Network Working Group                                J. Galvin
         Request for Comments: 1445         Trusted Information Systems
                                                          K. McCloghrie
                                                     Hughes LAN Systems
                                                             April 1993


                              Administrative Model
                              for version 2 of the
                  Simple Network Management Protocol (SNMPv2)






         Status of this Memo

         This RFC specifes an IAB standards track protocol for the
         Internet community, and requests discussion and suggestions
         for improvements.  Please refer to the current edition of the
         "IAB Official Protocol Standards" for the standardization
         state and status of this protocol.  Distribution of this memo
         is unlimited.


         Table of Contents


         1 Introduction ..........................................    2
         1.1 A Note on Terminology ...............................    2
         2 Elements of the Model .................................    3
         2.1 SNMPv2 Party ........................................    3
         2.2 SNMPv2 Entity .......................................    6
         2.3 SNMPv2 Management Station ...........................    7
         2.4 SNMPv2 Agent ........................................    7
         2.5 View Subtree ........................................    7
         2.6 MIB View ............................................    8
         2.7 Proxy Relationship ..................................    8
         2.8 SNMPv2 Context ......................................   10
         2.9 SNMPv2 Management Communication .....................   10
         2.10 SNMPv2 Authenticated Management Communication ......   12
         2.11 SNMPv2 Private Management Communication ............   13
         2.12 SNMPv2 Management Communication Class ..............   14
         2.13 SNMPv2 Access Control Policy .......................   14
         3 Elements of Procedure .................................   17
         3.1 Generating a Request ................................   17
         3.2 Processing a Received Communication .................   18
         3.3 Generating a Response ...............................   21





         Galvin & McCloghrie                                   [Page i]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         4 Application of the Model ..............................   23
         4.1 Non-Secure Minimal Agent Configuration ..............   23
         4.2 Secure Minimal Agent Configuration ..................   26
         4.3 MIB View Configurations .............................   28
         4.4 Proxy Configuration .................................   32
         4.4.1 Foreign Proxy Configuration .......................   33
         4.4.2 Native Proxy Configuration ........................   37
         4.5 Public Key Configuration ............................   41
         5 Security Considerations ...............................   44
         6 Acknowledgements ......................................   45
         7 References ............................................   46
         8 Authors' Addresses ....................................   47






































         Galvin & McCloghrie                                   [Page 1]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         1.  Introduction

         A network management system contains: several (potentially
         many) nodes, each with a processing entity, termed an agent,
         which has access to management instrumentation; at least one
         management station; and, a management protocol, used to convey
         management information between the agents and management
         stations.  Operations of the protocol are carried out under an
         administrative framework which defines both authentication and
         authorization policies.

         Network management stations execute management applications
         which monitor and control network elements.  Network elements
         are devices such as hosts, routers, terminal servers, etc.,
         which are monitored and controlled through access to their
         management information.

         It is the purpose of this document, the Administrative Model
         for SNMPv2, to define how the administrative framework is
         applied to realize effective network management in a variety
         of configurations and environments.

         The model described here entails the use of distinct
         identities for peers that exchange SNMPv2 messages.  Thus, it
         represents a departure from the community-based administrative
         model of the original SNMP [1].  By unambiguously identifying
         the source and intended recipient of each SNMPv2 message, this
         new strategy improves upon the historical community scheme
         both by supporting a more convenient access control model and
         allowing for effective use of asymmetric (public key) security
         protocols in the future.


         1.1.  A Note on Terminology

         For the purpose of exposition, the original Internet-standard
         Network Management Framework, as described in RFCs 1155, 1157,
         and 1212, is termed the SNMP version 1 framework (SNMPv1).
         The current framework is termed the SNMP version 2 framework
         (SNMPv2).










         Galvin & McCloghrie                                   [Page 2]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         2.  Elements of the Model

         2.1.  SNMPv2 Party

         A SNMPv2 party  is a conceptual, virtual execution environment
         whose operation is restricted (for security or other purposes)
         to an administratively defined subset of all possible
         operations of a particular SNMPv2 entity (see Section 2.2).
         Whenever a SNMPv2 entity processes a SNMPv2 message, it does
         so by acting as a SNMPv2 party and is thereby restricted to
         the set of operations defined for that party.  The set of
         possible operations specified for a SNMPv2 party may be
         overlapping or disjoint with respect to the sets of other
         SNMPv2 parties; it may also be a proper or improper subset of
         all possible operations of the SNMPv2 entity.

         Architecturally, each SNMPv2 party comprises

         o    a single, unique party identity,

         o    a logical network location at which the party executes,
              characterized by a transport protocol domain and
              transport addressing information,

         o    a single authentication protocol and associated
              parameters by which all protocol messages originated by
              the party are authenticated as to origin and integrity,
              and

         o    a single privacy protocol and associated parameters by
              which all protocol messages received by the party are
              protected from disclosure.


















         Galvin & McCloghrie                                   [Page 3]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         Conceptually, each SNMPv2 party may be represented by an ASN.1
         value with the following syntax:

              SnmpParty ::= SEQUENCE {
                partyIdentity
                   OBJECT IDENTIFIER,
                partyTDomain
                   OBJECT IDENTIFIER,
                partyTAddress
                   OCTET STRING,
                partyMaxMessageSize
                   INTEGER,
                partyAuthProtocol
                   OBJECT IDENTIFIER,
                partyAuthClock
                   INTEGER,
                partyAuthPrivate
                   OCTET STRING,
                partyAuthPublic
                   OCTET STRING,
                partyAuthLifetime
                   INTEGER,
                partyPrivProtocol
                   OBJECT IDENTIFIER,
                partyPrivPrivate
                   OCTET STRING,
                partyPrivPublic
                   OCTET STRING
              }

         For each SnmpParty value that represents a SNMPv2 party, the
         following statements are true:

         o    Its partyIdentity component is the party identity.

         o    Its partyTDomain component is called the transport domain
              and indicates the kind of transport service by which the
              party receives network management traffic.  An example of
              a transport domain is snmpUDPDomain (SNMPv2 over UDP,
              using SNMPv2 parties).

         o    Its partyTAddress component is called the transport
              addressing information and represents a transport service
              address by which the party receives network management
              traffic.





         Galvin & McCloghrie                                   [Page 4]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         o    Its partyMaxMessageSize component is called the maximum
              message size and represents the length in octets of the
              largest SNMPv2 message this party is prepared to accept.

         o    Its partyAuthProtocol component is called the
              authentication protocol and identifies a protocol and a
              mechanism by which all messages generated by the party
              are authenticated as to integrity and origin.  In this
              context, the value noAuth signifies that messages
              generated by the party are not authenticated as to
              integrity and origin.

         o    Its partyAuthClock component is called the authentication
              clock and represents a notion of the current time that is
              specific to the party.  The significance of this
              component is specific to the authentication protocol.

         o    Its partyAuthPrivate component is called the private
              authentication key and represents any secret value needed
              to support the authentication protocol.  The significance
              of this component is specific to the authentication
              protocol.

         o    Its partyAuthPublic component is called the public
              authentication key and represents any public value that
              may be needed to support the authentication protocol.
              The significance of this component is specific to the
              authentication protocol.

         o    Its partyAuthLifetime component is called the lifetime
              and represents an administrative upper bound on
              acceptable delivery delay for protocol messages generated
              by the party.  The significance of this component is
              specific to the authentication protocol.

         o    Its partyPrivProtocol component is called the privacy
              protocol and identifies a protocol and a mechanism by
              which all protocol messages received by the party are
              protected from disclosure.  In this context, the value
              noPriv signifies that messages received by the party are
              not protected from disclosure.

         o    Its partyPrivPrivate component is called the private
              privacy key and represents any secret value needed to
              support the privacy protocol.  The significance of this





         Galvin & McCloghrie                                   [Page 5]





         RFC 1445       Administrative Model for SNMPv2      April 1993


              component is specific to the privacy protocol.

         o    Its partyPrivPublic component is called the public
              privacy key and represents any public value that may be
              needed to support the privacy protocol.  The significance
              of this component is specific to the privacy protocol.

         If, for all SNMPv2 parties realized by a SNMPv2 entity, the
         authentication protocol is noAuth and the privacy protocol is
         noPriv, then that entity is called non-secure.


         2.2.  SNMPv2 Entity

         A SNMPv2 entity is an actual process which performs network
         management operations by generating and/or responding to
         SNMPv2 protocol messages in the manner specified in [2].  When
         a SNMPv2 entity is acting as a particular SNMPv2 party (see
         Section 2.1), the operation of that entity must be restricted
         to the subset of all possible operations that is
         administratively defined for that party.

         By definition, the operation of a SNMPv2 entity requires no
         concurrency between processing of any single protocol message
         (by a particular SNMPv2 party) and processing of any other
         protocol message (by a potentially different SNMPv2 party).
         Accordingly, implementation of a SNMPv2 entity to support more
         than one party need not be multi-threaded.  However, there may
         be situations where implementors may choose to use multi-
         threading.

         Architecturally, every SNMPv2 entity maintains a local
         database that represents all SNMPv2 parties known to it -
         those whose operation is realized locally, those whose
         operation is realized by proxy interactions with remote
         parties or devices, and those whose operation is realized by
         remote entities.  In addition, every SNMPv2 entity maintains a
         local database that represents all managed object resources
         (see Section 2.8) which are known to the SNMPv2 entity.
         Finally, every SNMPv2 entity maintains a local database that
         represents an access control policy (see Section 2.11) that
         defines the access privileges accorded to known SNMPv2
         parties.







         Galvin & McCloghrie                                   [Page 6]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         2.3.  SNMPv2 Management Station

         A SNMPv2 management station is the operational role assumed by
         a SNMPv2 party when it initiates SNMPv2 management operations
         by the generation of appropriate SNMPv2 protocol messages or
         when it receives and processes trap notifications.

         Sometimes, the term SNMPv2 management station is applied to
         partial implementations of the SNMPv2 (in graphics
         workstations, for example) that focus upon this operational
         role.  Such partial implementations may provide for
         convenient, local invocation of management services, but they
         may provide little or no support for performing SNMPv2
         management operations on behalf of remote protocol users.


         2.4.  SNMPv2 Agent

         A SNMPv2 agent is the operational role assumed by a SNMPv2
         party when it performs SNMPv2 management operations in
         response to received SNMPv2 protocol messages such as those
         generated by a SNMPv2 management station (see Section 2.3).

         Sometimes, the term SNMPv2 agent is applied to partial
         implementations of the SNMPv2 (in embedded systems, for
         example) that focus upon this operational role.  Such partial
         implementations provide for realization of SNMPv2 management
         operations on behalf of remote users of management services,
         but they may provide little or no support for local invocation
         of such services.


         2.5.  View Subtree

         A view subtree is the set of all MIB object instances which
         have a common ASN.1 OBJECT IDENTIFIER prefix to their names.
         A view subtree is identified by the OBJECT IDENTIFIER value
         which is the longest OBJECT IDENTIFIER prefix common to all
         (potential) MIB object instances in that subtree.

         When the OBJECT IDENTIFIER prefix identifying a view subtree
         is longer than the OBJECT IDENTIFIER of an object type defined
         according to the SMI [3], then the use of such a view subtree
         for access control has granularity at the object instance
         level.  Such granularity is considered beyond the scope of a





         Galvin & McCloghrie                                   [Page 7]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         SNMPv2 entity acting in an agent role.  As such, no
         implementation of a SNMPv2 entity acting in an agent role is
         required to support values of viewSubtree [6] which have more
         sub-identifiers than is necessary to identify a particular
         leaf object type.  However, access control information is also
         used in determining which SNMPv2 entities acting in a manager
         role should receive trap notifications (Section 4.2.6 of [2]).
         As such, agent implementors might wish to provide instance-
         level granularity in order to allow a management station to
         use fine-grain configuration of trap notifications.


         2.6.  MIB View

         A MIB view is a subset of the set of all instances of all
         object types defined according to the SMI [3] (i.e., of the
         universal set of all instances of all MIB objects), subject to
         the following constraints:

         o    Each element of a MIB view is uniquely named by an ASN.1
              OBJECT IDENTIFIER value.  As such, identically named
              instances of a particular object type (e.g., in different
              agents) must be contained within different MIB views.
              That is, a particular object instance name resolves
              within a particular MIB view to at most one object
              instance.

         o    Every MIB view is defined as a collection of view
              subtrees.


         2.7.  Proxy Relationship

         A proxy relationship exists when, in order to process a
         received management request, a SNMPv2 entity must communicate
         with another, logically remote, entity.  A SNMPv2 entity which
         processes management requests using a proxy relationship is
         termed a SNMPv2 proxy agent.

         When communication between a logically remote party and a
         SNMPv2 entity is via the SNMPv2 (over any transport protocol),
         then the proxy party is called a SNMPv2 native proxy
         relationship.  Deployment of SNMPv2 native proxy relationships
         is a means whereby the processing or bandwidth costs of
         management may be amortized or shifted - thereby facilitating





         Galvin & McCloghrie                                   [Page 8]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         the construction of large management systems.

         When communication between a logically remote party and a
         SNMPv2 entity party is not via the SNMPv2, then the proxy
         party is called a SNMPv2 foreign proxy relationship.
         Deployment of foreign proxy relationships is a means whereby
         otherwise unmanageable devices or portions of an internet may
         be managed via the SNMPv2.

         The transparency principle that defines the behavior of a
         SNMPv2 entity in general applies in particular to a SNMPv2
         proxy relationship:

              The manner in which one SNMPv2 entity processes SNMPv2
              protocol messages received from another SNMPv2 entity is
              entirely transparent to the latter.

         The transparency principle derives directly from the
         historical SNMP philosophy of divorcing architecture from
         implementation.  To this dichotomy are attributable many of
         the most valuable benefits in both the information and
         distribution models of the Internet-standard Network
         Management Framework, and it is the architectural cornerstone
         upon which large management systems may be built.  Consistent
         with this philosophy, although the implementation of SNMPv2
         proxy agents in certain environments may resemble that of a
         transport-layer bridge, this particular implementation
         strategy (or any other!) does not merit special recognition
         either in the SNMPv2 management architecture or in standard
         mechanisms for proxy administration.

         Implicit in the transparency principle is the requirement that
         the semantics of SNMPv2 management operations are preserved
         between any two SNMPv2 peers.  In particular, the "as if
         simultaneous" semantics of a Set operation are extremely
         difficult to guarantee if its scope extends to management
         information resident at multiple network locations.  For this
         reason, proxy configurations that admit Set operations that
         apply to information at multiple locations are discouraged,
         although such operations are not explicitly precluded by the
         architecture in those rare cases where they might be supported
         in a conformant way.

         Also implicit in the transparency principle is the requirement
         that, throughout its interaction with a proxy agent, a





         Galvin & McCloghrie                                   [Page 9]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         management station is supplied with no information about the
         nature or progress of the proxy mechanisms by which its
         requests are realized.  That is, it should seem to the
         management station - except for any distinction in underlying
         transport address - as if it were interacting via SNMPv2
         directly with the proxied device.  Thus, a timeout in the
         communication between a proxy agent and its proxied device
         should be represented as a timeout in the communication
         between the management station and the proxy agent.
         Similarly, an error response from a proxied device should - as
         much as possible - be represented by the corresponding error
         response in the interaction between the proxy agent and
         management station.


         2.8.  SNMPv2 Context

         A SNMPv2 context is a collection of managed object resources
         accessible by a SNMPv2 entity.  The object resources
         identified by a context are either local or remote.

         A SNMPv2 context referring to local object resources is
         identified as a MIB view.  In this case, a SNMPv2 entity uses
         local mechanisms to access the management information
         identified by the SNMPv2 context.

         A remote SNMPv2 context referring to remote object resources
         is identified as a proxy relationship.  In this case, a SNMPv2
         entity acts as a proxy agent to access the management
         information identified by the SNMPv2 context.


         2.9.  SNMPv2 Management Communication

         A SNMPv2 management communication is a communication from one
         specified SNMPv2 party to a second specified SNMPv2 party
         about management information that is contained in a SNMPv2
         context accessible by the appropriate SNMPv2 entity.  In
         particular, a SNMPv2 management communication may be

         o    a query by the originating party about information
              accessible to the addressed party (e.g., getRequest,
              getNextRequest, or getBulkRequest),







         Galvin & McCloghrie                                  [Page 10]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         o    an indicative assertion to the addressed party about
              information accessible to the originating party (e.g.,
              Response, InformRequest, or SNMPv2-Trap),

         o    an imperative assertion by the originating party about
              information accessible to the addressed party (e.g.,
              setRequest), or

         o    a confirmation to the addressed party about information
              received by the originating party (e.g., a Response
              confirming an InformRequest).

         A management communication is represented by an ASN.1 value
         with the following syntax:

              SnmpMgmtCom ::= [2] IMPLICIT SEQUENCE {
                dstParty
                   OBJECT IDENTIFIER,
                srcParty
                   OBJECT IDENTIFIER,
                context
                   OBJECT IDENTIFIER,
                pdu
                   PDUs
              }

         For each SnmpMgmtCom value that represents a SNMPv2 management
         communication, the following statements are true:

         o    Its dstParty component is called the destination and
              identifies the SNMPv2 party to which the communication is
              directed.

         o    Its srcParty component is called the source and
              identifies the SNMPv2 party from which the communication
              is originated.

         o    Its context component identifies the SNMPv2 context
              containing the management information referenced by the
              communication.

         o    Its pdu component has the form and significance
              attributed to it in [2].







         Galvin & McCloghrie                                  [Page 11]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         2.10.  SNMPv2 Authenticated Management Communication

         A SNMPv2 authenticated management communication is a SNMPv2
         management communication (see Section 2.9) for which the
         originating SNMPv2 party is (possibly) reliably identified and
         for which the integrity of the transmission of the
         communication is (possibly) protected.  An authenticated
         management communication is represented by an ASN.1 value with
         the following syntax:

              SnmpAuthMsg ::= [1] IMPLICIT SEQUENCE {
                authInfo
                   ANY, -- defined by authentication protocol
                authData
                   SnmpMgmtCom
              }

         For each SnmpAuthMsg value that represents a SNMPv2
         authenticated management communication, the following
         statements are true:

         o    Its authInfo component is called the authentication
              information and represents information required in
              support of the authentication protocol used by the SNMPv2
              party originating the message.  The detailed significance
              of the authentication information is specific to the
              authentication protocol in use; it has no effect on the
              application semantics of the communication other than its
              use by the authentication protocol in determining whether
              the communication is authentic or not.

         o    Its authData component is called the authentication data
              and represents a SNMPv2 management communication.

















         Galvin & McCloghrie                                  [Page 12]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         2.11.  SNMPv2 Private Management Communication

         A SNMPv2 private management communication is a SNMPv2
         authenticated management communication (see Section 2.10) that
         is (possibly) protected from disclosure.  A private management
         communication is represented by an ASN.1 value with the
         following syntax:

              SnmpPrivMsg ::= [1] IMPLICIT SEQUENCE {
                privDst
                   OBJECT IDENTIFIER,
                privData
                   [1] IMPLICIT OCTET STRING
              }

         For each SnmpPrivMsg value that represents a SNMPv2 private
         management communication, the following statements are true:

         o    Its privDst component is called the privacy destination
              and identifies the SNMPv2 party to which the
              communication is directed.

         o    Its privData component is called the privacy data and
              represents the (possibly encrypted) serialization
              (according to the conventions of [5]) of a SNMPv2
              authenticated management communication (see Section
              2.10).























         Galvin & McCloghrie                                  [Page 13]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         2.12.  SNMPv2 Management Communication Class

         A SNMPv2 management communication class corresponds to a
         specific SNMPv2 PDU type defined in [2].  A management
         communication class is represented by an ASN.1 INTEGER value
         according to the type of the identifying PDU (see Table 1).


                             Get              1
                             GetNext          2
                             Response         4
                             Set              8
                             -- unused       16
                             GetBulk         32
                             Inform          64
                             SNMPv2-Trap    128


                   Table 1: Management Communication Classes


         The value by which a communication class is represented is
         computed as 2 raised to the value of the ASN.1 context-
         specific tag for the appropriate SNMPv2 PDU.

         A set of management communication classes is represented by
         the ASN.1 INTEGER value that is the sum of the representations
         of the communication classes in that set.  The null set is
         represented by the value zero.


         2.13.  SNMPv2 Access Control Policy

         A SNMPv2 access control policy is a specification of a local
         access policy in terms of a SNMPv2 context and the management
         communication classes which are authorized between a pair of
         SNMPv2 parties.  Architecturally, such a specification
         comprises four parts:

         o    the targets of SNMPv2 access control - the SNMPv2 parties
              that may perform management operations as requested by
              management communications received from other parties,

         o    the subjects of SNMPv2 access control - the SNMPv2
              parties that may request, by sending management





         Galvin & McCloghrie                                  [Page 14]





         RFC 1445       Administrative Model for SNMPv2      April 1993


              communications to other parties, that management
              operations be performed,

         o    the managed object resources of SNMPv2 access control -
              the SNMPv2 contexts which identify the management
              information on which requested management operations are
              to be performed, and

         o    the policy that specifies the classes of SNMPv2
              management communications pertaining to a particular
              SNMPv2 context that a particular target is authorized to
              accept from a particular subject.

         Conceptually, a SNMPv2 access policy is represented by a
         collection of ASN.1 values with the following syntax:

              AclEntry ::= SEQUENCE {
                aclTarget
                   OBJECT IDENTIFIER,
                aclSubject
                   OBJECT IDENTIFIER,
                aclResources
                   OBJECT IDENTIFIER,
                aclPrivileges
                   INTEGER
              }

         For each such value that represents one part of a SNMPv2
         access policy, the following statements are true:

         o    Its aclTarget component is called the target and
              identifies the SNMPv2 party to which the partial policy
              permits access.

         o    Its aclSubject component is called the subject and
              identifies the SNMPv2 party to which the partial policy
              grants privileges.

         o    Its aclResources component is called the managed object
              resources and identifies the SNMPv2 context referenced by
              the partial policy.

         o    Its aclPrivileges component is called the privileges and
              represents a set of SNMPv2 management communication
              classes which, when they reference the specified SNMPv2





         Galvin & McCloghrie                                  [Page 15]





         RFC 1445       Administrative Model for SNMPv2      April 1993


              context, are authorized to be processed by the specified
              target party when received from the specified subject
              party.

         The application of SNMPv2 access control policy only occurs on
         receipt of management communications; it is not applied on
         transmission of management communications.  Note, however,
         that ASN.1 values, having the syntax AclEntry, are also used
         in determining the destinations of a SNMPv2-Trap [2].









































         Galvin & McCloghrie                                  [Page 16]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         3.  Elements of Procedure

         This section describes the procedures followed by a SNMPv2
         entity in processing SNMPv2 messages.  These procedures are
         independent of the particular authentication and privacy
         protocols that may be in use.


         3.1.  Generating a Request

         This section describes the procedure followed by a SNMPv2
         entity whenever either a management request or a trap
         notification is to be transmitted by a SNMPv2 party.

         (1)  A SnmpMgmtCom value is constructed for which the srcParty
              component identifies the originating party, for which the
              dstParty component identifies the receiving party, for
              which the context component identifies the desired SNMPv2
              context, and for which the pdu component represents the
              desired management operation.

         (2)  The local database of party information is consulted to
              determine the authentication protocol and other relevant
              information for the originating and receiving SNMPv2
              parties.

         (3)  A SnmpAuthMsg value is constructed with the following
              properties:

                   Its authInfo component is constructed according to
                   the authentication protocol specified for the
                   originating party.

                     In particular, if the authentication protocol for
                     the originating SNMPv2 party is identified as
                     noAuth, then this component corresponds to the
                     OCTET STRING value of zero length.

                  Its authData component is the constructed SnmpMgmtCom
                  value.

         (4)  The local database of party information is consulted to
              determine the privacy protocol and other relevant
              information for the receiving SNMPv2 party.






         Galvin & McCloghrie                                  [Page 17]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         (5)  A SnmpPrivMsg value is constructed with the following
              properties:

                   Its privDst component identifies the receiving
                   SNMPv2 party.

                   Its privData component is the (possibly encrypted)
                   serialization of the SnmpAuthMsg value according to
                   the conventions of [5].

                     In particular, if the privacy protocol for the
                     receiving SNMPv2 party is identified as noPriv,
                     then the privData component is unencrypted.
                     Otherwise, the privData component is processed
                     according to the privacy protocol.

         (6)  The constructed SnmpPrivMsg value is serialized according
              to the conventions of [5].

         (7)  The serialized SnmpPrivMsg value is transmitted using the
              transport address and transport domain for the receiving
              SNMPv2 party.

         Note that the above procedure does not include any application
         of any SNMPv2 access control policy (see section 2.13).


         3.2.  Processing a Received Communication

         This section describes the procedure followed by a SNMPv2
         entity whenever a management communication is received.

         (1)  The snmpStatsPackets counter [7] is incremented.  If the
              received message is not the serialization (according to
              the conventions of [5]) of an SnmpPrivMsg value, then
              that message is discarded without further processing.
              (If the first octet of the packet has the value
              hexadecimal 30, then the snmpStats30Something counter [7]
              is incremented prior to discarding the message; otherwise
              the snmpStatsEncodingErrors counter [7] is incremented.)

         (2)  The local database of party information is consulted for
              information about the receiving SNMPv2 party identified
              by the privDst component of the SnmpPrivMsg value.






         Galvin & McCloghrie                                  [Page 18]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         (3)  If information about the receiving SNMPv2 party is absent
              from the local database of party information, or
              indicates that the receiving party's operation is not
              realized by the local SNMPv2 entity, then the received
              message is discarded without further processing, after
              the snmpStatsUnknownDstParties counter [7] is
              incremented.

         (4)  An ASN.1 OCTET STRING value is constructed (possibly by
              decryption, according to the privacy protocol in use)
              from the privData component of said SnmpPrivMsg value.

              In particular, if the privacy protocol recorded for the
              party is noPriv, then the OCTET STRING value corresponds
              exactly to the privData component of the SnmpPrivMsg
              value.

         (5)  If the OCTET STRING value is not the serialization
              (according to the conventions of [5]) of an SnmpAuthMsg
              value, then the received message is discarded without
              further processing, after the snmpStatsEncodingErrors
              counter [7] is incremented.

         (6)  If the dstParty component of the authData component of
              the obtained SnmpAuthMsg value is not the same as the
              privDst component of the SnmpPrivMsg value, then the
              received message is discarded without further processing,
              after the snmpStatsDstPartyMismatches counter [7] is
              incremented.

         (7)  The local database of party information is consulted for
              information about the originating SNMPv2 party identified
              by the srcParty component of the authData component of
              the SnmpAuthMsg value.

         (8)  If information about the originating SNMPv2 party is
              absent from the local database of party information, then
              the received message is discarded without further
              processing, after the snmpStatsUnknownSrcParties counter
              [7] is incremented.

         (9)  The obtained SnmpAuthMsg value is evaluated according to
              the authentication protocol and other relevant
              information associated with the originating and receiving
              SNMPv2 parties in the local database of party





         Galvin & McCloghrie                                  [Page 19]





         RFC 1445       Administrative Model for SNMPv2      April 1993


              information.

              In particular, if the authentication protocol is
              identified as noAuth, then the SnmpAuthMsg value is
              always evaluated as authentic.

         (10) If the SnmpAuthMsg value is evaluated as unauthentic,
              then the received message is discarded without further
              processing, and if the snmpV2EnableAuthenTraps object [7]
              is enabled, then the SNMPv2 entity sends
              authorizationFailure traps [7] according to its
              configuration (Section 4.2.6 of[2]).

         (11) The SnmpMgmtCom value is extracted from the authData
              component of the SnmpAuthMsg value.

         (12) The local database of context information is consulted
              for information about the SNMPv2 context identified by
              the context component of the SnmpMgmtCom value.

         (13) If information about the SNMPv2 context is absent from
              the local database of context information, then the
              received message is discarded without further processing,
              after the snmpStatsUnknownContexts counter [7] is
              incremented.

         (14) The local database of access policy information is
              consulted for access privileges permitted by the local
              access policy to the originating SNMPv2 party with
              respect to the receiving SNMPv2 party and the indicated
              SNMPv2 context.

         (15) The management communication class is determined from the
              ASN.1 tag value associated with the PDUs component of the
              SnmpMgmtCom value.  If the management information class
              of the received message is either 32, 8, 2, or 1 (i.e.,
              GetBulk, Set, GetNext or Get) and the SNMPv2 context is
              not realized by the local SNMPv2 entity, then the
              received message is discarded without further processing,
              after the snmpStatsUnknownContexts counter [7] is
              incremented.

         (16) If the management communication class of the received
              message is either 128, 64 or 4 (i.e., SNMPv2-Trap,
              Inform, or Response) and this class is not among the





         Galvin & McCloghrie                                  [Page 20]





         RFC 1445       Administrative Model for SNMPv2      April 1993


              access privileges, then the received message is discarded
              without further processing, after the
              snmpStatsBadOperations counter [7] is incremented.

         (17) If the management communication class of the received
              message is not among the access privileges, then the
              received message is discarded without further processing
              after generation and transmission of a response message.
              This response message is directed to the originating
              SNMPv2 party on behalf of the receiving SNMPv2 party.
              Its context, var-bind-list and request-id components are
              identical to those of the received request.  Its error-
              index component is zero and its error-status component is
              authorizationError [2].

         (18) If the SNMPv2 context refers to local object resources,
              then the management operation represented by the
              SnmpMgmtCom value is performed by the receiving SNMPv2
              entity with respect to the MIB view identified by the
              SNMPv2 context according to the procedures set forth in
              [2].

         (19) If the SNMPv2 context refers to remote object resources,
              then the management operation represented by the
              SnmpMgmtCom value is performed through the appropriate
              proxy relationship.


         3.3.  Generating a Response

         The procedure for generating a response to a SNMPv2 management
         request is identical to the procedure for transmitting a
         request (see Section 3.1), with these exceptions:

         (1)  In Step 1, the dstParty component of the responding
              SnmpMgmtCom value is taken from the srcParty component of
              the original SnmpMgmtCom value; the srcParty component of
              the responding SnmpMgmtCom value is taken from the
              dstParty component of the original SnmpMgmtCom value; the
              context component of the responding SnmpMgmtCom value is
              taken from the context component of the original
              SnmpMgmtCom value; and, the pdu component of the
              responding SnmpMgmtCom value is the response which
              results from applying the operation specified in the
              original SnmpMgmtCom value.





         Galvin & McCloghrie                                  [Page 21]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         (2)  In Step 7, the serialized SnmpPrivMsg value is
              transmitted using the transport address and transport
              domain from which its corresponding request originated -
              even if that is different from the transport information
              recorded in the local database of party information.













































         Galvin & McCloghrie                                  [Page 22]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         4.  Application of the Model

         This section describes how the administrative model set forth
         above is applied to realize effective network management in a
         variety of configurations and environments.  Several types of
         administrative configurations are identified, and an example
         of each is presented.


         4.1.  Non-Secure Minimal Agent Configuration

         This section presents an example configuration for a minimal,
         non-secure SNMPv2 agent that interacts with one or more SNMPv2
         management stations.  Table 2 presents information about
         SNMPv2 parties that is known both to the minimal agent and to
         the manager, while Table 3 presents similarly common
         information about the local access policy.

         As represented in Table 2, the example agent party operates at
         UDP port 161 at IP address 1.2.3.4 using the party identity
         gracie; the example manager operates at UDP port 2001 at IP
         address 1.2.3.5 using the identity george.  At minimum, a
         non-secure SNMPv2 agent implementation must provide for
         administrative configuration (and non-volatile storage) of the
         identities and transport addresses of two SNMPv2 parties:
         itself and a remote peer.  Strictly speaking, other
         information about these two parties (including access policy
         information) need not be configurable.






















         Galvin & McCloghrie                                  [Page 23]





         RFC 1445       Administrative Model for SNMPv2      April 1993


              Identity          gracie                george
                                (agent)               (manager)
              Domain            snmpUDPDomain         snmpUDPDomain
              Address           1.2.3.4, 161          1.2.3.5, 2001
              Auth Prot         noAuth                noAuth
              Auth Priv Key     ""                    ""
              Auth Pub Key      ""                    ""
              Auth Clock        0                     0
              Auth Lifetime     0                     0
              Priv Prot         noPriv                noPriv
              Priv Priv Key     ""                    ""
              Priv Pub Key      ""                    ""


                  Table 2: Party Information for Minimal Agent




         Target    Subject    Context    Privileges
         gracie    george     local       35 (Get, GetNext & GetBulk)
         george    gracie     local      132 (Response & SNMPv2-Trap)


                 Table 3: Access Information for Minimal Agent



         Suppose that the managing party george wishes to interrogate
         management information about the SNMPv2 context named "local"
         held by the agent named gracie by issuing a SNMPv2 GetNext
         request message.  The manager consults its local database of
         party information.  Because the authentication protocol for
         the party george is recorded as noAuth, the GetNext request
         message generated by the manager is not authenticated as to
         origin and integrity.  Because, according to the manager's
         local database of party information, the privacy protocol for
         the party gracie is noPriv, the GetNext request message is not
         protected from disclosure.  Rather, it is simply assembled,
         serialized, and transmitted to the transport address (IP
         address 1.2.3.4, UDP port 161) associated in the manager's
         local database of party information with the party gracie.

         When the GetNext request message is received at the agent, the
         identity of the party to which it is directed (gracie) is





         Galvin & McCloghrie                                  [Page 24]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         extracted from the message, and the receiving entity consults
         its local database of party information.  Because the privacy
         protocol for the party gracie is recorded as noPriv, the
         received message is assumed not to be protected from
         disclosure.  Similarly, the identity of the originating party
         (george) is extracted, and the local database of party
         information is consulted.  Because the authentication protocol
         for the party george is recorded as noAuth, the received
         message is immediately accepted as authentic.

         The received message is fully processed only if the agent's
         local database of access policy information authorizes GetNext
         request communications by the party george to the agent party
         gracie with respect to the SNMPv2 context "local".  The
         database of access policy information presented as Table 3
         authorizes such communications (as well as Get and GetBulk
         operations).

         When the received request is processed, a Response message is
         generated which references the SNMPv2 context "local" and
         identifies gracie as the source party and george, the party
         from which the request originated, as the destination party.
         Because the authentication protocol for gracie is recorded in
         the local database of party information as noAuth, the
         generated Response message is not authenticated as to origin
         or integrity.  Because, according to the local database of
         party information, the privacy protocol for the party george
         is noPriv, the response message is not protected from
         disclosure.  The response message is transmitted to the
         transport address from which the corresponding request
         originated - without regard for the transport address
         associated with george in the local database of party
         information.

         When the generated response is received by the manager, the
         identity of the party to which it is directed (george) is
         extracted from the message, and the manager consults its local
         database of party information.  Because the privacy protocol
         for the party george is recorded as noPriv, the received
         response is assumed not to be protected from disclosure.
         Similarly, the identity of the originating party (gracie) is
         extracted, and the local database of party information is
         consulted.  Because the authentication protocol for the party
         gracie is recorded as noAuth, the received response is
         immediately accepted as authentic.





         Galvin & McCloghrie                                  [Page 25]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         The received message is fully processed only if the manager's
         local database of access policy information authorizes
         Response communications from the party gracie to the manager
         party george which reference the SNMPv2 context "local".  The
         database of access policy information presented as Table 3
         authorizes such Response messages (as well as SNMPv2-Trap
         messages).


         4.2.  Secure Minimal Agent Configuration

         This section presents an example configuration for a secure,
         minimal SNMPv2 agent that interacts with a single SNMPv2
         management station.  Table 4 presents information about SNMPv2
         parties that is known both to the minimal agent and to the
         manager, while Table 5 presents similarly common information
         about the local access policy.

         The interaction of manager and agent in this configuration is
         very similar to that sketched above for the non-secure minimal
         agent - except that all protocol messages are authenticated as
         to origin and integrity and protected from disclosure.  This
         example requires encryption in order to support distribution
         of secret keys via the SNMPv2 itself.  A more elaborate
         example comprising an additional pair of SNMPv2 parties could
         support the exchange of non-secret information in
         authenticated messages without incurring the cost of
         encryption.

         An actual secure agent configuration may require SNMPv2
         parties for which the authentication and privacy protocols are
         noAuth and noPriv, respectively, in order to support clock
         synchronization (see [6]).  For clarity, these additional
         parties are not represented in this example.
















         Galvin & McCloghrie                                  [Page 26]





         RFC 1445       Administrative Model for SNMPv2      April 1993


              Identity          ollie                stan
                                (agent)              (manager)
              Domain            snmpUDPDomain        snmpUDPDomain
              Address           1.2.3.4, 161         1.2.3.5, 2001
              Auth Prot         v2md5AuthProtocol    v2md5AuthProtocol
              Auth Priv Key     "0123456789ABCDEF"   "GHIJKL0123456789"
              Auth Pub Key      ""                   ""
              Auth Clock        0                    0
              Auth Lifetime     300                  300
              Priv Prot         desPrivProtocol     desPrivProtocol
              Priv Priv Key     "MNOPQR0123456789"   "STUVWX0123456789"
              Priv Pub Key      ""                   ""


              Table 4: Party Information for Secure Minimal Agent




         Target    Subject    Context    Privileges
         ollie     stan       local       35 (Get, GetNext & GetBulk)
         stan      ollie      local      132 (Response & SNMPv2-Trap)


              Table 5: Access Information for Secure Minimal Agent


         As represented in Table 4, the example agent party operates at
         UDP port 161 at IP address 1.2.3.4 using the party identity
         ollie; the example manager operates at UDP port 2001 at IP
         address 1.2.3.5 using the identity stan.  At minimum, a secure
         SNMPv2 agent implementation must provide for administrative
         configuration (and non-volatile storage) of relevant
         information about two SNMPv2 parties: itself and a remote
         peer.  Both ollie and stan authenticate all messages that they
         generate by using the SNMPv2 authentication protocol
         v2md5AuthProtocol and their distinct, private authentication
         keys.  Although these private authentication key values
         ("0123456789ABCDEF" and "GHIJKL0123456789") are presented here
         for expository purposes, knowledge of private authentication
         keys is not normally afforded to human beings and is confined
         to those portions of the protocol implementation that require
         it.







         Galvin & McCloghrie                                  [Page 27]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         When using the v2md5AuthProtocol, the public authentication
         key for each SNMPv2 party is never used in authentication and
         verification of SNMPv2 exchanges.  Also, because the
         v2md5AuthProtocol is symmetric in character, the private
         authentication key for each party must be known to another
         SNMPv2 party with which authenticated communication is
         desired.  In contrast, asymmetric (public key) authentication
         protocols would not depend upon sharing of a private key for
         their operation.

         All protocol messages generated for transmission to the party
         stan are encrypted using the desPrivProtocol privacy protocol
         and the private key "STUVWX0123456789"; they are decrypted
         upon reception according to the same protocol and key.
         Similarly, all messages generated for transmission to the
         party ollie are encrypted using the desPrivProtocol protocol
         and private privacy key "MNOPQR0123456789"; they are
         correspondingly decrypted on reception.  As with
         authentication keys, knowledge of private privacy keys is not
         normally afforded to human beings and is confined to those
         portions of the protocol implementation that require it.


         4.3.  MIB View Configurations

         This section describes a convention for the definition of MIB
         views and, using that convention, presents example
         configurations of MIB views for SNMPv2 contexts that refer to
         local object resources.

         A MIB view is defined by a collection of view subtrees (see
         Section 2.6), and any MIB view may be represented in this way.
         Because MIB view definitions may, in certain cases, comprise a
         very large number of view subtrees, a convention for
         abbreviating MIB view definitions is desirable.

         The convention adopted in [4] supports abbreviation of MIB
         view definitions in terms of families of view subtrees that
         are either included in or excluded from the definition of the
         relevant MIB view.  By this convention, a table locally
         maintained by each SNMPv2 entity defines the MIB view
         associated with each SNMPv2 context that refers to local
         object resources.  Each entry in the table represents a family
         of view subtrees that (according to the type of that entry) is
         either included in or excluded from the MIB view of some





         Galvin & McCloghrie                                  [Page 28]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         SNMPv2 context.  Each table entry represents a subtree family
         as a pairing of an OBJECT IDENTIFIER value (called the family
         name) together with a bitstring value (called the family
         mask).  The family mask indicates which sub-identifiers of the
         associated family name are significant to the definition of
         the represented subtree family.  For each possible MIB object
         instance, that instance belongs to the view subtree family
         represented by a particular table entry if

         o    the OBJECT IDENTIFIER name of that MIB object instance
              comprises at least as many sub-identifiers as does the
              family name for said table entry, and

         o    each sub-identifier in the name of said MIB object
              instance matches the corresponding sub-identifier of the
              relevant family name whenever the corresponding bit of
              the associated family mask is non-zero.

         The appearance of a MIB object instance in the MIB view for a
         particular SNMPv2 context is related to the membership of that
         instance in the subtree families associated with that SNMPv2
         context in local table entries:

         o    If a MIB object instance belongs to none of the relevant
              subtree families, then that instance is not in the MIB
              view for the relevant SNMPv2 context.

         o    If a MIB object instance belongs to the subtree family
              represented by exactly one of the relevant table entries,
              then that instance is included in, or excluded from, the
              relevant MIB view according to the type of that entry.

         o    If a MIB object instance belongs to the subtree families
              represented by more than one of the relevant table
              entries, then that instance is included in, or excluded
              from, the relevant MIB view according to the type of the
              single such table entry for which, first, the associated
              family name comprises the greatest number of sub-
              identifiers, and, second, the associated family name is
              lexicographically greatest.

         The subtree family represented by a table entry for which the
         associated family mask is all ones corresponds to the single
         view subtree identified by the family name for that entry.
         Because the convention of [4] provides for implicit extension





         Galvin & McCloghrie                                  [Page 29]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         of family mask values with ones, the subtree family
         represented by a table entry with a family mask of zero length
         always corresponds to a single view subtree.


           Context    Type        Family Name    Family Mask
           lucy       included    internet       ''H


                   Table 6: View Definition for Minimal Agent


         Using this convention for abbreviating MIB view definitions,
         some of the most common definitions of MIB views may be
         conveniently expressed.  For example, Table 6 illustrates the
         MIB view definitions required for a minimal SNMPv2 entity that
         having a single SNMPv2 context for which the associated MIB
         view embraces all instances of all MIB objects defined within
         the SNMPv2 Network Management Framework.  The represented
         table has a single entry.  The SNMPv2 context (lucy) for which
         that entry defines the MIB view is identified in the first
         column.  The type of that entry (included) signifies that any
         MIB object instance belonging to the subtree family
         represented by that entry may appear in the MIB view for the
         SNMPv2 context lucy.  The family name for that entry is
         internet, and the zero-length family mask value signifies that
         the relevant subtree family corresponds to the single view
         subtree rooted at that node.

         Another example of MIB view definition (see Table 7) is that
         of a SNMPv2 entity having multiple SNMPv2 contexts with
         distinct MIB views.  The MIB view associated with the SNMPv2
         context lucy comprises all instances of all MIB objects
         defined within the SNMPv2 Network Management Framework, except
         those pertaining to the administration of SNMPv2 parties.  In
         contrast, the MIB view attributed to the SNMPv2 context ricky
         contains only MIB object instances defined in the system group
         of the Internet-standard MIB together with those object
         instances by which SNMPv2 parties are administered.











         Galvin & McCloghrie                                  [Page 30]





         RFC 1445       Administrative Model for SNMPv2      April 1993


              Context    Type        Family Name    Family Mask
              lucy       included    internet       ''H
              lucy       excluded    snmpParties    ''H
              ricky      included    system         ''H
              ricky      included    snmpParties    ''H


                 Table 7: View Definition for Multiple Contexts


         A more complicated example of MIB view configuration
         illustrates the abbreviation of related collections of view
         subtrees by view subtree families (see Table 8).  In this
         example, the MIB view associated with the SNMPv2 context lucy
         includes all object instances in the system group of the
         Internet-standard MIB together with some information related
         to the second network interface attached to the managed
         device.  However, this interface-related information does not
         include the speed of the interface.  The family mask value
         'FFA0'H in the second table entry signifies that a MIB object
         instance belongs to the relevant subtree family if the initial
         prefix of its name places it within the ifEntry portion of the
         registration hierarchy and if the eleventh sub-identifier of
         its name is 2.  The MIB object instance representing the speed
         of the second network interface belongs to the subtree
         families represented by both the second and third entries of
         the table, but that particular instance is excluded from the
         MIB view for the SNMPv2 context lucy because the
         lexicographically greater of the relevant family names appears
         in the table entry with type excluded.

         The MIB view for the SNMPv2 context ricky is also defined in
         this example.  The MIB view attributed to the SNMPv2 context
         ricky includes all object instances in the icmp group of the
         Internet-standard MIB, together with all information relevant
         to the fifth network interface attached to the managed device.
         In addition, the MIB view attributed to the SNMPv2 context
         ricky includes the number of octets received on the fourth
         attached network interface.











         Galvin & McCloghrie                                  [Page 31]





         RFC 1445       Administrative Model for SNMPv2      April 1993


              Context    Type        Family Name        Family Mask
              lucy       included    system             ''H
              lucy       included    { ifEntry 0 2 }    'FFA0'H
              lucy       excluded    { ifSpeed 2 }      ''H
              ricky      included    icmp               ''H
              ricky      included    { ifEntry 0 5 }    'FFA0'H
              ricky      included    { ifInOctets 4 }   ''H


                    Table 8: More Elaborate View Definitions


         While, as suggested by the examples above, a wide range of MIB
         view configurations are efficiently supported by the
         abbreviated representation of [4], prudent MIB design can
         sometimes further reduce the size and complexity of the most
         likely MIB view definitions.  On one hand, it is critical that
         mechanisms for MIB view configuration impose no absolute
         constraints either upon the access policies of local
         administrations or upon the structure of MIB namespaces; on
         the other hand, where the most common access policies are
         known, the configuration costs of realizing those policies may
         be slightly reduced by assigning to distinct portions of the
         registration hierarchy those MIB objects for which local
         policies most frequently require distinct treatment.


         4.4.  Proxy Configuration

         This section presents examples of SNMPv2 proxy configurations.
         On one hand, foreign proxy configurations provide the
         capability to manage non-SNMP devices.  On the other hand,
         native proxy configurations allow an administrator to shift
         the computational burden of rich management functionality away
         from network devices whose primary task is not management.  To
         the extent that SNMPv2 proxy agents function as points of
         aggregation for management information, proxy configurations
         may also reduce the bandwidth requirements of large-scale
         management activities.

         The example configurations in this section are simplified for
         clarity: actual configurations may require additional parties
         in order to support clock synchronization and distribution of
         secrets.






         Galvin & McCloghrie                                  [Page 32]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         4.4.1.  Foreign Proxy Configuration

         This section presents an example configuration by which a
         SNMPv2 management station may manage network elements that do
         not themselves support the SNMPv2.  This configuration centers
         on a SNMPv2 proxy agent that realizes SNMPv2 management
         operations by interacting with a non-SNMPv2 device using a
         proprietary protocol.

         Table 9 presents information about SNMPv2 parties that is
         recorded in the SNMPv2 proxy agent's local database of party
         information.  Table 10 presents information about proxy
         relationships that is recorded in the SNMPv2 proxy agent's
         local database of context information.  Table 11 presents
         information about SNMPv2 parties that is recorded in the
         SNMPv2 management station's local database of party
         information.  Table 12 presents information about the database
         of access policy information specified by the local
         administration.


  Identity        groucho             chico               harpo
                  (manager)           (proxy agent)       (proxy dst)
  Domain          snmpUDPDomain       snmpUDPDomain       acmeMgmtPrtcl
  Address         1.2.3.4, 2002       1.2.3.5, 161        0x98765432
  Auth Prot       v2md5AuthProtocol   v2md5AuthProtocol   noAuth
  Auth Priv Key   "0123456789ABCDEF"  "GHIJKL0123456789"  ""
  Auth Pub Key    ""                  ""                  ""
  Auth Clock      0                   0                   0
  Auth Lifetime   300                 300                 0
  Priv Prot       noPriv              noPriv              noPriv
  Priv Priv Key   ""                  ""                  ""
  Priv Pub Key    ""                  ""                  ""


            Table 9: Party Information for Proxy Agent














         Galvin & McCloghrie                                  [Page 33]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         Context     Proxy Destination    Proxy Source    Proxy Context
         ducksoup    harpo                n/a             n/a


                 Table 10: Proxy Relationships for Proxy Agent




              Identity          groucho              chico
                                (manager)            (proxy agent)
              Domain            snmpUDPDomain        snmpUDPDomain
              Address           1.2.3.4, 2002        1.2.3.5, 161
              Auth Prot         v2md5AuthProtocol    v2md5AuthProtocol
              Auth Priv Key     "0123456789ABCDEF"   "GHIJKL0123456789"
              Auth Pub Key      ""                   ""
              Auth Clock        0                    0
              Auth Lifetime     300                  300
              Priv Prot         noPriv               noPriv
              Priv Priv Key     ""                   ""
              Priv Pub Key      ""                   ""


               Table 11: Party Information for Management Station




         Target     Subject    Context     Privileges
         chico      groucho    ducksoup     35 (Get, GetNext & GetBulk)
         groucho    chico      ducksoup    132 (Response & SNMPv2-Trap)


                 Table 12: Access Information for Foreign Proxy


         As represented in Table 9, the proxy agent party operates at
         UDP port 161 at IP address 1.2.3.5 using the party identity
         chico; and, the example manager operates at UDP port 2002 at
         IP address 1.2.3.4 using the identity groucho.  Both groucho
         and chico authenticate all messages that they generate by
         using the protocol v2md5AuthProtocol and their distinct,
         private authentication keys.  Although these private
         authentication key values ("0123456789ABCDEF" and
         "GHIJKL0123456789") are presented here for expository





         Galvin & McCloghrie                                  [Page 34]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         purposes, knowledge of private keys is not normally afforded
         to human beings and is confined to those portions of the
         protocol implementation that require it.

         The party harpo does not send or receive SNMPv2 protocol
         messages; rather, all communication with that party proceeds
         via a hypothetical proprietary protocol identified by the
         value acmeMgmtPrtcl.  Because the party harpo does not
         participate in the SNMPv2, many of the attributes recorded for
         that party in the local database of party information are
         ignored.

         Table 10 shows the proxy relationships known to the proxy
         agent.  In particular, the SNMPv2 context ducksoup refers to a
         relationship that is satisfied by the party harpo.  (The
         transport domain of the proxy destination party determines the
         interpretation of the proxy source and proxy context
         identities - in this case, use of the acmeMgmtPrtcl indicates
         that the proxy source and context identities are ignored.)

         In order to interrogate the proprietary device associated with
         the party harpo, the management station groucho constructs a
         SNMPv2 GetNext request contained within a SnmpMgmtCom value
         which references the SNMPv2 context ducksoup, and transmits it
         to the party chico operating (see Table 11) at UDP port 161,
         and IP address 1.2.3.5.  This request is authenticated using
         the private authentication key "0123456789ABCDEF".

         When that request is received by the party chico, the
         originator of the message is verified as being the party
         groucho by using local knowledge (see Table 9) of the private
         authentication key "0123456789ABCDEF".  Because party groucho
         is authorized to issue GetNext (as well as Get and GetBulk)
         requests with respect to party chico and the SNMPv2 context
         ducksoup by the relevant access control policy (Table 12), the
         request is accepted.  Because the local database of context
         information indicates that the SNMPv2 context ducksoup refers
         to a proxy relationship, the request is satisfied by its
         translation into appropriate operations of the acmeMgmtPrtcl
         directed at party harpo.  These new operations are transmitted
         to the party harpo at the address 0x98765432 in the
         acmeMgmtPrtcl domain.

         When and if the proprietary protocol exchange between the
         proxy agent and the proprietary device concludes, a SNMPv2





         Galvin & McCloghrie                                  [Page 35]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         Response management operation is constructed by the SNMPv2
         party chico to relay the results to party groucho again
         referring to the SNMPv2 context ducksoup.  This response
         communication is authenticated as to origin and integrity
         using the authentication protocol v2md5AuthProtocol and
         private authentication key "GHIJKL0123456789" specified for
         transmissions from party chico.  It is then transmitted to the
         SNMPv2 party groucho operating at the management station at IP
         address 1.2.3.4 and UDP port 2002 (the source address for the
         corresponding request).

         When this response is received by the party groucho, the
         originator of the message is verified as being the party chico
         by using local knowledge (see Table 11) of the private
         authentication key "GHIJKL0123456789".  Because party chico is
         authorized to issue Response communications with respect to
         party groucho and SNMPv2 context ducksoup by the relevant
         access control policy (Table 12), the response is accepted,
         and the interrogation of the proprietary device is complete.

         It is especially useful to observe that the local database of
         party information recorded at the proxy agent (Table 9) need
         be neither static nor configured exclusively by the management
         station.  For instance, suppose that, in this example, the
         acmeMgmtPrtcl was a proprietary, MAC-layer mechanism for
         managing stations attached to a local area network.  In such
         an environment, the SNMPv2 party chico would reside at a
         SNMPv2 proxy agent attached to such a LAN and could, by
         participating in the LAN protocols, detect the attachment and
         disconnection of various stations on the LAN.  In this
         scenario, the SNMPv2 proxy agent could easily adjust its local
         database of party information to support indirect management
         of the LAN stations by the SNMPv2 management station.  For
         each new LAN station detected, the SNMPv2 proxy agent would
         add to its local database of party information an entry
         analogous to that for party harpo (representing the new LAN
         station itself), and also add to its local database of context
         information an entry analogous to that for SNMPv2 context
         ducksoup (representing a proxy relationship for that new
         station in the SNMPv2 domain).

         By using the SNMPv2 to interrogate the local database of party
         information held by the SNMPv2 proxy agent, a SNMPv2
         management station can discover and interact with new stations
         as they are attached to the LAN.





         Galvin & McCloghrie                                  [Page 36]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         4.4.2.  Native Proxy Configuration

         This section presents an example configuration that supports
         SNMPv2 native proxy operations - indirect interaction between
         a SNMPv2 agent and a management station that is mediated by a
         second SNMPv2 (proxy) agent.

         This example configuration is similar to that presented in the
         discussion of SNMPv2 foreign proxy above.  In this example,
         however, the party associated with the identity harpo receives
         messages via the SNMPv2, and, accordingly interacts with the
         SNMPv2 proxy agent chico using authenticated SNMPv2
         communications.

         Table 13 presents information about SNMPv2 parties that is
         recorded in the SNMPv2 proxy agent's local database of party
         information.  Table 14 presents information about proxy
         relationships that is recorded in the SNMPv2 proxy agent's
         local database of context information.  Table 11 presents
         information about SNMPv2 parties that is recorded in the
         SNMPv2 management station's local database of party
         information.  Table 15 presents information about the database
         of access policy information specified by the local
         administration.


























         Galvin & McCloghrie                                  [Page 37]





         RFC 1445       Administrative Model for SNMPv2      April 1993


              Identity          groucho              chico
                                (manager)            (proxy agent)
              Domain            snmpUDPDomain        snmpUDPDomain
              Address           1.2.3.4, 2002        1.2.3.5, 161
              Auth Prot         v2md5AuthProtocol    v2md5AuthProtocol
              Auth Priv Key     "0123456789ABCDEF"   "GHIJKL0123456789"
              Auth Pub Key      ""                   ""
              Auth Clock        0                    0
              Auth Lifetime     300                  300
              Priv Prot         noPriv               noPriv
              Priv Priv Key     ""                   ""
              Priv Pub Key      ""                   ""


              Identity          harpo                   zeppo
                                (proxy dst)          (proxy src)
              Domain            snmpUDPDomain        snmpUDPDomain
              Address           1.2.3.6, 161         1.2.3.5, 161
              Auth Prot         v2md5AuthProtocol    v2md5AuthProtocol
              Auth Priv Key     "MNOPQR0123456789"   "STUVWX0123456789"
              Auth Pub Key      ""                   ""
              Auth Clock        0                    0
              Auth Lifetime     300                  300
              Priv Prot         noPriv               noPriv
              Priv Priv Key     ""                   ""
              Priv Pub Key      ""                   ""


                  Table 13: Party Information for Proxy Agent




         Context     Proxy Destination    Proxy Source    Proxy Context
         ducksoup    harpo                zeppo           bigstore
         bigstore    groucho              chico           ducksoup


                 Table 14: Proxy Relationships for Proxy Agent











         Galvin & McCloghrie                                  [Page 38]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         Target     Subject    Context     Privileges
         chico      groucho    ducksoup     35 (Get, GetNext & GetBulk)
         groucho    chico      ducksoup    132 (Response & SNMPv2-Trap)
         harpo      zeppo      bigstore     35 (Get, GetNext & GetBulk)
         zeppo      harpo      bigstore    132 (Response & SNMPv2-Trap)


                 Table 15: Access Information for Native Proxy


         As represented in Table 13, the proxy agent party operates at
         UDP port 161 at IP address 1.2.3.5 using the party identity
         chico; the example manager operates at UDP port 2002 at IP
         address 1.2.3.4 using the identity groucho; the proxy source
         party operates at UDP port 161 at IP address 1.2.3.5 using the
         party identity zeppo; and, the proxy destination party
         operates at UDP port 161 at IP address 1.2.3.6 using the party
         identity harpo.  Messages generated by all four SNMPv2 parties
         are authenticated as to origin and integrity by using the
         authentication protocol v2md5AuthProtocol and distinct,
         private authentication keys.  Although these private
         authentication key values ("0123456789ABCDEF",
         "GHIJKL0123456789", "MNOPQR0123456789", and
         "STUVWX0123456789") are presented here for expository
         purposes, knowledge of private keys is not normally afforded
         to human beings and is confined to those portions of the
         protocol implementation that require it.

         Table 14 shows the proxy relationships known to the proxy
         agent.  In particular, the SNMPv2 context ducksoup refers to a
         relationship that is satisfied when the SNMPv2 party zeppo
         communicates with the SNMPv2 party harpo and references the
         SNMPv2 context bigstore.

         In order to interrogate the proxied device associated with the
         party harpo, the management station groucho constructs a
         SNMPv2 GetNext request contained with a SnmpMgmtCom value
         which references the SNMPv2 context ducksoup, and transmits it
         to the party chico operating (see Table 11) at UDP port 161
         and IP address 1.2.3.5.  This request is authenticated using
         the private authentication key "0123456789ABCDEF".

         When that request is received by the party chico, the
         originator of the message is verified as being the party
         groucho by using local knowledge (see Table 13) of the private





         Galvin & McCloghrie                                  [Page 39]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         authentication key "0123456789ABCDEF".  Because party groucho
         is authorized to issue GetNext (as well as Get and GetBulk)
         requests with respect to party chico and the SNMPv2 context
         ducksoup by the relevant access control policy (Table 15), the
         request is accepted.  Because the local database of context
         information indicates that the SNMPv2 context ducksoup refers
         to a proxy relationship, the request is satisfied by its
         translation into a corresponding SNMPv2 GetNext request
         directed from party zeppo to party harpo referencing SNMPv2
         context bigstore.  This new communication is authenticated
         using the private authentication key "STUVWX0123456789" and
         transmitted to party harpo at the IP address 1.2.3.6.

         When this new request is received by the party harpo, the
         originator of the message is verified as being the party zeppo
         by using local knowledge of the private authentication key
         "STUVWX0123456789".  Because party zeppo is authorized to
         issue GetNext (as well as Get and GetBulk) requests with
         respect to party harpo and the SNMPv2 context bigstore by the
         relevant access control policy (Table 15), the request is
         accepted.  A SNMPv2 Response message representing the results
         of the query is then generated by party harpo to party zeppo
         referencing SNMPv2 context bigstore.  This response
         communication is authenticated as to origin and integrity
         using the private authentication key "MNOPQR0123456789" and
         transmitted to party zeppo at IP address 1.2.3.5 (the source
         address for the corresponding request).

         When this response is received by party zeppo, the originator
         of the message is verified as being the party harpo by using
         local knowledge (see Table 13) of the private authentication
         key "MNOPQR0123456789".  Because party harpo is authorized to
         issue Response communications with respect to party zeppo and
         SNMPv2 context bigstore by the relevant access control policy
         (Table 15), the response is accepted, and is used to construct
         a response to the original GetNext request, indicating a
         SNMPv2 context of ducksoup.  This response, from party chico
         to party groucho, is authenticated as to origin and integrity
         using the private authentication key "GHIJKL0123456789" and is
         transmitted to the party groucho at IP address 1.2.3.4 (the
         source address for the original request).

         When this response is received by the party groucho, the
         originator of the message is verified as being the party chico
         by using local knowledge (see Table 13) of the private





         Galvin & McCloghrie                                  [Page 40]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         authentication key "GHIJKL0123456789".  Because party chico is
         authorized to issue Response communications with respect to
         party groucho and SNMPv2 context ducksoup by the relevant
         access control policy (Table 15), the response is accepted,
         and the interrogation is complete.


         4.5.  Public Key Configuration

         This section presents an example configuration predicated upon
         a hypothetical security protocol.  This hypothetical protocol
         would be based on asymmetric (public key) cryptography as a
         means for providing data origin authentication (but not
         protection against disclosure).  This example illustrates the
         consistency of the administrative model with public key
         technology, and the extension of the example to support
         protection against disclosure should be apparent.


              Identity          ollie                stan
                                (agent)              (manager)
              Domain            snmpUDPDomain        snmpUDPDomain
              Address           1.2.3.4, 161         1.2.3.5, 2004
              Auth Prot         pkAuthProtocol       pkAuthProtocol
              Auth Priv Key     "0123456789ABCDEF"   ""
              Auth Pub Key      "0123456789abcdef"   "ghijkl0123456789"
              Auth Clock        0                    0
              Auth Lifetime     300                  300
              Priv Prot         noPriv               noPriv
              Priv Priv Key     ""                   ""
              Priv Pub Key      ""                   ""


                Table 16: Party Information for Public Key Agent


         The example configuration comprises a single SNMPv2 agent that
         interacts with a single SNMPv2 management station.  Tables 16
         and 17 present information about SNMPv2 parties that is by the
         agent and manager, respectively, while Table 5 presents
         information about the local access policy that is known to
         both manager and agent.








         Galvin & McCloghrie                                  [Page 41]





         RFC 1445       Administrative Model for SNMPv2      April 1993


              Identity          ollie                stan
                                (agent)              (manager)
              Domain            snmpUDPDomain        snmpUDPDomain
              Address           1.2.3.4, 161         1.2.3.5, 2004
              Auth Prot         pkAuthProtocol       pkAuthProtocol
              Auth Priv Key     ""                   "GHIJKL0123456789"
              Auth Pub Key      "0123456789abcdef"   "ghijkl0123456789"
              Auth Clock        0                    0
              Auth Lifetime     300                  300
              Priv Prot         noPriv               noPriv
              Priv Priv Key     ""                   ""
              Priv Pub Key      ""                   ""


         Table 17: Party Information for Public Key Management Station


         As represented in Table 16, the example agent party operates
         at UDP port 161 at IP address 1.2.3.4 using the party identity
         ollie; the example manager operates at UDP port 2004 at IP
         address 1.2.3.5 using the identity stan.  Both ollie and stan
         authenticate all messages that they generate as to origin and
         integrity by using the hypothetical SNMPv2 authentication
         protocol pkAuthProtocol and their distinct, private
         authentication keys.  Although these private authentication
         key values ("0123456789ABCDEF" and "GHIJKL0123456789") are
         presented here for expository purposes, knowledge of private
         keys is not normally afforded to human beings and is confined
         to those portions of the protocol implementation that require
         it.

         In most respects, the interaction between manager and agent in
         this configuration is almost identical to that in the example
         of the minimal, secure SNMPv2 agent described above.  The most
         significant difference is that neither SNMPv2 party in the
         public key configuration has knowledge of the private key by
         which the other party authenticates its transmissions.
         Instead, for each received authenticated SNMPv2 communication,
         the identity of the originator is verified by applying an
         asymmetric cryptographic algorithm to the received message
         together with the public authentication key for the
         originating party.  Thus, in this configuration, the agent
         knows the manager's public key ("ghijkl0123456789") but not
         its private key ("GHIJKL0123456789"); similarly, the manager
         knows the agent's public key ("0123456789abcdef") but not its





         Galvin & McCloghrie                                  [Page 42]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         private key ("0123456789ABCDEF").

















































         Galvin & McCloghrie                                  [Page 43]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         5.  Security Considerations

         In order to participate in the administrative model set forth
         in this memo, SNMPv2 implementations must support local, non-
         volatile storage of the local database of party information.
         Accordingly, every attempt has been made to minimize the
         amount of non-volatile storage required.











































         Galvin & McCloghrie                                  [Page 44]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         6.  Acknowledgements

         This document is based, almost entirely, on RFC 1351.















































         Galvin & McCloghrie                                  [Page 45]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         7.  References

         [1]  Case, J., Fedor, M., Schoffstall, M., Davin, J., "Simple
              Network Management Protocol", STD 15, RFC 1157, SNMP
              Research, Performance Systems International, MIT
              Laboratory for Computer Science, May 1990.

         [2]  Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
              "Protocol Operations for version 2 of the Simple Network
              Management Protocol (SNMPv2)", RFC 1448, SNMP Research,
              Inc., Hughes LAN Systems, Dover Beach Consulting, Inc.,
              Carnegie Mellon University, April 1993.

         [3]  Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
              "Structure of Management Information for version 2 of the
              Simple Network Management Protocol (SNMPv2)", RFC 1442,
              SNMP Research, Inc., Hughes LAN Systems, Dover Beach
              Consulting, Inc., Carnegie Mellon University, April 1993.

         [4]  McCloghrie, K., and Galvin, J., "Party MIB for version 2
              of the Simple Network Management Protocol (SNMPv2)", RFC
              1447, Hughes LAN Systems, Trusted Information Systems,
              April 1993.

         [5]  Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
              "Transport Mappings for version 2 of the Simple Network
              Management Protocol (SNMPv2)", RFC 1449, SNMP Research,
              Inc., Hughes LAN Systems, Dover Beach Consulting, Inc.,
              Carnegie Mellon University, April 1993.

         [6]  Galvin, J., and McCloghrie, K., "Security Protocols for
              version 2 of the Simple Network Management Protocol
              (SNMPv2)", RFC 1446, Trusted Information Systems, Hughes
              LAN Systems, April 1993.

         [7]  Case, J., McCloghrie, K., Rose, M., and Waldbusser, S.,
              "Management Information Base for version 2 of the Simple
              Network Management Protocol (SNMPv2)", RFC 1450, SNMP
              Research, Inc., Hughes LAN Systems, Dover Beach
              Consulting, Inc., Carnegie Mellon University, April 1993.










         Galvin & McCloghrie                                  [Page 46]





         RFC 1445       Administrative Model for SNMPv2      April 1993


         8.  Authors' Addresses

              James M. Galvin
              Trusted Information Systems, Inc.
              3060 Washington Road, Route 97
              Glenwood, MD 21738

              Phone:  +1 301 854-6889
              EMail:  [email protected]


              Keith McCloghrie
              Hughes LAN Systems
              1225 Charleston Road
              Mountain View, CA  94043
              US

              Phone: +1 415 966 7934
              Email: [email protected]































         Galvin & McCloghrie                                  [Page 47]