Network Working Group                                  J. Case
         Request for Comments: 1448                 SNMP Research, Inc.
                                                          K. McCloghrie
                                                     Hughes LAN Systems
                                                                M. Rose
                                           Dover Beach Consulting, Inc.
                                                          S. Waldbusser
                                             Carnegie Mellon University
                                                             April 1993


                              Protocol Operations
                              for version 2 of the
                  Simple Network Management Protocol (SNMPv2)


         Status of this Memo

         This RFC specifes an IAB standards track protocol for the
         Internet community, and requests discussion and suggestions
         for improvements.  Please refer to the current edition of the
         "IAB Official Protocol Standards" for the standardization
         state and status of this protocol.  Distribution of this memo
         is unlimited.


         Table of Contents

         1 Introduction ..........................................    2
         1.1 A Note on Terminology ...............................    2
         2 Overview ..............................................    3
         2.1 Roles of Protocol Entities ..........................    3
         2.2 Management Information ..............................    3
         2.3 Access to Management Information ....................    4
         2.4 Retransmission of Requests ..........................    4
         2.5 Message Sizes .......................................    5
         2.6 Transport Mappings ..................................    6
         3 Definitions ...........................................    7
         4 Protocol Specification ................................   12
         4.1 Common Constructs ...................................   12
         4.2 PDU Processing ......................................   12
         4.2.1 The GetRequest-PDU ................................   13
         4.2.2 The GetNextRequest-PDU ............................   15
         4.2.2.1 Example of Table Traversal ......................   16
         4.2.3 The GetBulkRequest-PDU ............................   18
         4.2.3.1 Another Example of Table Traversal ..............   21
         4.2.4 The Response-PDU ..................................   22
         4.2.5 The SetRequest-PDU ................................   23
         4.2.6 The SNMPv2-Trap-PDU ...............................   26
         4.2.7 The InformRequest-PDU .............................   27





         Case, McCloghrie, Rose & Waldbusser                   [Page i]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         5 Acknowledgements ......................................   29
         6 References ............................................   33
         7 Security Considerations ...............................   35
         8 Authors' Addresses ....................................   35














































         Case, McCloghrie, Rose & Waldbusser                   [Page 1]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         1.  Introduction

         A network management system contains: several (potentially
         many) nodes, each with a processing entity, termed an agent,
         which has access to management instrumentation; at least one
         management station; and, a management protocol, used to convey
         management information between the agents and management
         stations.  Operations of the protocol are carried out under an
         administrative framework which defines both authentication and
         authorization policies.

         Network management stations execute management applications
         which monitor and control network elements.  Network elements
         are devices such as hosts, routers, terminal servers, etc.,
         which are monitored and controlled through access to their
         management information.

         Management information is viewed as a collection of managed
         objects, residing in a virtual information store, termed the
         Management Information Base (MIB).  Collections of related
         objects are defined in MIB modules.  These modules are written
         using a subset of OSI's Abstract Syntax Notation One (ASN.1)
         [1], termed the Structure of Management Information (SMI) [2].

         The management protocol, version 2 of the Simple Network
         Management Protocol, provides for the exchange of messages
         which convey management information between the agents and the
         management stations.  The form of these messages is a message
         "wrapper" which encapsulates a Protocol Data Unit (PDU).  The
         form and meaning of the "wrapper" is determined by an
         administrative framework which defines both authentication and
         authorization policies.

         It is the purpose of this document, Protocol Operations for
         SNMPv2, to define the operations of the protocol with respect
         to the sending and receiving of the PDUs.


         1.1.  A Note on Terminology

         For the purpose of exposition, the original Internet-standard
         Network Management Framework, as described in RFCs 1155, 1157,
         and 1212, is termed the SNMP version 1 framework (SNMPv1).
         The current framework is termed the SNMP version 2 framework
         (SNMPv2).





         Case, McCloghrie, Rose & Waldbusser                   [Page 2]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         2.  Overview

         2.1.  Roles of Protocol Entities

         A SNMPv2 entity may operate in a manager role or an agent
         role.

         A SNMPv2 entity acts in an agent role when it performs SNMPv2
         management operations in response to received SNMPv2 protocol
         messages (other than an inform notification) or when it sends
         trap notifications.

         A SNMPv2 entity acts in a manager role when it initiates
         SNMPv2 management operations by the generation of SNMPv2
         protocol messages or when it performs SNMPv2 management
         operations in response to received trap or inform
         notifications.

         A SNMPv2 entity may support either or both roles, as dictated
         by its implementation and configuration.  Further, a SNMPv2
         entity can also act in the role of a proxy agent, in which it
         appears to be acting in an agent role, but satisfies
         management requests by acting in a manager role with a remote
         entity.  The use of proxy agents and the transparency
         principle that defines their behavior is described in [3].


         2.2.  Management Information

         The term, variable, refers to an instance of a non-aggregate
         object type defined according to the conventions set forth in
         the SMI [2] or the textual conventions based on the SMI [4].
         The term, variable binding, normally refers to the pairing of
         the name of a variable and its associated value.  However, if
         certain kinds of exceptional conditions occur during
         processing of a retrieval request, a variable binding will
         pair a name and an indication of that exception.

         A variable-binding list is a simple list of variable bindings.

         The name of a variable is an OBJECT IDENTIFIER which is the
         concatenation of the OBJECT IDENTIFIER of the corresponding
         object-type together with an OBJECT IDENTIFIER fragment
         identifying the instance.  The OBJECT IDENTIFIER of the
         corresponding object-type is called the OBJECT IDENTIFIER





         Case, McCloghrie, Rose & Waldbusser                   [Page 3]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         prefix of the variable.


         2.3.  Access to Management Information

         Three types of access to management information are provided
         by the protocol.  One type is a request-response interaction,
         in which a SNMPv2 entity, acting in a manager role, sends a
         request to a SNMPv2 entity, acting in an agent role, and the
         latter SNMPv2 entity then responds to the request.  This type
         is used to retrieve or modify management information
         associated with the managed device.

         A second type is also a request-response interaction, in which
         a SNMPv2 entity, acting in a manager role, sends a request to
         a SNMPv2 entity, also acting in a manager role, and the latter
         SNMPv2 entity then responds to the request.  This type is used
         to notify a SNMPv2 entity, acting in a manager role, of
         management information associated with another SNMPv2 entity,
         also acting in a manager role.

         The third type of access is an unconfirmed interaction, in
         which a SNMPv2 entity, acting in an agent role, sends a
         unsolicited message, termed a trap, to a SNMPv2 entity, acting
         in a manager role, and no response is returned.  This type is
         used to notify a SNMPv2 entity, acting in a manager role, of
         an exceptional situation, which has resulted in changes to
         management information associated with the managed device.


         2.4.  Retransmission of Requests

         For all types of request in this protocol, the receiver is
         required under normal circumstances, to generate and transmit
         a response to the originator of the request.  Whether or not a
         request should be retransmitted if no corresponding response
         is received in an appropriate time interval, is at the
         discretion of the application originating the request.  This
         will normally depend on the urgency of the request.  However,
         such an application needs to act responsibly in respect to the
         frequency and duration of re-transmissions.









         Case, McCloghrie, Rose & Waldbusser                   [Page 4]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         2.5.  Message Sizes

         The maximum size of a SNMPv2 message is limited the minimum
         of:

         (1)  the maximum message size which the destination SNMPv2
              entity can accept; and,

         (2)  the maximum message size which the source SNMPv2 entity
              can generate.

         The former is indicated by partyMaxMessageSize[5] of the
         destination party.  The latter is imposed by implementation-
         specific local constraints.

         Each transport mapping for the SNMPv2 indicates the minimum
         message size which a SNMPv2 implementation must be able to
         produce or consume.  Although implementations are encouraged
         to support larger values whenever possible, a conformant
         implementation must never generate messages larger than
         allowed by the receiving SNMPv2 entity.

         One of the aims of the GetBulkRequest-PDU, specified in this
         protocol, is to minimize the number of protocol exchanges
         required to retrieve a large amount of management information.
         As such, this PDU type allows a SNMPv2 entity acting in a
         manager role to request that the response be as large as
         possible given the constraints on message sizes.  These
         constraints include the limits on the size of messages which
         the SNMPv2 entity acting in an agent role can generate, and
         the SNMPv2 entity acting in a manager role can receive.

         However, it is possible that such maximum sized messages may
         be larger than the Path MTU of the path across the network
         traversed by the messages.  In this situation, such messages
         are subject to fragmentation.  Fragmentation is generally
         considered to be harmful [6], since among other problems, it
         leads to a decrease in the reliability of the transfer of the
         messages.  Thus, a SNMPv2 entity which sends a
         GetBulkRequest-PDU must take care to set its parameters
         accordingly, so as to reduce the risk of fragmentation.  In
         particular, under conditions of network stress, only small
         values should be used for max-repetitions.







         Case, McCloghrie, Rose & Waldbusser                   [Page 5]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         2.6.  Transport Mappings

         It is important to note that the exchange of SNMPv2 messages
         requires only an unreliable datagram service, with every
         message being entirely and independently contained in a single
         transport datagram.  Specific transport mappings and encoding
         rules are specified elsewhere [7].  However, the preferred
         mapping is the use of the User Datagram Protocol [8].










































         Case, McCloghrie, Rose & Waldbusser                   [Page 6]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         3.  Definitions

              SNMPv2-PDU DEFINITIONS ::= BEGIN

              IMPORTS
                  ObjectName, ObjectSyntax, Integer32
                      FROM SNMPv2-SMI;


              -- protocol data units

              PDUs ::=
                  CHOICE {
                      get-request
                          GetRequest-PDU,

                      get-next-request
                          GetNextRequest-PDU,

                      get-bulk-request
                          GetBulkRequest-PDU,

                      response
                          Response-PDU,

                      set-request
                          SetRequest-PDU,

                      inform-request
                          InformRequest-PDU,

                      snmpV2-trap
                          SNMPv2-Trap-PDU
                  }
















         Case, McCloghrie, Rose & Waldbusser                   [Page 7]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


              -- PDUs

              GetRequest-PDU ::=
                  [0]
                      IMPLICIT PDU

              GetNextRequest-PDU ::=
                  [1]
                      IMPLICIT PDU

              Response-PDU ::=
                  [2]
                      IMPLICIT PDU

              SetRequest-PDU ::=
                  [3]
                      IMPLICIT PDU

              -- [4] is obsolete

              GetBulkRequest-PDU ::=
                  [5]
                      IMPLICIT BulkPDU

              InformRequest-PDU ::=
                  [6]
                      IMPLICIT PDU

              SNMPv2-Trap-PDU ::=
                  [7]
                      IMPLICIT PDU



















         Case, McCloghrie, Rose & Waldbusser                   [Page 8]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


              max-bindings
                  INTEGER ::= 2147483647

              PDU ::=
                  SEQUENCE {
                      request-id
                          Integer32,

                      error-status            -- sometimes ignored
                          INTEGER {
                              noError(0),
                              tooBig(1),
                              noSuchName(2),   -- for proxy compatibility
                              badValue(3),     -- for proxy compatibility
                              readOnly(4),     -- for proxy compatibility
                              genErr(5),
                              noAccess(6),
                              wrongType(7),
                              wrongLength(8),
                              wrongEncoding(9),
                              wrongValue(10),
                              noCreation(11),
                              inconsistentValue(12),
                              resourceUnavailable(13),
                              commitFailed(14),
                              undoFailed(15),
                              authorizationError(16),
                              notWritable(17),
                              inconsistentName(18)
                          },

                      error-index            -- sometimes ignored
                          INTEGER (0..max-bindings),

                      variable-bindings   -- values are sometimes ignored
                          VarBindList
                  }













         Case, McCloghrie, Rose & Waldbusser                   [Page 9]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


              BulkPDU ::=                     -- MUST be identical in
                  SEQUENCE {                  -- structure to PDU
                      request-id
                          Integer32,

                      non-repeaters
                          INTEGER (0..max-bindings),

                      max-repetitions
                          INTEGER (0..max-bindings),

                      variable-bindings       -- values are ignored
                          VarBindList
                  }




































         Case, McCloghrie, Rose & Waldbusser                  [Page 10]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


              -- variable binding

              VarBind ::=
                  SEQUENCE {
                      name
                          ObjectName,

                      CHOICE {
                          value
                              ObjectSyntax,

                          unSpecified         -- in retrieval requests
                                  NULL,

                                              -- exceptions in responses
                          noSuchObject[0]
                                  IMPLICIT NULL,

                          noSuchInstance[1]
                                  IMPLICIT NULL,

                          endOfMibView[2]
                                  IMPLICIT NULL
                      }
                  }


              -- variable-binding list

              VarBindList ::=
                  SEQUENCE (SIZE (0..max-bindings)) OF
                      VarBind


              END















         Case, McCloghrie, Rose & Waldbusser                  [Page 11]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         4.  Protocol Specification


         4.1.  Common Constructs

         The value of the request-id field in a Response-PDU takes the
         value of the request-id field in the request PDU to which it
         is a response.  By use of the request-id value, a SNMPv2
         application can distinguish the (potentially multiple)
         outstanding requests, and thereby correlate incoming responses
         with outstanding requests.  In cases where an unreliable
         datagram service is used, the request-id also provides a
         simple means of identifying messages duplicated by the
         network.  Use of the same request-id on a retransmission of a
         request allows the response to either the original
         transmission or the retransmission to satisfy the request.
         However, in order to calculate the round trip time for
         transmission and processing of a request-response transaction,
         the SNMPv2 application needs to use a different request-id
         value on a retransmitted request.  The latter strategy is
         recommended for use in the majority of situations.

         A non-zero value of the error-status field in a Response-PDU
         is used to indicate that an exception occurred to prevent the
         processing of the request.  In these cases, a non-zero value
         of the Response-PDU's error-index field provides additional
         information by identifying which variable binding in the list
         caused the exception.  A variable binding is identified by its
         index value.  The first variable binding in a variable-binding
         list is index one, the second is index two, etc.

         SNMPv2 limits OBJECT IDENTIFIER values to a maximum of 128
         sub-identifiers, where each sub-identifier has a maximum value
         of 2**32-1.


         4.2.  PDU Processing

         It is mandatory that all SNMPv2 entities acting in an agent
         role be able to generate the following PDU types: Response-PDU
         and SNMPv2-Trap-PDU; further, all such implementations must be
         able to receive the following PDU types: GetRequest-PDU,
         GetNextRequest-PDU, GetBulkRequest-PDU, and SetRequest-PDU.







         Case, McCloghrie, Rose & Waldbusser                  [Page 12]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         It is mandatory that all SNMPv2 entities acting in a manager
         role be able to generate the following PDU types: GetRequest-
         PDU, GetNextRequest-PDU, GetBulkRequest-PDU, SetRequest-PDU,
         InformRequest-PDU, and Response-PDU; further, all such
         implementations must be able to receive the following PDU
         types: Response-PDU, SNMPv2-Trap-PDU, InformRequest-PDU;

         In the elements of procedure below, any field of a PDU which
         is not referenced by the relevant procedure is ignored by the
         receiving SNMPv2 entity.  However, all components of a PDU,
         including those whose values are ignored by the receiving
         SNMPv2 entity, must have valid ASN.1 syntax and encoding.  For
         example, some PDUs (e.g., the GetRequest-PDU) are concerned
         only with the name of a variable and not its value.  In this
         case, the value portion of the variable binding is ignored by
         the receiving SNMPv2 entity.  The unSpecified value is defined
         for use as the value portion of such bindings.

         For all generated PDUs, the message "wrapper" to encapsulate
         the PDU is generated and transmitted as specified in [3].  The
         size of a message is limited only by constraints on the
         maximum message size, either a local limitation or the limit
         associated with the message's destination party, i.e., it is
         not limited by the number of variable bindings.

         On receiving a management communication, the procedures
         defined in Section 3.2 of [3] are followed.  If these
         procedures indicate that the PDU contained within the message
         "wrapper" is to be processed, then the SNMPv2 context
         associated with the PDU defines the object resources which are
         visible to the operation.


         4.2.1.  The GetRequest-PDU

         A GetRequest-PDU is generated and transmitted at the request
         of a SNMPv2 application.

         Upon receipt of a GetRequest-PDU, the receiving SNMPv2 entity
         processes each variable binding in the variable-binding list
         to produce a Response-PDU.  All fields of the Response-PDU
         have the same values as the corresponding fields of the
         received request except as indicated below.  Each variable
         binding is processed as follows:






         Case, McCloghrie, Rose & Waldbusser                  [Page 13]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         (1)  If the variable binding's name does not have an OBJECT
              IDENTIFIER prefix which exactly matches the OBJECT
              IDENTIFIER prefix of any variable accessible by this
              request, then its value field is set to `noSuchObject'.

         (2)  Otherwise, if the variable binding's name does not
              exactly match the name of a variable accessible by this
              request, then its value field is set to `noSuchInstance'.

         (3)  Otherwise, the variable binding's value field is set to
              the value of the named variable.

         If the processing of any variable binding fails for a reason
         other than listed above, then the Response-PDU is re-formatted
         with the same values in its request-id and variable-bindings
         fields as the received GetRequest-PDU, with the value of its
         error-status field set to `genErr', and the value of its
         error-index field is set to the index of the failed variable
         binding.

         Otherwise, the value of the Response-PDU's error-status field
         is set to `noError', and the value of its error-index field is
         zero.

         The generated Response-PDU is then encapsulated into a
         message.  If the size of the resultant message is less than or
         equal to both a local constraint and the maximum message size
         of the request's source party, it is transmitted to the
         originator of the GetRequest-PDU.

         Otherwise, an alternate Response-PDU is generated.  This
         alternate Response-PDU is formatted with the same value in its
         request-id field as the received GetRequest-PDU, with the
         value of its error-status field set to `tooBig', the value of
         its error-index field set to zero, and an empty variable-
         bindings field.  This alternate Response-PDU is then
         encapsulated into a message.  If the size of the resultant
         message is less than or equal to both a local constraint and
         the maximum message size of the request's source party, it is
         transmitted to the originator of the GetRequest-PDU.
         Otherwise, the resultant message is discarded.









         Case, McCloghrie, Rose & Waldbusser                  [Page 14]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         4.2.2.  The GetNextRequest-PDU

         A GetNextRequest-PDU is generated and transmitted at the
         request of a SNMPv2 application.

         Upon receipt of a GetNextRequest-PDU, the receiving SNMPv2
         entity processes each variable binding in the variable-binding
         list to produce a Response-PDU.  All fields of the Response-
         PDU have the same values as the corresponding fields of the
         received request except as indicated below.  Each variable
         binding is processed as follows:

         (1)  The variable is located which is in the lexicographically
              ordered list of the names of all variables which are
              accessible by this request and whose name is the first
              lexicographic successor of the variable binding's name in
              the incoming GetNextRequest-PDU.  The corresponding
              variable binding's name and value fields in the
              Response-PDU are set to the name and value of the located
              variable.

         (2)  If the requested variable binding's name does not
              lexicographically precede the name of any variable
              accessible by this request, i.e., there is no
              lexicographic successor, then the corresponding variable
              binding produced in the Response-PDU has its value field
              set to 'endOfMibView', and its name field set to the
              variable binding's name in the request.

         If the processing of any variable binding fails for a reason
         other than listed above, then the Response-PDU is re-formatted
         with the same values in its request-id and variable-bindings
         fields as the received GetNextRequest-PDU, with the value of
         its error-status field set to `genErr', and the value of its
         error-index field is set to the index of the failed variable
         binding.

         Otherwise, the value of the Response-PDU's error-status field
         is set to `noError', and the value of its error-index field is
         zero.

         The generated Response-PDU is then encapsulated into a
         message.  If the size of the resultant message is less than or
         equal to both a local constraint and the maximum message size
         of the request's source party, it is transmitted to the





         Case, McCloghrie, Rose & Waldbusser                  [Page 15]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         originator of the GetNextRequest-PDU.

         Otherwise, an alternate Response-PDU is generated.  This
         alternate Response-PDU is formatted with the same values in
         its request-id field as the received GetNextRequest-PDU, with
         the value of its error-status field set to `tooBig', the value
         of its error-index field set to zero, and an empty variable-
         bindings field.  This alternate Response-PDU is then
         encapsulated into a message.  If the size of the resultant
         message is less than or equal to both a local constraint and
         the maximum message size of the request's source party, it is
         transmitted to the originator of the GetNextRequest-PDU.
         Otherwise, the resultant message is discarded.


         4.2.2.1.  Example of Table Traversal

         An important use of the GetNextRequest-PDU is the traversal of
         conceptual tables of information within a MIB.  The semantics
         of this type of request, together with the method of
         identifying individual instances of objects in the MIB,
         provides access to related objects in the MIB as if they
         enjoyed a tabular organization.

         In the protocol exchange sketched below, a SNMPv2 application
         retrieves the media-dependent physical address and the
         address-mapping type for each entry in the IP net-to-media
         Address Translation Table [9] of a particular network element.
         It also retrieves the value of sysUpTime [9], at which the
         mappings existed.  Suppose that the agent's IP net-to-media
         table has three entries:

           Interface-Number  Network-Address  Physical-Address  Type

                  1            10.0.0.51     00:00:10:01:23:45  static
                  1             9.2.3.4      00:00:10:54:32:10  dynamic
                  2            10.0.0.15     00:00:10:98:76:54  dynamic

         The SNMPv2 entity acting in a manager role begins by sending a
         GetNextRequest-PDU containing the indicated OBJECT IDENTIFIER
         values as the requested variable names:

             GetNextRequest ( sysUpTime,
                              ipNetToMediaPhysAddress,
                              ipNetToMediaType )





         Case, McCloghrie, Rose & Waldbusser                  [Page 16]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         The SNMPv2 entity acting in an agent role responds with a
         Response-PDU:

             Response (( sysUpTime.0 =  "123456" ),
                       ( ipNetToMediaPhysAddress.1.9.2.3.4 =
                                                  "000010543210" ),
                       ( ipNetToMediaType.1.9.2.3.4 =  "dynamic" ))

         The SNMPv2 entity acting in a manager role continues with:

             GetNextRequest ( sysUpTime,
                              ipNetToMediaPhysAddress.1.9.2.3.4,
                              ipNetToMediaType.1.9.2.3.4 )

         The SNMPv2 entity acting in an agent role responds with:

             Response (( sysUpTime.0 =  "123461" ),
                       ( ipNetToMediaPhysAddress.1.10.0.0.51 =
                                                   "000010012345" ),
                       ( ipNetToMediaType.1.10.0.0.51 =  "static" ))

         The SNMPv2 entity acting in a manager role continues with:

             GetNextRequest ( sysUpTime,
                              ipNetToMediaPhysAddress.1.10.0.0.51,
                              ipNetToMediaType.1.10.0.0.51 )

         The SNMPv2 entity acting in an agent role responds with:

             Response (( sysUpTime.0 =  "123466" ),
                       ( ipNetToMediaPhysAddress.2.10.0.0.15 =
                                                    "000010987654" ),
                       ( ipNetToMediaType.2.10.0.0.15 =  "dynamic" ))

         The SNMPv2 entity acting in a manager role continues with:

             GetNextRequest ( sysUpTime,
                              ipNetToMediaPhysAddress.2.10.0.0.15,
                              ipNetToMediaType.2.10.0.0.15 )

         As there are no further entries in the table, the SNMPv2
         entity acting in an agent role responds with the variables
         that are next in the lexicographical ordering of the
         accessible object names, for example:






         Case, McCloghrie, Rose & Waldbusser                  [Page 17]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


             Response (( sysUpTime.0 =  "123471" ),
                       ( ipNetToMediaNetAddress.1.9.2.3.4 =
                                                        "9.2.3.4" ),
                       ( ipRoutingDiscards.0 =  "2" ))

         This response signals the end of the table to the SNMPv2
         entity acting in a manager role.


         4.2.3.  The GetBulkRequest-PDU

         A GetBulkRequest-PDU is generated and transmitted at the
         request of a SNMPv2 application.  The purpose of the
         GetBulkRequest-PDU is to request the transfer of a potentially
         large amount of data, including, but not limited to, the
         efficient and rapid retrieval of large tables.

         Upon receipt of a GetBulkRequest-PDU, the receiving SNMPv2
         entity processes each variable binding in the variable-binding
         list to produce a Response-PDU with its request-id field
         having the same value as in the request.  Processing begins by
         examining the values in the non-repeaters and max-repetitions
         fields.  If the value in the non-repeaters field is less than
         zero, then the value of the field is set to zero.  Similarly,
         if the value in the max-repetitions field is less than zero,
         then the value of the field is set to zero.

         For the GetBulkRequest-PDU type, the successful processing of
         each variable binding in the request generates zero or more
         variable bindings in the Response-PDU.  That is, the one-to-
         one mapping between the variable bindings of the GetRequest-
         PDU, GetNextRequest-PDU, and SetRequest-PDU types and the
         resultant Response-PDUs does not apply for the mapping between
         the variable bindings of a GetBulkRequest-PDU and the
         resultant Response-PDU.

         The values of the non-repeaters and max-repetitions fields in
         the request specify the processing requested.  One variable
         binding in the Response-PDU is requested for the first N
         variable bindings in the request and M variable bindings are
         requested for each of the R remaining variable bindings in the
         request.  Consequently, the total number of requested variable
         bindings communicated by the request is given by N + (M * R),
         where N is the minimum of: a) the value of the non-repeaters
         field in the request, and b) the number of variable bindings





         Case, McCloghrie, Rose & Waldbusser                  [Page 18]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         in the request; M is the value of the max-repetitions field in
         the request; and R is the maximum of: a) number of variable
         bindings in the request - N, and b)  zero.

         The receiving SNMPv2 entity produces a Response-PDU with up to
         the total number of requested variable bindings communicated
         by the request.  The request-id shall have the same value as
         the received GetBulkRequest-PDU.

         If N is greater than zero, the first through the (N)-th
         variable bindings of the Response-PDU are each produced as
         follows:

         (1)  The variable is located which is in the lexicographically
              ordered list of the names of all variables which are
              accessible by this request and whose name is the first
              lexicographic successor of the variable binding's name in
              the incoming GetBulkRequest-PDU.  The corresponding
              variable binding's name and value fields in the
              Response-PDU are set to the name and value of the located
              variable.

         (2)  If the requested variable binding's name does not
              lexicographically precede the name of any variable
              accessible by this request, i.e., there is no
              lexicographic successor, then the corresponding variable
              binding produced in the Response-PDU has its value field
              set to `endOfMibView', and its name field set to the
              variable binding's name in the request.

         If M and R are non-zero, the (N + 1)-th and subsequent
         variable bindings of the Response-PDU are each produced in a
         similar manner.  For each iteration i, such that i is greater
         than zero and less than or equal to M, and for each repeated
         variable, r, such that r is greater than zero and less than or
         equal to R, the (N + ( (i-1) * R ) + r)-th variable binding of
         the Response-PDU is produced as follows:

         (1)  The variable which is in the lexicographically ordered
              list of the names of all variables which are accessible
              by this request and whose name is the (i)-th
              lexicographic successor of the (N + r)-th variable
              binding's name in the incoming GetBulkRequest-PDU is
              located and the variable binding's name and value fields
              are set to the name and value of the located variable.





         Case, McCloghrie, Rose & Waldbusser                  [Page 19]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         (2)  If there is no (i)-th lexicographic successor, then the
              corresponding variable binding produced in the Response-
              PDU has its value field set to `endOfMibView', and its
              name field set to either the last lexicographic
              successor, or if there are no lexicographic successors,
              to the (N + r)-th variable binding's name in the request.

         While the maximum number of variable bindings in the
         Response-PDU is bounded by N + (M * R), the response may be
         generated with a lesser number of variable bindings (possibly
         zero) for either of two reasons.

         (1)  If the size of the message encapsulating the Response-PDU
              containing the requested number of variable bindings
              would be greater than either a local constraint or the
              maximum message size of the request's source party, then
              the response is generated with a lesser number of
              variable bindings.  This lesser number is the ordered set
              of variable bindings with some of the variable bindings
              at the end of the set removed, such that the size of the
              message encapsulating the Response-PDU is approximately
              equal to but no greater than the minimum of the local
              constraint and the maximum message size of the request's
              source party.  Note that the number of variable bindings
              removed has no relationship to the values of N, M, or R.

         (2)  The response may also be generated with a lesser number
              of variable bindings if for some value of iteration i,
              such that i is greater than zero and less than or equal
              to M, that all of the generated variable bindings have
              the value field set to the `endOfMibView'.  In this case,
              the variable bindings may be truncated after the (N + (i
              * R))-th variable binding.

         If the processing of any variable binding fails for a reason
         other than listed above, then the Response-PDU is re-formatted
         with the same values in its request-id and variable-bindings
         fields as the received GetBulkRequest-PDU, with the value of
         its error-status field set to `genErr', and the value of its
         error-index field is set to the index of the failed variable
         binding.

         Otherwise, the value of the Response-PDU's error-status field
         is set to `noError', and the value of its error-index field to
         zero.





         Case, McCloghrie, Rose & Waldbusser                  [Page 20]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         The generated Response-PDU (possibly with an empty variable-
         bindings field) is then encapsulated into a message.  If the
         size of the resultant message is less than or equal to both a
         local constraint and the maximum message size of the request's
         source party, it is transmitted to the originator of the
         GetBulkRequest-PDU.  Otherwise, the resultant message is
         discarded.


         4.2.3.1.  Another Example of Table Traversal

         This example demonstrates how the GetBulkRequest-PDU can be
         used as an alternative to the GetNextRequest-PDU.  The same
         traversal of the IP net-to-media table as shown in Section
         4.2.2.1 is achieved with fewer exchanges.

         The SNMPv2 entity acting in a manager role begins by sending a
         GetBulkRequest-PDU with the modest max-repetitions value of 2,
         and containing the indicated OBJECT IDENTIFIER values as the
         requested variable names:

             GetBulkRequest [ non-repeaters = 1, max-repetitions = 2 ]
                             ( sysUpTime,
                               ipNetToMediaPhysAddress,
                               ipNetToMediaType )

         The SNMPv2 entity acting in an agent role responds with a
         Response-PDU:

             Response (( sysUpTime.0 =  "123456" ),
                       ( ipNetToMediaPhysAddress.1.9.2.3.4 =
                                                  "000010543210" ),
                       ( ipNetToMediaType.1.9.2.3.4 =  "dynamic" ),
                       ( ipNetToMediaPhysAddress.1.10.0.0.51 =
                                                   "000010012345" ),
                       ( ipNetToMediaType.1.10.0.0.51 =  "static" ))

         The SNMPv2 entity acting in a manager role continues with:

             GetBulkRequest [ non-repeaters = 1, max-repetitions = 2 ]
                             ( sysUpTime,
                               ipNetToMediaPhysAddress.1.10.0.0.51,
                               ipNetToMediaType.1.10.0.0.51 )







         Case, McCloghrie, Rose & Waldbusser                  [Page 21]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         The SNMPv2 entity acting in an agent role responds with:

             Response (( sysUpTime.0 =  "123466" ),
                       ( ipNetToMediaPhysAddress.2.10.0.0.15 =
                                                  "000010987654" ),
                       ( ipNetToMediaType.2.10.0.0.15 =
                                                       "dynamic" ),
                       ( ipNetToMediaNetAddress.1.9.2.3.4 =
                                                       "9.2.3.4" ),
                       ( ipRoutingDiscards.0 =  "2" ))

         This response signals the end of the table to the SNMPv2
         entity acting in a manager role.


         4.2.4.  The Response-PDU

         The Response-PDU is generated by a SNMPv2 entity only upon
         receipt of a GetRequest-PDU, GetNextRequest-PDU,
         GetBulkRequest-PDU, SetRequest-PDU, or InformRequest-PDU, as
         described elsewhere in this document.

         If the error-status field of the Response-PDU is non-zero, the
         value fields of the variable bindings in the variable binding
         list are ignored.

         If both the error-status field and the error-index field of
         the Response-PDU are non-zero, then the value of the error-
         index field is the index of the variable binding (in the
         variable-binding list of the corresponding request) for which
         the request failed.  The first variable binding in a request's
         variable-binding list is index one, the second is index two,
         etc.

         A compliant SNMPv2 entity acting in a manager role must be
         able to properly receive and handle a Response-PDU with an
         error-status field equal to `noSuchName', `badValue', or
         `readOnly'.  (See Section 3.1.2 of [10].)

         Upon receipt of a Response-PDU, the receiving SNMPv2 entity
         presents its contents to the SNMPv2 application which
         generated the request with the same request-id value.








         Case, McCloghrie, Rose & Waldbusser                  [Page 22]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         4.2.5.  The SetRequest-PDU

         A SetRequest-PDU is generated and transmitted at the request
         of a SNMPv2 application.

         Upon receipt of a SetRequest-PDU, the receiving SNMPv2 entity
         determines the size of a message encapsulating a Response-PDU
         with the same values in its request-id, error-status, error-
         index and variable-bindings fields as the received
         SetRequest-PDU.  If the determined message size is greater
         than either a local constraint or the maximum message size of
         the request's source party, then an alternate Response-PDU is
         generated, transmitted to the originator of the SetRequest-
         PDU, and processing of the SetRequest-PDU terminates
         immediately thereafter.  This alternate Response-PDU is
         formatted with the same values in its request-id field as the
         received SetRequest-PDU, with the value of its error-status
         field set to `tooBig', the value of its error-index field set
         to zero, and an empty variable-bindings field.  This alternate
         Response-PDU is then encapsulated into a message.  If the size
         of the resultant message is less than or equal to both a local
         constraint and the maximum message size of the request's
         source party, it is transmitted to the originator of the
         SetRequest-PDU.  Otherwise, the resultant message is
         discarded.  Regardless, processing of the SetRequest-PDU
         terminates.

         Otherwise, the receiving SNMPv2 entity processes each variable
         binding in the variable-binding list to produce a Response-
         PDU.  All fields of the Response-PDU have the same values as
         the corresponding fields of the received request except as
         indicated below.

         The variable bindings are conceptually processed as a two
         phase operation.  In the first phase, each variable binding is
         validated; if all validations are successful, then each
         variable is altered in the second phase.  Of course,
         implementors are at liberty to implement either the first, or
         second, or both, of the these conceptual phases as multiple
         implementation phases.  Indeed, such multiple implementation
         phases may be necessary in some cases to ensure consistency.

         The following validations are performed in the first phase on
         each variable binding until they are all successful, or until
         one fails:





         Case, McCloghrie, Rose & Waldbusser                  [Page 23]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         (1)  If the variable binding's name specifies a variable which
              is not accessible by this request, then the value of the
              Response-PDU's error-status field is set to `noAccess',
              and the value of its error-index field is set to the
              index of the failed variable binding.

         (2)  Otherwise, if the variable binding's name specifies a
              variable which does not exist and could not ever be
              created, then the value of the Response-PDU's error-
              status field is set to `noCreation', and the value of its
              error-index field is set to the index of the failed
              variable binding.

         (3)  Otherwise, if the variable binding's name specifies a
              variable which exists but can not be modified no matter
              what new value is specified, then the value of the
              Response-PDU's error-status field is set to
              `notWritable', and the value of its error-index field is
              set to the index of the failed variable binding.

         (4)  Otherwise, if the variable binding's value field
              specifies, according to the ASN.1 language, a type which
              is inconsistent with that required for the variable, then
              the value of the Response-PDU's error-status field is set
              to `wrongType', and the value of its error-index field is
              set to the index of the failed variable binding.

         (5)  Otherwise, if the variable binding's value field
              specifies, according to the ASN.1 language, a length
              which is inconsistent with that required for the
              variable, then the value of the Response-PDU's error-
              status field is set to `wrongLength', and the value of
              its error-index field is set to the index of the failed
              variable binding.

         (6)  Otherwise, if the variable binding's value field contains
              an ASN.1 encoding which is inconsistent with that field's
              ASN.1 tag, then: the value of the Response-PDU's error-
              status field is set to `wrongEncoding', and the value of
              its error-index field is set to the index of the failed
              variable binding.

         (7)  Otherwise, if the variable binding's value field
              specifies a value which could under no circumstances be
              assigned to the variable, then: the value of the





         Case, McCloghrie, Rose & Waldbusser                  [Page 24]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


              Response-PDU's error-status field is set to `wrongValue',
              and the value of its error-index field is set to the
              index of the failed variable binding.

         (8)  Otherwise, if the variable binding's name specifies a
              variable which does not exist but can not be created not
              under the present circumstances (even though it could be
              created under other circumstances), then the value of the
              Response-PDU's error-status field is set to
              `inconsistentName', and the value of its error-index
              field is set to the index of the failed variable binding.

         (9)  Otherwise, if the variable binding's value field
              specifies a value that could under other circumstances be
              assigned to the variable, but is presently inconsistent,
              then the value of the Response-PDU's error-status field
              is set to `inconsistentValue', and the value of its
              error-index field is set to the index of the failed
              variable binding.

         (10) Otherwise, if the assignment of the value specified by
              the variable binding's value field to the specified
              variable requires the allocation of a resource which is
              presently unavailable, then: the value of the Response-
              PDU's error-status field is set to `resourceUnavailable',
              and the value of its error-index field is set to the
              index of the failed variable binding.

         (11) If the processing of the variable binding fails for a
              reason other than listed above, then the value of the
              Response-PDU's error-status field is set to `genErr', and
              the value of its error-index field is set to the index of
              the failed variable binding.

         (12) Otherwise, the validation of the variable binding
              succeeds.

         At the end of the first phase, if the validation of all
         variable bindings succeeded, then:

         The value of the Response-PDU's error-status field is set to
         `noError' and the value of its error-index field is zero.

         For each variable binding in the request, the named variable
         is created if necessary, and the specified value is assigned





         Case, McCloghrie, Rose & Waldbusser                  [Page 25]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         to it.  Each of these variable assignments occurs as if
         simultaneously with respect to all other assignments specified
         in the same request.  However, if the same variable is named
         more than once in a single request, with different associated
         values, then the actual assignment made to that variable is
         implementation-specific.

         If any of these assignments fail (even after all the previous
         validations), then all other assignments are undone, and the
         Response-PDU is modified to have the value of its error-status
         field set to `commitFailed', and the value of its error-index
         field set to the index of the failed variable binding.

         If and only if it is not possible to undo all the assignments,
         then the Response-PDU is modified to have the value of its
         error-status field set to `undoFailed', and the value of its
         error-index field is set to zero.  Note that implementations
         are strongly encouraged to take all possible measures to avoid
         use of either `commitFailed' or `undoFailed' - these two
         error-status codes are not to be taken as license to take the
         easy way out in an implementation.

         Finally, the generated Response-PDU is encapsulated into a
         message, and transmitted to the originator of the SetRequest-
         PDU.


         4.2.6.  The SNMPv2-Trap-PDU

         A SNMPv2-Trap-PDU is generated and transmitted by a SNMPv2
         entity acting in an agent role when an exceptional situation
         occurs.

         The destination(s) to which a SNMPv2-Trap-PDU is sent is
         determined by consulting the aclTable [5] to find all entries
         satisfying the following conditions:

         (1)  The value of aclSubject refers to the SNMPv2 entity.

         (2)  The value of aclPrivileges allows for the SNMPv2-Trap-
              PDU.

         (3)  aclResources refers to a SNMPv2 context denoting local
              object resources, and the notification's administratively
              assigned name is present in the corresponding MIB view.





         Case, McCloghrie, Rose & Waldbusser                  [Page 26]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


              (That is, the set of entries in the viewTable [5] for
              which the instance of viewIndex has the same value as the
              aclResources's contextViewIndex, define a MIB view which
              contains the notification's administratively assigned
              name.)

         (4)  If the OBJECTS clause is present in the invocation of the
              corresponding NOTIFICATION-TYPE macro, then the
              correspondent variables are all present in the MIB view
              corresponding to aclResource.

         Then, for each entry satisfying these conditions, a SNMPv2-
         Trap-PDU is sent from aclSubject with context aclResources to
         aclTarget.  The instance of snmpTrapNumbers [11] corresponding
         to aclTarget is incremented, and is used as the request-id
         field of the SNMPv2-Trap-PDU.  Then, the variable-bindings
         field are constructed as:

         (1)  The first variable is sysUpTime.0 [9].

         (2)  The second variable is snmpTrapOID.0 [11], which contains
              the administratively assigned name of the notification.

         (3)  If the OBJECTS clause is present in the invocation of the
              corresponding NOTIFICATION-TYPE macro, then each
              corresponding variable is copied, in order, to the
              variable-bindings field.

         (4)  At the option of the SNMPv2 entity acting in an agent
              role, additional variables may follow in the variable-
              bindings field.


         4.2.7.  The InformRequest-PDU

         An InformRequest-PDU is generated and transmitted at the
         request an application in a SNMPv2 entity acting in a manager
         role, that wishes to notify another application (in a SNMPv2
         entity also acting in a manager role) of information in the
         MIB View of a party local to the sending application.

         The destination(s) to which an InformRequest-PDU is sent is
         determined by inspecting the snmpEventNotifyTable [12], or as
         specified by the requesting application.  The first two
         variable bindings in the variable binding list of an





         Case, McCloghrie, Rose & Waldbusser                  [Page 27]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         InformRequest-PDU are sysUpTime.0 [9] and snmpEventID.i [12]
         respectively.  If the OBJECTS clause is present in the
         invocation of the corresponding NOTIFICATION-TYPE macro, then
         each corresponding variable, as instantiated by this
         notification, is copied, in order, to the variable-bindings
         field.

         Upon receipt of an InformRequest-PDU, the receiving SNMPv2
         entity determines the size of a message encapsulating a
         Response-PDU with the same values in its request-id, error-
         status, error-index and variable-bindings fields as the
         received InformRequest-PDU.  If the determined message size is
         greater than either a local constraint or the maximum message
         size of the request's source party, then an alternate
         Response-PDU is generated, transmitted to the originator of
         the InformRequest-PDU, and processing of the InformRequest-PDU
         terminates immediately thereafter.  This alternate Response-
         PDU is formatted with the same values in its request-id field
         as the received InformRequest-PDU, with the value of its
         error-status field set to `tooBig', the value of its error-
         index field set to zero, and an empty variable-bindings field.
         This alternate Response-PDU is then encapsulated into a
         message.  If the size of the resultant message is less than or
         equal to both a local constraint and the maximum message size
         of the request's source party, it is transmitted to the
         originator of the InformRequest-PDU.  Otherwise, the resultant
         message is discarded.  Regardless, processing of the
         InformRequest-PDU terminates.

         Otherwise, the receiving SNMPv2 entity:

         (1)  presents its contents to the appropriate SNMPv2
              application;

         (2)  generates a Response-PDU with the same values in its
              request-id and variable-bindings fields as the received
              InformRequest-PDU, with the value of its error-status
              field is set to `noError' and the value of its error-
              index field is zero; and

         (3)  transmits the generated Response-PDU to the originator of
              the InformRequest-PDU.








         Case, McCloghrie, Rose & Waldbusser                  [Page 28]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         5.  Acknowledgements

         This document is based, in part, on RFC 1157.  The mechanism
         for bulk retrieval is influenced by many experiments,
         including RFC1187 and also Greg Satz's work on SNMP over TCP.

         Finally, the comments of the SNMP version 2 working group are
         gratefully acknowledged:

              Beth Adams, Network Management Forum
              Steve Alexander, INTERACTIVE Systems Corporation
              David Arneson, Cabletron Systems
              Toshiya Asaba
              Fred Baker, ACC
              Jim Barnes, Xylogics, Inc.
              Brian Bataille
              Andy Bierman, SynOptics Communications, Inc.
              Uri Blumenthal, IBM Corporation
              Fred Bohle, Interlink
              Jack Brown
              Theodore Brunner, Bellcore
              Stephen F. Bush, GE Information Services
              Jeffrey D. Case, University of Tennessee, Knoxville
              John Chang, IBM Corporation
              Szusin Chen, Sun Microsystems
              Robert Ching
              Chris Chiotasso, Ungermann-Bass
              Bobby A. Clay, NASA/Boeing
              John Cooke, Chipcom
              Tracy Cox, Bellcore
              Juan Cruz, Datability, Inc.
              David Cullerot, Cabletron Systems
              Cathy Cunningham, Microcom
              James R. (Chuck) Davin, Bellcore
              Michael Davis, Clearpoint
              Mike Davison, FiberCom
              Cynthia DellaTorre, MITRE
              Taso N. Devetzis, Bellcore
              Manual Diaz, DAVID Systems, Inc.
              Jon Dreyer, Sun Microsystems
              David Engel, Optical Data Systems
              Mike Erlinger, Lexcel
              Roger Fajman, NIH
              Daniel Fauvarque, Sun Microsystems
              Karen Frisa, CMU





         Case, McCloghrie, Rose & Waldbusser                  [Page 29]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


              Shari Galitzer, MITRE
              Shawn Gallagher, Digital Equipment Corporation
              Richard Graveman, Bellcore
              Maria Greene, Xyplex, Inc.
              Michel Guittet, Apple
              Robert Gutierrez, NASA
              Bill Hagerty, Cabletron Systems
              Gary W. Haney, Martin Marietta Energy Systems
              Patrick Hanil, Nokia Telecommunications
              Matt Hecht, SNMP Research, Inc.
              Edward A. Heiner, Jr., Synernetics Inc.
              Susan E. Hicks, Martin Marietta Energy Systems
              Geral Holzhauer, Apple
              John Hopprich, DAVID Systems, Inc.
              Jeff Hughes, Hewlett-Packard
              Robin Iddon, Axon Networks, Inc.
              David Itusak
              Kevin M. Jackson, Concord Communications, Inc.
              Ole J. Jacobsen, Interop Company
              Ronald Jacoby, Silicon Graphics, Inc.
              Satish Joshi, SynOptics Communications, Inc.
              Frank Kastenholz, FTP Software
              Mark Kepke, Hewlett-Packard
              Ken Key, SNMP Research, Inc.
              Zbiginew Kielczewski, Eicon
              Jongyeoi Kim
              Andrew Knutsen, The Santa Cruz Operation
              Michael L. Kornegay, VisiSoft
              Deirdre C. Kostik, Bellcore
              Cheryl Krupczak, Georgia Tech
              Mark S. Lewis, Telebit
              David Lin
              David Lindemulder, AT&T/NCR
              Ben Lisowski, Sprint
              David Liu, Bell-Northern Research
              John Lunny, The Wollongong Group
              Robert C. Lushbaugh Martin, Marietta Energy Systems
              Michael Luufer, BBN
              Carl Madison, Star-Tek, Inc.
              Keith McCloghrie, Hughes LAN Systems
              Evan McGinnis, 3Com Corporation
              Bill McKenzie, IBM Corporation
              Donna McMaster, SynOptics Communications, Inc.
              John Medicke, IBM Corporation
              Doug Miller, Telebit





         Case, McCloghrie, Rose & Waldbusser                  [Page 30]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


              Dave Minnich, FiberCom
              Mohammad Mirhakkak, MITRE
              Rohit Mital, Protools
              George Mouradian, AT&T Bell Labs
              Patrick Mullaney, Cabletron Systems
              Dan Myers, 3Com Corporation
              Rina Nathaniel, Rad Network Devices Ltd.
              Hien V. Nguyen, Sprint
              Mo Nikain
              Tom Nisbet
              William B. Norton, MERIT
              Steve Onishi, Wellfleet Communications, Inc.
              David T. Perkins, SynOptics Communications, Inc.
              Carl Powell, BBN
              Ilan Raab, SynOptics Communications, Inc.
              Richard Ramons, AT&T
              Venkat D. Rangan, Metric Network Systems, Inc.
              Louise Reingold, Sprint
              Sam Roberts, Farallon Computing, Inc.
              Kary Robertson, Concord Communications, Inc.
              Dan Romascanu, Lannet Data Communications Ltd.
              Marshall T. Rose, Dover Beach Consulting, Inc.
              Shawn A. Routhier, Epilogue Technology Corporation
              Chris Rozman
              Asaf Rubissa, Fibronics
              Jon Saperia, Digital Equipment Corporation
              Michael Sapich
              Mike Scanlon, Interlan
              Sam Schaen, MITRE
              John Seligson, Ultra Network Technologies
              Paul A. Serice, Corporation for Open Systems
              Chris Shaw, Banyan Systems
              Timon Sloane
              Robert Snyder, Cisco Systems
              Joo Young Song
              Roy Spitier, Sprint
              Einar Stefferud, Network Management Associates
              John Stephens, Cayman Systems, Inc.
              Robert L. Stewart, Xyplex, Inc. (chair)
              Kaj Tesink, Bellcore
              Dean Throop, Data General
              Ahmet Tuncay, France Telecom-CNET
              Maurice Turcotte, Racal Datacom
              Warren Vik, INTERACTIVE Systems Corporation
              Yannis Viniotis





         Case, McCloghrie, Rose & Waldbusser                  [Page 31]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


              Steven L. Waldbusser, Carnegie Mellon Universitty
              Timothy M. Walden, ACC
              Alice Wang, Sun Microsystems
              James Watt, Newbridge
              Luanne Waul, Timeplex
              Donald E. Westlake III, Digital Equipment Corporation
              Gerry White
              Bert Wijnen, IBM Corporation
              Peter Wilson, 3Com Corporation
              Steven Wong, Digital Equipment Corporation
              Randy Worzella, IBM Corporation
              Daniel Woycke, MITRE
              Honda Wu
              Jeff Yarnell, Protools
              Chris Young, Cabletron
              Kiho Yum, 3Com Corporation


































         Case, McCloghrie, Rose & Waldbusser                  [Page 32]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         6.  References

         [1]  Information processing systems - Open Systems
              Interconnection - Specification of Abstract Syntax
              Notation One (ASN.1), International Organization for
              Standardization.  International Standard 8824, (December,
              1987).

         [2]  Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
              "Structure of Management Information for version 2 of the
              Simple Network Management Protocol (SNMPv2)", RFC 1442,
              SNMP Research, Inc., Hughes LAN Systems, Dover Beach
              Consulting, Inc., Carnegie Mellon University, April 1993.

         [3]  Galvin, J., and McCloghrie, K., "Administrative Model for
              version 2 of the Simple Network Management Protocol
              (SNMPv2)", RFC 1445, Trusted Information Systems, Hughes
              LAN Systems, April 1993.

         [4]  Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
              "Textual Conventions for version 2 of the the Simple
              Network Management Protocol (SNMPv2)", RFC 1443, SNMP
              Research, Inc., Hughes LAN Systems, Dover Beach
              Consulting, Inc., Carnegie Mellon University, April 1993.

         [5]  McCloghrie, K., and Galvin, J., "Party MIB for version 2
              of the Simple Network Management Protocol (SNMPv2)", RFC
              1447, Hughes LAN Systems, Trusted Information Systems,
              April 1993.

         [6]  C. Kent, J. Mogul, Fragmentation Considered Harmful,
              Proceedings, ACM SIGCOMM '87, Stowe, VT, (August 1987).

         [7]  Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
              "Transport Mappings for version 2 of the Simple Network
              Management Protocol (SNMPv2)", RFC 1449, SNMP Research,
              Inc., Hughes LAN Systems, Dover Beach Consulting, Inc.,
              Carnegie Mellon University, April 1993.

         [8]  Postel, J., "User Datagram Protocol", STD 6, RFC 768,
              USC/Information Sciences Institute, August 1980.

         [9]  McCloghrie, K., and Rose, M., "Management Information
              Base for Network Management of TCP/IP-based internets:
              MIB-II", STD 17, RFC 1213, March 1991.





         Case, McCloghrie, Rose & Waldbusser                  [Page 33]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         [10] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
              "Coexistence between version 1 and version 2 of the
              Internet-standard Network Management Framework", RFC
              1452, SNMP Research, Inc., Hughes LAN Systems, Dover
              Beach Consulting, Inc., Carnegie Mellon University, April
              1993.

         [11] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
              "Management Information Base for version 2 of the Simple
              Network Management Protocol (SNMPv2)", RFC 1450, SNMP
              Research, Inc., Hughes LAN Systems, Dover Beach
              Consulting, Inc., Carnegie Mellon University, April 1993.

         [12] Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
              "Manager-to-Manager Management Information Base", RFC
              1451, SNMP Research, Inc., Hughes LAN Systems, Dover
              Beach Consulting, Inc., Carnegie Mellon University, April
              1993.
































         Case, McCloghrie, Rose & Waldbusser                  [Page 34]





         RFC 1448        Protocol Operations for SNMPv2      April 1993


         7.  Security Considerations

         Security issues are not discussed in this memo.


         8.  Authors' Addresses

              Jeffrey D. Case
              SNMP Research, Inc.
              3001 Kimberlin Heights Rd.
              Knoxville, TN  37920-9716
              US

              Phone: +1 615 573 1434
              Email: [email protected]


              Keith McCloghrie
              Hughes LAN Systems
              1225 Charleston Road
              Mountain View, CA  94043
              US

              Phone: +1 415 966 7934
              Email: [email protected]


              Marshall T. Rose
              Dover Beach Consulting, Inc.
              420 Whisman Court
              Mountain View, CA  94043-2186
              US

              Phone: +1 415 968 1052
              Email: [email protected]

              Steven Waldbusser
              Carnegie Mellon University
              4910 Forbes Ave
              Pittsburgh, PA  15213
              US

              Phone: +1 412 268 6628
              Email: [email protected]






         Case, McCloghrie, Rose & Waldbusser                  [Page 35]