can be determined, and as a result,
  "partyAuthClock" value for S in the local database is warped
  according to the procedures defined in Section 5.3 of [3], then the
  original operation is retried, if appropriate.

5.3.  Determination of Secret Update Knowledge

  To determine maintenance knowledge for secret update:

         (1)  The SNMP protocol engine examines each active, non-local,
              md5Auth party.

              So, this would be party #3.

         (2)  For each such party, P, all access control entries having
              that party as its aclTarget, and allowing the get-bulk
              and set operations, are identified.

              So, for party #3, this would be acl #2.

         (3)  For each such access control entry, A, at least one
              active, non-local, md5Auth party, Q, must be present
              which meets the following criteria:



McCloghrie & Rose                                              [Page 11]

RFC 1503      Automating Administration in SNMPv2 Manager    August 1993


           -  the transport domain and address of P and Q are
              identical;

           -  an access control entry, B, exists having either: Q as
              its aclTarget and a local party, R, as its aclSubject,
              or, Q as its aclSubject and a local party, R, as its
              aclTarget; and,

           -  no secret update knowledge is known for R.

              So, for acl #2, party #3 is (redundantly) identified as
              having the same transport domain and address as party #3,
              and being present as the aclTarget in acl #2, which has
              local party #4 as the aclSubject.

         (4)  Whenever such a party, Q, is present, then all instances
              of the "partyAuthProtocol", "partyAuthClock", and
              "partyAuthPrivate" objects are retrieved via the get-bulk
              operator using the parties and context identified by the
              access control entry, A.

              So, party #3, party #4, and context #2 would be used to
              sweep these three columns on the agent.

         (5)  Only those instances corresponding to parties in the
              local database, which have no secret update knowledge,
              and are md5Auth parties, are examined.

              So, only instances corresponding to parties #3 and #4 are
              examined.

         (6)  For each instance of "partyAuthProtocol", if the
              corresponding value does not match the value in the local
              database, then a configuration error is signalled, and
              this party is marked as being unavailable for maintenance
              knowledge.

              So, we make sure that the manager and the agent agree
              that both party #3 and #4 are md5Auth parties.

         (7)  For each instance of "partyAuthPrivate", if a
              corresponding instance of "partyAuthClock" was also
              returned, then A is recorded as the secret update
              knowledge for this party.

              So, if the column sweep returned information on party #3,
              then the clock synchronization knowledge for party #3
              would be recorded as acl #2.  Further, if the column



McCloghrie & Rose                                              [Page 12]

RFC 1503      Automating Administration in SNMPv2 Manager    August 1993


              sweep returned information on party #4, then the clock
              synchronization knowledge for party #4 would be recorded
              as acl #2.

5.4.  Use of Secret Update Knowledge

  Whenever the SNMP protocol engine determines that the authentication
  clock of a party, S, is approaching an upper limit, and secret update
  knowledge for S is present, then this knowledge is used to modify the
  current secret of S and reset the authentication clock of S,
  according to the procedures defined in Section 5.4 of [3].

  So, whenever the SNMP protocol engine decides to update the secrets
  for party #4, it can automatically use acl #2 (party #3, party #4,
  context #2) for this purpose.

6.  Other Kinds and Uses of Maintenance Knowledge

  Readers should note that there are other kinds of maintenance
  knowledge that an SNMPv2 manager could derive and use.  In the
  interests of brevity, one example is now considered: when an SNMPv2
  manager first communicates with an agent, it may wish to synchronize
  the maximum-message size values held by itself and the agent.

  For those parties that execute at the agent, the manager retrieves
  the corresponding instances of partyMaxMessageSize (preferrably using
  authentication), and, if need be, adjusts the values held in the
  manager's local party database.  Thus, the maintenance knowledge to
  be determined must allow for retrieval of partyMaxMessageSize.

  For those parties that execute at the manager, the manager retrieves
  the corresponding instances of partyMaxMessageSize (using
  authentication), and, if need be, adjusts the values held in the
  agent's local party database using the set operation.  Thus, the
  maintenance knowledge to be determined must allow both for retrieval
  and modification of partyMaxMessageSize.

7.  Security Considerations

  Security issues are not discussed in this memo.

8.  Acknowledgements

  Jeffrey D. Case of SNMP Research and the University of Tennessee, and
  Robert L. Stewart of Xyplex, both provided helpful comments on the
  ideas contained in this document and the presentation of those ideas.





McCloghrie & Rose                                              [Page 13]

RFC 1503      Automating Administration in SNMPv2 Manager    August 1993


9.  References

  [1] Case, J., McCloghrie, K., Rose, M., and S. Waldbusser,
      "Introduction to version 2 of the Internet-standard Network
      Management Framework", RFC 1441, SNMP Research, Inc., Hughes LAN
      Systems, Dover Beach Consulting, Inc., Carnegie Mellon
      University, April 1993.

  [2] McCloghrie, K., and J. Galvin, "Party MIB for version 2 of the
      Simple Network Management Protocol (SNMPv2)", RFC 1447, Hughes
      LAN Systems, Trusted Information Systems, April 1993.

  [3] Galvin, J., and K. McCloghrie, "Security Protocols for version 2
      of the Simple Network Management Protocol (SNMPv2)", RFC 1446,
      Trusted Information Systems, Hughes LAN Systems, April 1993.

10.  Authors' Addresses

  Keith McCloghrie
  Hughes LAN Systems
  1225 Charleston Road
  Mountain View, CA  94043
  US

  Phone: +1 415 966 7934
  EMail: [email protected]


  Marshall T. Rose
  Dover Beach Consulting, Inc.
  420 Whisman Court
  Mountain View, CA  94043-2186
  US

  Phone: +1 415 968 1052
  EMail: [email protected]















McCloghrie & Rose                                              [Page 14]