Network Working Group                                          R. Braden
Request for Comments: 1379                                           ISI
                                                          November 1992


              Extending TCP for Transactions -- Concepts

Status of This Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard.  Distribution of this memo is
  unlimited.

Abstract

  This memo discusses extension of TCP to provide transaction-oriented
  service, without altering its virtual-circuit operation.  This
  extension would fill the large gap between connection-oriented TCP
  and datagram-based UDP, allowing TCP to efficiently perform many
  applications for which UDP is currently used.  A separate memo
  contains a detailed functional specification for this proposed
  extension.

  This work was supported in part by the National Science Foundation
  under Grant Number NCR-8922231.

TABLE OF CONTENTS

  1. INTRODUCTION ..................................................  2
  2. TRANSACTIONS USING STANDARD TCP ...............................  3
  3. BYPASSING THE 3-WAY HANDSHAKE .................................  6
     3.1  Concept of TAO ...........................................  6
     3.2  Cache Initialization ..................................... 10
     3.3  Accepting <SYN,ACK> Segments ............................. 11
  4. SHORTENING TIME-WAIT STATE .................................... 13
  5. CHOOSING A MONOTONIC SEQUENCE ................................. 15
     5.1  Cached Timestamps ........................................ 16
     5.2  Current TCP Sequence Numbers ............................. 18
     5.3  64-bit Sequence Numbers .................................. 20
     5.4  Connection Counts ........................................ 20
     5.5  Conclusions .............................................. 21
  6. CONNECTION STATES ............................................. 24
  7. CONCLUSIONS AND ACKNOWLEDGMENTS ............................... 32
  APPENDIX A: TIME-WAIT STATE AND THE 2-PACKET EXCHANGE ............ 34
  REFERENCES ....................................................... 37
  Security Considerations .......................................... 38
  Author's Address ................................................. 38




Braden                                                          [Page 1]

RFC 1379              Transaction TCP -- Concepts          November 1992


1. INTRODUCTION

  The TCP protocol [STD-007] implements a virtual-circuit transport
  service that provides reliable and ordered data delivery over a
  full-duplex connection.  Under the virtual circuit model, the life of
  a connection is divided into three distinct phases: (1) opening the
  connection to create a full-duplex byte stream; (2) transferring data
  in one or both directions over this stream; and (3) closing the
  connection.  Remote login and file transfer are examples of
  applications that are well suited to virtual-circuit service.

  Distributed applications, which are becoming increasingly numerous
  and sophisticated in the Internet, tend to use a transaction-oriented
  rather than a virtual circuit style of communication.  Currently, a
  transaction-oriented Internet application must choose to suffer the
  overhead of opening and closing TCP connections or else build an
  application-specific transport mechanism on top of the connectionless
  transport protocol UDP.  Greater convenience, uniformity, and
  efficiency would result from widely-available kernel implementations
  of a transport protocol supporting a transaction service model [RFC-
  955].

  The transaction service model has the following features:

  *    The fundamental interaction is a request followed by a response.

  *    An explicit open or close phase would impose excessive overhead.

  *    At-most-once semantics is required; that is, a transaction must
       not be "replayed" by a duplicate request packet.

  *    In favorable circumstances, a reliable request/response
       handshake can be performed with exactly one packet in each
       direction.

  *    The minimum transaction latency for a client is RTT + SPT, where
       RTT is the round-trip time and SPT is the server processing
       time.

  We use the term "transaction transport protocol" for a transport-
  layer protocol that follows this model [RFC-955].

  The Internet architecture allows an arbitrary collection of transport
  protocols to be defined on top of the minimal end-to-end datagram
  service provided by IP [Clark88].  In practice, however, production
  systems implement only TCP and UDP at the transport layer.  It has
  proven difficult to leverage a new transport protocol into place, to
  be widely enough available to be useful for application builders.



Braden                                                          [Page 2]

RFC 1379              Transaction TCP -- Concepts          November 1992


  This memo explores an alternative approach to providing a transaction
  transport protocol: extending TCP to implement the transaction
  service model, while continuing to support the virtual circuit model.
  Each transaction will then be a single instance of a TCP connection.
  The proposed transaction extension is effectively implementable
  within current TCPs and operating systems, and it should also scale
  to the much faster networks, interfaces, and CPUs of the future.

  The present memo explains the theory behind the extension, in
  somewhat exquisite detail.  Despite the length and complexity of this
  memo, the TCP extensions required for transactions are in fact quite
  limited and simple.  Another memo [TTCP-FS] provides a self-contained
  functional specification of the extensions.

  Section 2 of this memo describes the limitations of standard TCP for
  transaction processing, to motivate the extensions.  Sections 3, 4,
  and 5 explore the fundamental extensions that are required for
  transactions.  Section 6 discusses the changes required in the TCP
  connection state diagram.  Finally, Section 7 presents conclusions
  and acknowledgments.  Familiarity with the standard TCP protocol
  [STD-007] is assumed.

2.  TRANSACTIONS USING STANDARD TCP

  Reliable transfer of data depends upon sequence numbers.  Before data
  transfer can begin, both parties must "synchronize" the connection,
  i.e, agree on common sequence numbers.  The synchronization procedure
  must preserve at-most-once semantics, i.e., be free from replay
  hazards due to duplicate packets.  The TCP developers adopted a
  synchronization mechanism known as the 3-way handshake.

  Consider a simple transaction in which client host A sends a single-
  segment request to server host B, and B returns a single-segment
  response.  Many current TCP implementations use at least ten segments
  (i.e., packets) for this sequence: three for the 3-way handshake
  opening the connection, four to send and acknowledge the request and
  response data, and three for TCP's full-duplex data-conserving close
  sequence.  These ten segments represent a high relative overhead for
  two data-bearing segments.  However, a more important consideration
  is the transaction latency seen by the client:  2*RTT + SPT, larger
  than the minimum by one RTT.  As CPU and network speeds increase, the
  relative significance of this extra transaction latency also
  increases.

  Proposed transaction transport protocols have typically used a
  "timer-based" approach to connection synchronization [Birrell84].  In
  this approach, once end-to-end connection state is established in the
  client and server hosts, a subset of this state is maintained for



Braden                                                          [Page 3]

RFC 1379              Transaction TCP -- Concepts          November 1992


  some period of time.  A new request before the expiration of this
  timeout period can then reestablish the full state without an
  explicit handshake.  Watson pointed out that the timer-based approach
  of his Delta-T protocol [Watson81] would encompass both virtual
  circuits and transactions.  However, the TCP group adopted the 3-way
  handshake (because of uncertainty about the robustness of enforcing
  the packet lifetime bounds required by Delta-T, within a general
  Internet environment).  More recently, Liskov, Shrira, and Wroclawski
  [Liskov90] have proposed a different timer-based approach to
  connection synchronization, requiring loosely-synchronized clocks in
  the hosts.

  The technique proposed in this memo, suggested by Clark [Clark89],
  depends upon cacheing of connection state but not upon clocks or
  timers; it is described in Section 3 below.  Garlick, Rom, and Postel
  also proposed a connection synchronization mechanism using cached
  state [Garlick77].  Their scheme required each host to maintain
  connection records containing the highest sequence number on each
  connection.  The technique suggested here retains only per-host
  state, not per-connection state.

  During TCP development, it was suggested that TCP could support
  transactions with data segments containing both SYN and FIN bits.
  (These "Kamikaze" segments were not supported as a service; they were
  used mainly to crash other experimental TCPs!)  To illustrate this
  idea, Figure 1 shows a plausible application of the current TCP rules
  to create a minimal transaction.  (In fact, some minor adjustments in
  the standard TCP spec would be required to make Figure 1 fully legal
  [STD-007]).

  Figure 1, like many of the examples shown in this memo, uses an
  abbreviated form to illustrate segment sequences.  For clarity and
  brevity, it omits explicit sequence and acknowledgment numbers,
  assuming that these will follow the well-known TCP rules.  The
  notation "ACK(x)" implies a cumulative acknowledgment for the control
  bit or data "x" and everything preceding "x" in the sequence space.
  The referent of "x" should be clear from the context.  Also, host A
  will always be the client and host B will be the server in these
  diagrams.

  The first three segments in Figure 1 implement the standard TCP
  three-way handshake.  If segment #1 had been an old duplicate, the
  client side would have sent an RST (Reset) bit in segment #3,
  terminating the sequence.  The request data included on the initial
  SYN segment cannot be delivered to user B until segment #3 completes
  the 3-way handshake.  Loading control bits onto the segments has
  reduced the total number of segments to 5, but the client still
  observes a transaction latency of 2*RTT + SPT.  The 3-way handshake



Braden                                                          [Page 4]

RFC 1379              Transaction TCP -- Concepts          November 1992


  thus precludes high-performance transaction processing.


      TCP A  (Client)                                 TCP B (Server)
      _______________                                 ______________

      CLOSED                                               LISTEN

  (Client sends request)
   1. SYN-SENT             --> <SYN,data1,FIN> -->       SYN-RCVD
                                                      (data1 queued)

   2. ESTABLISHED  <-- <SYN,ACK(SYN)> <--                SYN-RCVD


   3. FIN-WAIT-1            --> <ACK(SYN),FIN> -->     CLOSE-WAIT
                                                   (data1 to server)

                                                (Server sends reply)
   4. TIME-WAIT    <-- <ACK(FIN),data2,FIN> <--          LAST-ACK
   (data2 to client)

   5. TIME-WAIT                 --> <ACK(FIN)> -->         CLOSED

      (timeout)
      CLOSED

              Figure 1: Transaction Sequence: RFC-793 TCP


  The TCP close sequence also poses a performance problem for
  transactions: one or both end(s) of a closed connection must remain
  in "TIME-WAIT" state until a 4 minute timeout has expired [STD-007].
  The same connection (defined by the host and port numbers at both
  ends) cannot be reopened until this delay has expired.  Because of
  TIME-WAIT state, a client program should choose a new local port
  number (i.e., a different connection) for each successive
  transaction.  However, the TCP port field of 16 bits (less the
  "well-known" port space) provides only 64512 available user ports.
  This limits the total rate of transactions between any pair of hosts
  to a maximum of 64512/240 = 268 per second.  This is much too low a
  rate for low-delay paths, e.g., high-speed LANs.  A high rate of
  short connections (i.e., transactions) could also lead to excessive
  consumption of kernel memory by connection control blocks in TIME-
  WAIT state.

  In summary, to perform efficient transaction processing in TCP, we
  need to suppress the 3-way handshake and to shorten TIME-WAIT state.



Braden                                                          [Page 5]

RFC 1379              Transaction TCP -- Concepts          November 1992


  Protocol mechanisms to accomplish these two goals are discussed in
  Sections 3 and 4, respectively.  Both require the choice of a
  monotonic sequence-like space; Section 5 analyzes the choices and
  makes a selection for this space.  Finally, the TCP connection state
  machine must be extended as described in Section 6.

  Transaction processing in TCP raises some other protocol issues,
  which are discussed in the functional specification memo [TTCP-FS].
  These include:

  (1)  augmenting the user interface for transactions,

  (2)  delaying acknowledgment segments to allow maximum piggy-backing
       of control bits with data,

  (3)  measuring the retransmission timeout time (RTO) on very short
       connections, and

  (4)  providing an initial server window.

  A recently proposed set of enhancements [RFC-1323] defines a TCP
  Timestamps option that carries two 32-bit timestamp values.  The
  Timestamps option is used to accurately measure round-trip time
  (RTT).  The same option is also used in a procedure known as "PAWS"
  (Protect Againsts Wrapped Sequence) to prevent erroneous data
  delivery due to a combination of old duplicate segments and sequence
  number reuse at very high bandwidths.  The particular approach to
  transactions chosen in this memo does not require the RFC-1323
  enhancements; however, they are important and should be implemented
  in every TCP, with or without the transaction extensions described
  here.

3.  BYPASSING THE 3-WAY HANDSHAKE

  To avoid 3-way handshakes for transactions, we introduce a new
  mechanism for validating initial SYN segments, i.e., for enforcing
  at-most-once semantics without a 3-way handshake.  We refer to this
  as the TCP Accelerated Open, or TAO, mechanism.

  3.1 Concept of TAO

     The basis of TAO is this: a TCP uses cached per-host information
     to immediately validate new SYNs [Clark89].  If this validation
     fails, e.g., because there is no current cached state or the
     segment is an old duplicate, the procedure falls back to a normal
     3-way handshake to validate the SYN.  Thus, bypassing a 3-way
     handshake is considered to be an optional optimization.




Braden                                                          [Page 6]

RFC 1379              Transaction TCP -- Concepts          November 1992


     The proposed TAO mechanism uses a finite sequence-like space of
     values that increase monotonically with successive transactions
     (connections) between a given (client, server) host pair.  Call
     this monotonic space M, and let each initial SYN segment carry an
     M value SEG.M.  If M is not the existing sequence (SEG.SEQ) field,
     SEG.M may be carried in a TCP option.

     When host B receives from host A an initial SYN segment containing
     a new value SEG.M, host B compares this against cache.M[A], the
     latest M value that B has cached for host A.  This comparison is
     the "TAO test".  Because the M values are monotonically
     increasing, SEG.M > cache.M[A] implies that the SYN must be new
     and can be accepted immediately.  If not, a normal 3-way handshake
     is performed to validate the initial SYN segment.  Figure 2
     illustrates the TAO mechanism; cached M values are shown enclosed
     in square brackets.  The M values generated by host A satisfy
     x0 < x1, and the M values generated by host B satisfy y0 < y1.

     An appropriate choice for the M value space is discussed in
     Section 5.  M values are drawn from a finite number space, so
     inequalities must be defined in the usual way for sequence numbers
     [STD-007].  The M space must not wrap so quickly that an old
     duplicate SYN will be erroneously accepted.  We assume that some
     maximum segment lifetime (MSL) is enforced by the IP layer.

       ____T_C_P__A_____                                ____T_C_P__B_____

           cache.M[B]                                  cache.M[A]
              V                                            V

           [ y0 ]                                       [ x0 ]

     1.             -->  <SYN,data1,M=x1> -->       ( (x1 > x0) =>
                                                     data1 -> user_B;
                                                     cache.M[A]= x1)

           [ y0 ]                                       [ x1 ]
     2.            <-- <SYN,ACK(data1),data2,M=y1> <--

        (data2 -> user_A,
         cache.M[B]= y1)

           [ y1 ]                                       [ x1 ]
                             ... (etc.) ...


                  Figure 2. TAO: Three-Way Handshake is Bypassed




Braden                                                          [Page 7]

RFC 1379              Transaction TCP -- Concepts          November 1992


     Figure 2 shows the simplest case: each side has cached the latest
     M value of the other, and the SEG.M value in the client's SYN
     segment is greater than the value in the cache at the server host.
     As a result, B can accept the client A's request data1 immediately
     and pass it to the server application.  B's reply data2 is shown
     piggybacked on the <SYN,ACK> segment.  As a result of this 2-way
     exchange, the cached M values are updated at both sites; the
     client side becomes relevant only if the client/server roles
     reverse.  Validation of the <SYN,ACK> segment at host A is
     discussed later.

     Figure 3 shows the TAO test failing but the consequent 3-way
     handshake succeeding.  B updates its cache with the value x2 >= x1
     when the initial SYN is known to be valid.


          _T_C_P__A                                     _T_C_P__B

           cache.M[B]                                  cache.M[A]
              V                                           V

           [ y0 ]                                       [ x0 ]
     1.                 --> <SYN,data1,M=x1> -->   ( (x1 <= x0) =>
                                                   data1 queued;
                                                   3-way handshake)

           [ y0 ]                                       [ x0 ]
     2.                <-- <SYN,ACK(SYN),M=y1> <--
        (cache.M[B]= y1)

           [ y1 ]                                       [ x0 ]
     3.                  --> <ACK(SYN),M=x2> -->  (Handshake OK =>
                                                  data1->user_B,
                                                  cache.M[A]= x2)

           [ y1 ]                                       [ x2 ]
                           ...  (etc.)  ...

         Figure 3. TAO Test Fails but 3-Way Handshake Succeeds.

     There are several possible causes for a TAO test failure on a
     legitimate new SYN segment (not an old duplicate).

     (1)  There may be no cached M value for this particular client
          host.

     (2)  The SYN may be the one of a set of nearly-simultaneous SYNs
          for different connections but from the same host, which



Braden                                                          [Page 8]

RFC 1379              Transaction TCP -- Concepts          November 1992


          arrived out of order.

     (3)  The finite M space may have wrapped around between successive
          transactions from the same client.

     (4)  The M values may advance too slowly for closely-spaced
          transactions.

     None of these TAO failures will cause a lockout, because the
     resulting 3-way handshake will succeed.  Note that the first
     transaction between a given host pair will always require a 3-way
     handshake; subsequent transactions can take advantage of TAO.

     The per-host cache required by TAO is highly desirable for other
     reasons, e.g., to retain the measured round trip time and MTU for
     a given remote host.  Furthermore, a host should already have a
     per-host routing cache [HR-COMM] that should be easily extensible
     for this purpose.

     Figure 4 illustrates a complete TCP transaction sequence using the
     TAO mechanism.  Bypassing the 3-way handshake leads to new
     connection states; Figure 4 shows three of them, "SYN-SENT*",
     "CLOSE-WAIT*", and "LAST-ACK*".  Explanation of these states is
     deferred to Section 6.


         TCP A  (Client)                                 TCP B (Server)
         _______________                                 ______________

         CLOSED                                                  LISTEN

     1.  SYN-SENT*    --> <SYN,data1,FIN,M=x1> -->          CLOSE-WAIT*
                                                        (TAO test OK=>
                                                         data1->user_B)

                  <-- <SYN,ACK(FIN),data2,FIN,M=y1> <--       LAST-ACK*
     2.  TIME-WAIT
      (data2->user_A)


     3.  TIME-WAIT          --> <ACK(FIN),M=x2> -->              CLOSED

         (timeout)
           CLOSED


              Figure 4: Minimal Transaction Sequence Using TAO




Braden                                                          [Page 9]

RFC 1379              Transaction TCP -- Concepts          November 1992


  3.2 Cache Initialization

     The first connection between hosts A and B will find no cached
     state at one or both ends, so both M caches must be initialized.
     This requires that the first transaction carry a specially marked
     SEG.M value, which we call SEG.M.NEW.  Receiving a SEG.M.NEW value
     in an initial SYN segment, B will cache this value and send its
     own M back to initialize A's cache.  When a host crashes and
     restarts, all its cached M values cache.M[*] must be invalidated
     in order to force a re-synchronization of the caches at both ends.

     This cache synchronization procedure is illustrated in Figure 5,
     where client host A has crashed and restarted with its cache
     entries undefined, as indicated by "??".  Since cache.TS[B] is
     undefined, A sends a SEG.M.NEW value instead of SEG.M in the <SYN>
     segment of its first transaction request to B.  Receiving this
     SEG.M.NEW, the server host B invalidates cache.TS[A] and performs
     a 3-way handshake.  SEG.M in segment #2 updates A's cache, and
     when the handshake completes successfully, B updates its cached M
     value to x2 >= x1.


          _T_C_P__A                                     _T_C_P__B

           cache.M[B]                                  cache.M[A]
              V                                           V
           [ ?? ]                                       [ x0 ]

     1.           --> <SYN,data1,M.NEW=x1> -->   (invalidate cache;
                                                       queue data1;
           [ ?? ]                                  3-way handshake)

                                                        [ ?? ]
     2.              <-- <SYN,ACK(SYN),M=y1> <--
        (cache.M[B]= y1)

           [ y1 ]                                       [ ?? ]

     3.                  --> <ACK(SYN),M=x2> -->  data1->user_B,
                                                  cache.M[A]= x2)

           [ y1 ]                                       [ x2 ]
                           ...  (etc.)  ...

                 Figure 5.  Client Host Crashed


     Suppose that the 3-way handshake failed, presumably because



Braden                                                         [Page 10]

RFC 1379              Transaction TCP -- Concepts          November 1992


     segment #1 was an old duplicate.  Then segment #3 from host A
     would be an RST segment, with the result that both side's caches
     would be left undefined.

     Figure 6 shows the procedure when the server crashes and restarts.
     Upon receiving a <SYN> segment from a host for which it has no
     cached M value, B initiates a 3-way handshake to validate the
     request and sends its own M value to A.  Again the result is to
     update cached M values on both sides.


             _T_C_P__A                                     _T_C_P__B

              cache.M[B]                                  cache.M[A]
                 V                                           V
              [ y0 ]                                       [ ?? ]

        1.               --> <SYN,data1,M=x1> -->      (data1 queued;
                                                      3-way handshake)

              [ y0 ]                                       [ ?? ]
        2.              <-- <SYN,ACK(SYN),M=y1> <--
           (cache.M[B]= y1)

              [ y1 ]                                       [ ?? ]
        3.                --> <ACK(SYN),M=x2> -->   (data1->user_B,
                                                     cache.M[A]= x2)

              [ y1 ]                                       [ x2 ]
                              ...  (etc.)  ...


                       Figure 6. Server Host Crashed


  3.3  Accepting <SYN,ACK> Segments

     Transactions introduce a new hazard of erroneously accepting an
     old duplicate <SYN,ACK> segment.  To be acceptable, a <SYN,ACK>
     segment must arrive in SYN-SENT state, and its ACK field must
     acknowledge something that was sent.  In current TCPs the
     effective send window in SYN-SENT state is exactly one octet, and
     an acceptable <SYN,ACK> must exactly ACK this one octet.  The
     clock-driven selection of Initial Sequence Number (ISN) makes an
     erroneous acceptance exceedingly unlikely.  An old duplicate SYN
     could be accepted erroneously only if successive connection
     attempts occurred more often than once every 4 microseconds, or if
     the segment lifetime exceeded the 4 hour wraparound time for ISN



Braden                                                         [Page 11]

RFC 1379              Transaction TCP -- Concepts          November 1992


     selection.

     However, when TCP is used for transactions, data sent with the
     initial SYN increases the range of sequence numbers that have been
     sent.  This increases the danger of accepting an old duplicate
     <SYN,ACK> segment, and the consequences are more serious.  In the
     example in Figure 7, segments 1-3 form a normal transaction
     sequence, and segment 4 begins a new transaction (incarnation) for
     the same connection.  Segment #5 is a duplicate of segment #2 from
     the preceding transaction.  Although the new transaction has a
     larger ISN, the previous ACK value 402 falls into the new range
     [200,700) of sequence numbers that have been sent, so segment #5
     could be erroneously accepted and passed to the client as the
     response to the new request.

          _T_C_P__A                                       _T_C_P__B

        CLOSED                                                   LISTEN

     1.           --> <seq=100,SYN,data=300,FIN,M=x1> --> (TAO test OK)


     2.         <-- <seq=800,ack=402,SYN,data=350,FIN,M=y1> <--


     3. TIME-WAIT                      --> <ACK(FIN)> -->       CLOSED
        (short timeout)
        CLOSED

        (New Request)
     4.           --> <seq=200,SYN,data=500,FIN,M=x2> --> ...

                                           (Duplicate of segment #2)
     5.         <-- <seq=800,ack=402,SYN,data=300,FIN,M=y1> <--...
        (Acceptable!!)


              Figure 7: Old Duplicate <SYN,ACK> Causing Error


     Unfortunately, we cannot simply use TAO on the client side to
     detect and reject old duplicate <SYN,ACK> segments.  A TAO test at
     the client might fail for a valid <SYN,ACK> segment, due to out-
     of-order delivery, and this could result in permanent non-delivery
     of a valid transaction reply.

     Instead, we include a second M value, an echo of the client's M
     value from the initial <SYN> segment, in the <SYN,ACK> segment.  A



Braden                                                         [Page 12]

RFC 1379              Transaction TCP -- Concepts          November 1992


     specially-marked M value, SEG.M.ECHO, is used for this purpose.
     The client knows the value it sent in the initial <SYN> and can
     therefore positively validate the <SYN,ACK> using the echoed
     value.  This is illustrated in Figure 12, which is the same as
     Figure 4 with the addition of the echoed value on the <SYN,ACK>
     segment #2.

     It should be noted that TCP allows a simultaneous open sequence in
     which both sides send and receive an initial <SYN> (see Figure 8
     of [STD-007].  In this case, the TAO test must be performed on
     both sides to preserve the symmetry.  See [TTCP-FS] for an
     example.

4.  SHORTENING TIME-WAIT STATE

  Once a transaction has been initiated for a particular connection
  (pair of ports) between a given host pair, a new transaction for the
  same connection cannot take place for a time that is at least:

      RTT + SPT + TIME-WAIT_delay

  Since the client host can cycle among the 64512 available port
  numbers, an upper bound on the transaction rate between a particular
  host pair is:

  [1]    TRmax = 64512 /(RTT + TIME-WAIT_Delay)

  in transactions per second (Tps), where we assumed SPT is negligible.
  We must reduce TIME-WAIT_Delay to support high-rate TCP transaction
  processing.

  TIME-WAIT state performs two functions: (1) supporting the full-
  duplex reliable close of TCP, and (2) allowing old duplicate segments
  from an earlier connection incarnation to expire before they can
  cause an error (see Appendix to [RFC-1185]).  The first function
  impacts the application model of a TCP connection, which we would not
  want to change.  The second is part of the fundamental machinery of
  TCP reliable delivery; to safely truncate TIME-WAIT state, we must
  provide another means to exclude duplicate packets from earlier
  incarnations of the connection.

  To minimize the delay in TIME-WAIT state while performing both
  functions, we propose to set the TIME-WAIT delay to:

  [2]    TIME-WAIT_Delay = max( K*RTO, U )

  where U and K are constants and RTO is the dynamically-determined
  retransmission timeout, the measured RTT plus an allowance for the



Braden                                                         [Page 13]

RFC 1379              Transaction TCP -- Concepts          November 1992


  RTT variance [Jacobson88].  We choose K large enough so that there is
  high probability of the close completing successfully if at all
  possible; K = 8 seems reasonable.  This takes care of the first
  function of TIME-WAIT state.

  In a real implementation, there may be a minimum RTO value Tr,
  corresponding to the precision of RTO calculation.  For example, in
  the popular BSD implementation of TCP, the minimum RTO is Tr = 0.5
  second.  Assuming K = 8 and U = 0, Eqns [1] and [2] impose an upper
  limit of TRmax = 16K Tps on the transaction rate of these
  implementations.

  It is possible to have many short connections only if RTO is very
  small, in which case the TIME-WAIT delay [2] reduces to U.  To
  accelerate the close sequence, we need to reduce U below the MSL
  enforced by the IP layer, without introducing a hazard from old
  duplicate segments.  For this purpose, we introduce another monotonic
  number sequence; call it X.  X values are required to be monotonic
  between successive connection incarnations; depending upon the choice
  of the X space (see Section 5), X values may also increase during a
  connection.  A value from the X space is to be carried in every
  segment, and a segment is rejected if it is received with an X value
  smaller than the largest X value received.  This mechanism does not
  use a cache; the largest X value is maintained in the TCP connection
  control block (TCB) for each connection.

  The value of U depends upon the choice for the X space, discussed in
  the next section.  If X is time-like, U can be set to twice the time
  granularity (i.e, twice the minimum "tick" time) of X.  The TIME-WAIT
  delay will then ensure that current X values do not overlap the X
  values of earlier incarnations of the same connection.  Another
  consequence of time-like X values is the possibility that an open but
  idle connection might allow the X value to wrap its sign bit,
  resulting in a lockup of the connection.  To prevent this, a 24-day
  idle timer on each open connection could bypass the X check on the
  first segment following the idle period, for example.  In practice,
  many implementations have keep-alive mechanisms that prevent such
  long idle periods [RFC-1323].

  Referring back to Figure 4, our proposed transaction extension
  results in a minimum exchange of 3 packets.  Segment #3, the final
  ACK segment, does not increase transaction latency, but in
  combination with the TIME-WAIT delay of K*RTO it ensures that the
  server side of the connection will be closed before a new transaction
  is issued for this same pair of ports.  It also provides an RTT
  measurement for the server.

  We may ask whether it would be possible to further reduce the TIME-



Braden                                                         [Page 14]

RFC 1379              Transaction TCP -- Concepts          November 1992


  WAIT delay.  We might set K to zero; alternatively, we might allow
  the client TCP to start a new transaction request while the
  connection was still in TIME-WAIT state, with the new initial SYN
  acting as an implied acknowledgment of the previous FIN.  Appendix A
  summarizes the issues raised by these alternatives, which we call
  "truncating" TIME-WAIT state, and suggests some possible solutions.
  Further study would be required, but these solutions appear to bend
  the theory and/or implementations of the TCP protocol farther than we
  wish to bend them.

  We therefore propose using formula [2] with K=8 and retaining the
  final ACK(FIN) transmission.  To raise the transaction rate,
  therefore, we require small values of RTO and U.

5.  CHOOSING A MONOTONIC SEQUENCE

  For simplicity, we want the monotonic sequence X used for shortening
  TIME-WAIT state to be identical to the monotonic sequence M for
  bypassing the 3-way handshake.  Calling the common space M, we will
  send an M value SEG.M in each TCP segment.  Upon receipt of an
  initial SYN segment, SEG.M will be compared with a per-host cached
  value to authenticate the SYN without a 3-way handshake; this is the
  TAO mechanism.  Upon receipt of a non-SYN segment, SEG.M will be
  compared with the current value in the connection control block and
  used to discard old duplicates.

  Note that the situation with TIME-WAIT state differs from that of
  bypassing 3-way handshakes in two ways: (a) TIME-WAIT requires
  duplicate detection on every segment vs. only on SYN segments, and
  (b) TIME-WAIT applies to a single connection vs. being global across
  all connections.  This section discusses possible choices for the
  common monotonic sequence.

  The SEG.M values must satisfy the following requirements.

  *    The values must be monotonic; this requirement is defined more
       precisely below.

  *    Their granularity must be fine-grained enough to support a high
       rate of transaction processing; the M clock must "tick" at least
       once between successive transactions.

  *    Their range (wrap-around time) must be great enough to allow a
       realistic MSL to be enforced by the network.

  The TCP spec calls for an MSL of 120 secs.  Since much of the
  Internet does not carefully enforce this limit, it would be safer to
  have an MSL at least an order of magnitude larger.  We set as an



Braden                                                         [Page 15]

RFC 1379              Transaction TCP -- Concepts          November 1992


  objective an MSL of at least 2000 seconds.  If there were no TIME-
  WAIT delay, the ultimate limit on transaction rate would be set by
  speed-of-light delays in the network and by the latency of host
  operating systems.  As the bottleneck problems with interfacing CPUs
  to gigabit LANs are solved, we can imagine transaction durations as
  short as 1 microsecond.  Therefore, we set an ultimate performance
  goal of TRmax at least 10**6 Tps.

  A particular connection between hosts A and B is identified by the
  local and remote TCP "sockets", i.e., by the quadruplet: {A, B,
  Port.A, Port.B}.  Imagine that each host keeps a count CC of the
  number of TCP connections it has initiated.  We can use this CC
  number to distinguish different incarnations of the same connection.
  Then a particular SEG.M value may be labeled implicitly by 6
  quantities: {A, B, Port.A, Port.B, CC, n}, where n is the byte offset
  of that segment within the connection incarnation.

  To bypass the 3-way handshake, we require thgt SEG.M values on
  successive SYN segments from a host A to a host B be monotone
  increasing.  If CC' > CC, then we require that:

      SEG.M(A,B,Port.A,Port.B,CC',0) >  SEG.M(A,B,Port.A,Port.B,CC,0)

  for any legal values of Port.A and Port.B.

  To delete old duplicates (allowing TIME-WAIT state to be shortened),
  we require that SEG.M values be disjoint across different
  incarnations of the same connection.   If CC' > CC then

      SEG.M(A,B,Port.A,Port.B,CC',n') > SEG.M(A,B,Port.A,Port.B,CC,n),

  for any non-negative integers n and n'.

  We now consider four different choices for the common monotonic
  space: RFC-1323 timestamps, TCP sequence numbers, the connection
  count, and 64-bit TCP sequence numbers.  The results are summarized
  in Table I.

  5.1 Cached Timestamps

     The PAWS mechanism [RFC-1323] uses TCP "timestamps" as
     monotonically increasing integers in order to throw out old
     duplicate segments within the same incarnation.  Jacobson
     suggested the cacheing of these timestamps for bypassing 3-way
     handshakes [Jacobson90], i.e., that TCP timestamps be used for our
     common monotonic space M.  This idea is attractive since it would
     allow the same timestamp options to be used for RTTM, PAWS, and
     transactions.



Braden                                                         [Page 16]

RFC 1379              Transaction TCP -- Concepts          November 1992


     To obtain at-most-once service, the criterion for immediate
     acceptance of a SYN must be that SEG.M is strictly greater than
     the cached M value.  That is, to be useful for bypassing 3-way
     handshakes, the timestamp clock must tick at least once between
     any two successive transactions between the same pair of hosts
     (even if different ports are used).  Hence, the timestamp clock
     rate would determine TRmax, the maximum possible transaction rate.

     Unfortunately, the timestamp clock frequency called for by RFC-
     1323, in the range 1 sec to 1 ms, is much too slow for
     transactions.  The TCP timestamp period was chosen to be
     comparable to the fundamental interval for computing and
     scheduling retransmission timeouts; this is generally in the range
     of 1 sec. to 1 ms., and in many operating systems, much closer to
     1 second.  Although it would be possible to increase the timestamp
     clock frequency by several orders of magnitude, to do so would
     make implementation more difficult, and on some systems
     excessively expensive.

     The wraparound time for TCP timestamps, at least 24 days, causes
     no problem for transactions.

     The PAWS mechanism uses TCP timestamps to protect against old
     duplicate non-SYN segments from the same incarnation [RFC-1323].
     It can also be used to protect against old duplicate data segments
     from earlier incarnations (and therefore allow shortening of
     TIME-WAIT state) if we can ensure that the timestamp clock ticks
     at least once between the end of one incarnation and the beginning
     of the next.  This can be achieved by setting U = 2 seconds, i.e.,
     to twice the maximum timestamp clock period.  This value in
     formula [2] leads to an upper bound TRmax = 32K Tps between a host
     pair.  However, as pointed out above, old duplicate SYN detection
     using timestamps leads to a smaller transaction rate bound, 1 Tps,
     which is unacceptable.  In addition, the timestamp approach is
     imperfect; it allows old ACK segments to enter the new connection
     where they can cause a disconnect.  This happens because old
     duplicate ACKs that arrive during TIME-WAIT state generate new
     ACKs with the current timestamp [RFC-1337].

     We therefore conclude that timestamps are not adequate as the
     monotonic space M; see Table I.  However, they may still be useful
     to effectively extend some other monotonic number space, just as
     they are used in PAWS to extend the TCP sequence number space.
     This is discussed below.







Braden                                                         [Page 17]

RFC 1379              Transaction TCP -- Concepts          November 1992


  5.2 Current TCP Sequence Numbers

     It is useful to understand why the existing 32-bit TCP sequence
     numbers do not form an appropriate monotonic space for
     transactions.

     The sequence number sent in an initial SYN is called the Initial
     Sequence Number or ISN.  According to the TCP specification, an
     ISN is to be selected using:

     [3]      ISN = (R*T) mod 2**32

     where T is the real time in seconds (from an arbitrary origin,
     fixed when the system is started) and R is a constant, currently
     250 KBps.  These ISN values form a monotonic time sequence that
     wraps in 4.55 hours = 16380 seconds and has a granularity of 4
     usecs.  For transaction rates up to roughly 250K Tps, the ISN
     value calculated by formula [3] will be monotonic and could be
     used for bypassing the 3-way handshake.

     However, TCP sequence numbers (alone) could not be used to shorten
     TIME-WAIT state, because there are several ways that overlap of
     the sequence space of successive incarnations can occur (as
     described in Appendix to [RFC-1185]).  One way is a "fast
     connection", with a transfer rate greater than R; another is a
     "long" connection, with a duration of approximately 4.55 hours.
     TIME-WAIT delay is necessary to protect against these cases.  With
     the official delay of 240 seconds, formula [1] implies a upper
     bound (as RTT -> 0) of TRmax = 268 Tps; with our target MSL of
     2000 sec, TRmax = 32 Tps.  These values are unacceptably low.

     To improve this transaction rate, we could use TCP timestamps to
     effectively extend the range of the TCP sequence numbers.
     Timestamps would guard against sequence number wrap-around and
     thereby allow us to increase R in [3] to exceed the maximum
     possible transfer rate.  Then sequence numbers for successive
     incarnations could not overlap.  Timestamps would also provide
     safety with an MSL as large as 24 days.  We could then set U = 0
     in the TIME-WAIT delay calculation [2].  For example, R = 10**9
     Bps leads to TRmax <= 10**9 Tps. See 2(b) in Table I.  These
     values would more than satisfy our objectives.

     We should make clear how this proposal, sequence numbers plus
     timestamps, differs from the timestamps alone discussed (and
     rejected) in the previous section.  The difference lies in what is
     cached and tested for TAO; the proposal here is to cache and test
     BOTH the latest TCP sequence number and the latest TCP timestamp.
     In effect, we are proposing to use timestamps to logically extend



Braden                                                         [Page 18]

RFC 1379              Transaction TCP -- Concepts          November 1992


     the sequence space to 64 bits.  Another alternative, presented in
     the next section, is to directly expand the TCP sequence space to
     64 bits.

     Unfortunately, the proposed solution (TCP sequence numbers plus
     timestamps) based on equation [3] would be difficult or impossible
     to implement on many systems, which base their TCP implementation
     upon a very low granularity software clock, typically O(1 sec).
     To adapt the procedure to a system with a low granularity software
     clock, suppose that we calculate the ISN as:

     [4]      ISN = ( R*Ts*floor(T/Ts) + q*CC) mod 2**32

     where Ts is the time per tick of the software clock, CC is the
     connection count, and q is a constant.  That is, the ISN is
     incremented by the constant R*Ts once every clock tick and by the
     constant q for every new connection.  We need to choose q to
     obtain the required monotonicity.

     For monotonicity of the ISN's themselves, q=1 suffices.  However,
     monotonicity during the entire connection requires q = R*Ts.  This
     value of q can be deduced as follows.  Let S(T, CC, n) be the
     sequence number for byte offset n in a connection with number CC
     at time T:

         S(T, CC, n) = (R*Ts*floor(T/Ts) + q*CC + n) mod 2**32.

     For any T1 > T2, we require that: S(T2, CC+1, 0) - S(T1, CC, n) >
     0 for all n.  Since R is assumed to be an upper bound on the
     transfer rate, we can write down:

         R > n/(T2 - T1),  or  T2/Ts - T1/Ts > n/(R*Ts)

     Using the relationship:  floor(x)-floor(y) > x-y-1 and a little
     algebra leads to the conclusion that using q = R*Ts creates the
     required monotonic number sequence.  Therefore, we consider:

     [5]      ISN = R*Ts*(floor(T/Ts) + CC) mod 2**32

     (which is the algorithm used for ISN selection by BSD TCP).

     For error-free operation, the sequence numbers generated by [5]
     must not wrap the sign bit in less than MSL seconds.  Since CC
     cannot increase faster than TRmax, the safe condition is:

           R* (1 + Ts*TRmax) * MSL < 2**31.

     We are interested in the case: Ts*TRmax >> 1, so this relationship



Braden                                                         [Page 19]

RFC 1379              Transaction TCP -- Concepts          November 1992


     reduces to:

     [6]     R * Ts * TRmax * MSL < 2**31.

     This shows a direct trade-off among the maximum effective
     bandwidth R, the maximum transaction rate TRmax, and the maximum
     segment lifetime MSL.  For reasonable limiting values of R, Ts,
     and MSL, formula [6] leads to a very low value of TRmax.  For
     example, with MSL= 2000 secs, R=10**9 Bps, and Ts = 0.5 sec, TRmax
     < 2*10**-3 Tps.

     To ease the situation, we could supplement sequence numbers with
     timestamps.  This would allow an effective MSL of 2 seconds in
     [6], since longer times would be protected by differing
     timestamps.  Then TRmax < 2**30/(R*Ts).  The actual enforced MSL
     would be increased to 24 days.  Unfortunately, TRmax would still
     be too small, since we want to support transfer rates up to R ~
     10**9 Bps.  Ts = 0.5 sec would imply TRmax ~ 2 Tps.  On many
     systems, it appears infeasible to decrease Ts enough to obtain an
     acceptable TRmax using this approach.

  5.3 64-bit TCP Sequence Numbers

     Another possibility would be to simply increase the TCP sequence
     space to 64 bits as suggested in [RFC-1263].  We would also
     increase the R value for clock-driven ISN selection, beyond the
     fastest transfer rate of which the host is capable.  A reasonable
     upper limit might be R = 10**9 Bps.  As noted above, in a
     practical implementation we would use:

           ISN = R*Ts*( floor(T/Ts) + CC) mod 2**64

     leading to:

           R*(1 +  Ts * TRmax) * MSL < 2**63

     For example, suppose that R = 10**9 Bps, Ts = 0.5, and MSL = 16K
     secs (4.4 hrs); then this result implies that TRmax < 10**6 Tps.
     We see that adding 32 bits to the sequence space has provided
     feasible values for transaction processing.

  5.4 Connection Counts

     The Connection Count CC is well suited to be the monotonic
     sequence M, since it "ticks" exactly once for each new connection
     incarnation and is constant within a single incarnation.  Thus, it
     perfectly separates segments from different incarnations of the
     same connection and would allow U = 0 in the TIME-WAIT state delay



Braden                                                         [Page 20]

RFC 1379              Transaction TCP -- Concepts          November 1992


     formula [2].  (Strictly, U cannot be reduced below 1/R = 4 usec,
     as noted in Section 4.  However, this is of little practical
     consequence until the ultimate limits on TRmax are approached).

     Assume that CC is a 32-bit number.  To prevent wrap-around in the
     sign bit of CC in less than MSL seconds requires that:

          TRmax * MSL < 2**31

     For example, if MSL =  2000 seconds then TRmax < 10**6 Tp.  These
     are acceptable limits for transaction processing.  However, if
     they are not, we could augment CC with TCP timestamps to obtain
     very far-out limits, as discussed below.

     It would be an implementation choice at the client whether CC is
     global for all destinations or private to each destination host
     (and maintained in the per-host cache).  In the latter case, the
     last CC value assigned for each remote host could also be
     maintained in the per-host cache.  Since there is not typically a
     large amount of parallelism in the network connection of a host,
     there should be little difference in the performance of these two
     different approaches, and the single global CC value is certainly
     simpler.

     To augment CC with TCP timestamps, we would bypass a 3-way
     handshake if both SEG.CC > cache.CC[A] and SEG.TSval >=
     cache.TS[A].  The timestamp check would detect a SYN older than 2
     seconds, so that the effective wrap-around requirement would be:

          TRmax * 2 < 2**31

     i.e., TRmax < 10**9 Tps.  The required MSL would be raised to 24
     days.  Using timestamps in this way, we could reduce the size of
     CC.  For example, suppose CC were 16 bits.  Then the wrap-around
     condition TRmax * 2 < 2**15 implies that TRmax is 16K.

     Finally, note that using CC to delete old duplicates from earlier
     incarnations would not obviate the need for the time-stamp-based
     PAWS mechanism to prevent errors within a single incarnation due
     to wrapping the 32-bit TCP sequence space at very high transfer
     rates.

  5.5  Conclusions

     The alternatives for monotonic sequence are summarized in Table I.
     We see that there are two feasible choices for the monotonic
     space: the connection count and 64-bit sequence numbers.  Of these
     two, we believe that the simpler is the connection count.



Braden                                                         [Page 21]

RFC 1379              Transaction TCP -- Concepts          November 1992


     Implementation of 64-bit sequence numbers would require
     negotiation of a new header format and expansion of all variables
     and calculations on the sequence space.  CC can be carried in an
     option and need be examined only once per packet.

     We propose to use a simple 32-bit connection count CC, without
     augmentation with timestamps, for the transaction extension.  This
     choice has the advantages of simplicity and directness.  Its
     drawback is that it adds a third sequence-like space (in addition
     to the TCP sequence number and the TCP timestamp) to each TCP
     header and to the main line of packet processing.  However, the
     additional code is in fact very modest.

  We now have a general outline of the proposed TCP extensions for
  transactions.

  o    A host maintains a 32-bit global connection counter variable CC.

  o    The sender's current CC value is carried in an option in every
       TCP segment.

  o    CC values are cached per host, and the TAO mechanism is used to
       bypass the 3-way handshake when possible.

  o    In non-SYN segments, the CC value is used to reject duplicates
       from earlier incarnations.  This allows TIME-WAIT state delay to
       be reduced to K*RTO (i.e., U=0 in Eq. [2]).
























Braden                                                         [Page 22]

RFC 1379              Transaction TCP -- Concepts          November 1992


               TABLE I: Summary of Monotonic Sequences

     APPROACH              TRmax (Tps)    Required MSL      COMMENTS
  __________________________________________________________________

  1. Timestamp & PAWS        1              24 days         TRmax is
                                                           too small
  __________________________________________________________________

  2. Current TCP Sequence Numbers

    (a) clock-driven
      ISN: eq. [3]           268           240 secs      TRmax & MSL
                                                           too small

    (b) Timestamps& clock-
        driven ISN [3] &     10**9         24 days           Hard to
        R=10**9                                            implement

    (c) Timestamps & c-dr
        ISN: eq. [4]        2**30/(R*Ts)   24 days         TRmax too
                                                              small.
  __________________________________________________________________

  3. 64-bit TCP Sequence Numbers

                         2**63/(MSL*R*Ts)      MSL        Significant
                                                         TCP change
                          e.g., R=10**9 Bps,
                              MSL = 4.4 hrs,
                              Ts = 0.5 sec=>
                              TRmax = 10**6
  __________________________________________________________________

  4. Connection Counts

    (a) no timestamps       2**31/MSL        MSL        3rd sequence
                       e.g., MSL=2000 sec                      space
                            TRmax = 10**6

    (b) with timestamps     2**30           24 days     (ditto)
                and PAWS
  __________________________________________________________________








Braden                                                         [Page 23]

RFC 1379              Transaction TCP -- Concepts          November 1992


6.  CONNECTION STATES

  TCP has always allowed a connection to be half-closed.  TAO makes a
  significant addition to TCP semantics by allowing a connection to be
  half-synchronized, i.e., to be open for data transfer in one
  direction before the other direction has been opened.  Thus, the
  passive end of a connection (which receives an initial SYN) can
  accept data and even a FIN bit before its own SYN has been
  acknowledged.  This SYN, data, and FIN may arrive on a single segment
  (as in Figure 4), or on multiple segments; packetization makes no
  difference to the logic of the finite-state machine (FSM) defining
  transitions among connection states.

  Half-synchronized connections have several consequences.

  (a)  The passive end must provide an implied initial data window in
       order to accept data.  The minimum size of this implied window
       is a parameter in the specification; we suggest 4K bytes.

  (b)  New connection states and transitions are introduced into the
       TCP FSM at both ends of the connection.  At the active end, new
       states are required to piggy-back the FIN on the initial SYN
       segment.  At the passive end, new states are required for a
       half-synchronized connection.

  This section develops the resulting FSM description of a TCP
  connection as a conventional state/transition diagram.  To develop a
  complete FSM, we take a constructive approach, as follows: (1) write
  down all possible events; (2) write down the precedence rules that
  govern the order in which events may occur; (3) construct the
  resulting FSM; and (4) augment it to support TAO.  In principle, we
  do this separately for the active and passive ends; however, the
  symmetry of TCP results in the two FSMs being almost entirely
  coincident.

  Figure 8 lists all possible state transitions for a TCP connection in
  the absence of TAO, as elementary events and corresponding actions.
  Each transition is labeled with a letter.  Transitions a-g are used
  by the active side, and c-i are used by the passive side.  Without
  TAO, transition "c" (event "rcv ACK(SYN)") synchronizes the
  connection, allowing data to be accepted for the user.

  By definition, the first transition for an active (or passive) side
  must be "a" (or "i", respectively).  During a single instance of a
  connection, the active side will progress through some permutation of
  the complete sequence of transitions {a b c d e f } or the sequence
  {a b c d e f g}.  The set of possible permutations is determined by
  precedence rules governing the order in which transitions can occur.



Braden                                                         [Page 24]

RFC 1379              Transaction TCP -- Concepts          November 1992


         Label              Event / Action
         _____              ________________________
           a                OPEN / snd SYN

           b                rcv SYN [No TAO]/ snd ACK(SYN)

           c                rcv ACK(SYN) /

           d                CLOSE / snd FIN

           e                rcv FIN / snd ACK(FIN)

           f                rcv ACK(FIN) /

           g                timeout=2MSL / delete TCB
       ___________________________________________________
           h                passive OPEN / create TCB

           i                rcv SYN [No TAO]/ snd SYN, ACK(SYN)
       ___________________________________________________

          Figure 8.  Basic TCP Connection Transitions


  Using the notation "<." to mean "must precede", the precedence rules
  are:

  (1)  Logical ordering: must open connection before closing it:

       b <. e

  (2)  Causality -- cannot receive ACK(x) before x has been sent:

       a <. c and i <. c and d <. f

  (3)  Acknowledgments are cumulative

       c <. f

  (4)  First packet in each direction must contain a SYN.

       b <. c and b <. f

  (5)  TIME-WAIT state

       Whenever d precedes e in the sequence, g must be the last
       transition.




Braden                                                         [Page 25]

RFC 1379              Transaction TCP -- Concepts          November 1992


  Applying these rules, we can enumerate all possible permutations of
  the events and summarize them in a state transition diagram.  Figure
  9 shows the result, with boxes representing the states and directed
  arcs representing the transitions.

         ________            ________
        |        |    h     |        |
        | CLOSED |--------->| LISTEN |
        |________|          |________|
             |                   |
             | a                 | i
         ____V____           ____V___                 ________
        |        |    b     |        |      e        |        |
        |        |--------->|        |-------------->|        |
        |________|          |________|               |________|
           /                    /   |                /       |
          /                    /    | c           d /        | c
         /                    /   __V_____          |    ____V___
        /                    /   |        | e       |   |        |
     d  |                d  /    |        |------------>|        |
        |                   |    |________|         |   |________|
        |                   |       |               |         |
        |                   |       |            ___V____     |
        |                   |       |           |        |    |
        |                   |       |           |        |    |
        |                   |       |           |________|    |
        |                   |       |                   |     |
    ____V___          ______V_      |     ________      |     |
   |        |    b   |        | e   |    |        |     |     |
   |        |------->|        |--------->|        |     |     |
   |________|        |________|     |    |________|     |     |
                             |      /          |        |     |
                           c |     / d       c |      c |   d |
                             |    /            |        |     |
                            _V___V__       ____V___     V_____V_
                           |        |  e  |        |   |        |
                           |        |---->|        |   |        |
                           |________|     |________|   |________|
                                |              |           |
                                | f            | f         | f
                            ____V___       ____V___     ___V____
                           |        |  e  | TIME-  | g |        |
                           |        |---->|   WAIT |-->| CLOSED |
                           |________|     |________|   |________|


              Figure 9: Basic State Diagram




Braden                                                         [Page 26]

RFC 1379              Transaction TCP -- Concepts          November 1992


  Although Figure 9 gives a correct representation of the possible
  event sequences, it is not quite correct for the actions, which do
  not compose as shown.   In particular, once a control bit X has been
  sent, it must continue to be sent until ACK(X) is received.  This
  requires new transitions with modified actions, shown in the
  following list.  We use the labeling convention that transitions with
  the same event part all have the same letter, with different numbers
  of primes to indicate different actions.

         Label              Event / Action
         _____              _______________________________________
           b' (=i)          rcv SYN [No TAO] / snd SYN,ACK(SYN)
           b''              rcv SYN [No TAO] / snd SYN,FIN,ACK(SYN)
           d'               CLOSE / snd SYN,FIN
           e'               rcv FIN / snd FIN,ACK(FIN)
           e''              rcv FIN / snd SYN,FIN,ACK(FIN)


  Figure 10 shows the state diagram of Figure 9, with the modified
  transitions and with the states used by standard TCP [STD-007]
  identified. Those states that do not occur in standard TCP are
  numbered 1-5.

  Standard TCP has another implied restriction: a FIN bit cannot be
  recognized before the connection has been synchronized, i.e., c <. e.
  This eliminates from standard TCP the states 1, 2, and 5 shown in
  Figure 10.  States 3 and 4 are needed if a FIN is to be piggy-backed
  on a SYN segment (note that the states shown in Figure 1 are actually
  wrong; the states shown as SYN-SENT and ESTABLISHED are really states
  3 and 4).  In the absence of piggybacking the FIN bit, Figure 10
  reduces to the standard TCP state diagram [STD-007].

  The FSM described in Figure 10 is intended to be applied
  cumulatively; that is, parsing a single packet header may lead to
  more than one transition.  For example, the standard TCP state
  diagram includes a direct transition from SYN-SENT to ESTABLISHED:

      rcv SYN,ACK(SYN) / snd ACK(SYN).

  This is transition b followed immediately by c.











Braden                                                         [Page 27]

RFC 1379              Transaction TCP -- Concepts          November 1992


         ________            ________
        |        |     h    |        |
        | CLOSED |--------->| LISTEN |
        |________|          |________|
             |                   |
             | a                 | i
         ____V____           ____V___                 ________
        | SYN-   |     b'   |  SYN-  |     e'        |        |
        |   SENT |--------->|RECEIVED|-------------->|   1    |
        |________|          |________|               |________|
           /                    /   |                  |     |
        d'/                  d'/    | c             d' |   c |
         /                    /   __V_____             |    _V______
        /                    /   |ESTAB-  | e          |   | CLOSE- |
        |                   /    |  LISHED|------------|-->|   WAIT |
        |                   |    |________|            |   |________|
        |                   |       |                  |      |
        |                   |       |             _____V__    |
        |                   |       |            |        |   |
        |                   |       |            |   2    |   |
        |                   |       |            |________|   |
        |                   |       |                   |     |
    ____V___          ______V_      |     ________      |     |
   |        |  b''   |        |e''' |    |        |     |     |
   |    3   |------->|    4   |--------->|    5   |     |     |
   |________|        |________|     |    |________|     |     |
                             |      /          |        |     |
                           c |     / d       c |      c |   d |
                             |    /            |        |     |
                            _V___V__       ____V___     V_____V_
                           | FIN-   | e'' |        |   | LAST-  |
                           |  WAIT-1|---->|CLOSING |   |   ACK  |
                           |________|     |________|   |________|
                                |              |           |
                                | f            | f         | f
                            ____V___       ____V___     ___V____
                           | FIN-   |  e  | TIME-  | g |        |
                           |  WAIT-2|---->|   WAIT |-->| CLOSED |
                           |________|     |________|   |________|


       Figure 10: Basic State Diagram -- Correct Actions


  Next we introduce TAO.  If the TAO test succeeds, the connection
  becomes half-synchronized.  This requires a new set of states,
  mirroring the states of Figure 10, beginning with acceptance of a SYN
  (transition "b" or "i"), and ending when ACK(SYN) arrives (transition



Braden                                                         [Page 28]

RFC 1379              Transaction TCP -- Concepts          November 1992


  "c").  Figure 11 shows the result of augmenting Figure 10 with the
  additional states for TAO.  The transitions are defined in the
  following table:

          Key for Figure 11: Complete State Diagram with TAO


               Label            Event / Action
               _____            ________________________

                 a              OPEN / create TCB, snd SYN
                 b'             rcv SYN [no TAO]/ snd SYN,ACK(SYN)
                 b''            rcv SYN [no TAO]/ snd SYN,FIN,ACK(SYN)
                 c              rcv ACK(SYN) /
                 d              CLOSE / snd FIN
                 d'             CLOSE / snd SYN,FIN
                 e              rcv FIN / snd ACK(FIN)
                 e'             rcv FIN / snd SYN,ACK(FIN)
                 e''            rcv FIN / snd FIN,ACK(FIN)
                 e'''           rcv FIN / snd SYN,FIN,ACK(FIN)
                 f              rcv ACK(FIN) /
                 g              timeout=2MSL / delete TCB
                 h              passive OPEN / create TCB
                 i (= b')       rcv SYN [no TAO]/ snd SYN,ACK(SYN)
                 j              rcv SYN [TAO OK] / snd SYN,ACK(SYN)
                 k              rcv SYN [TAO OK] / snd SYN,FIN,ACK(SYN)



  Each new state in Figure 11 bears a very simple relationship to a
  standard TCP state.  We indicate this by naming the new state with
  the standard state name followed by a star.  States SYN-SENT* and
  SYN-RECEIVED* differ from the corresponding unstarred states in
  recording the fact that a FIN has been sent.  The other new states
  with starred names differ from the corresponding unstarred states in
  being half-synchronized (hence, a SYN bit needs to be transmitted).

  The state diagram of Figure 11 is more general than required for
  transaction processing.  In particular, it handles simultaneous
  connection synchronization from both sides, allowing one or both
  sides to bypass the 3-way handshake.  It includes other transitions
  that are unlikely in normal transaction processing, for example, the
  server sending a FIN before it receives a FIN from the client
  (ESTABLISHED* -> FIN-WAIT-1* in Figure 11).







Braden                                                         [Page 29]

RFC 1379              Transaction TCP -- Concepts          November 1992


  ________                  ________
 |        |      h         |        |
 | CLOSED |--------------->| LISTEN |
 |________|                |________|
      |                     /     |
     a|                    / i    | j
      |                   /       |
      |                  /       _V______               ________
      |           j      |      |ESTAB-  |       e'    | CLOSE- |
      |        /---------|----->| LISHED*|------------>|   WAIT*|
      |       /          |      |________|             |________|
      |      /           |       |     |                 |    |
      |     /            |       |d'   | c            d' |    | c
  ____V___ /       ______V_      |    _V______           |   _V______
 | SYN-   |   b'  |  SYN-  | c   |   |ESTAB-  |  e       |  | CLOSE- |
 |   SENT |------>|RECEIVED|-----|-->|  LISHED|----------|->|   WAIT |
 |________|       |________|     |   |________|          |  |________|
      |               |          |     |                 |       |
      |               |          |     |              ___V____   |
      |               |          |     |             | LAST-  |  |
      | d'            | d'       | d'  | d           |  ACK*  |  |
      |               |          |     |             |________|  |
      |               |          |     |                    |    |
      |               |    ______V_    |        ________    |c   |d
      |          k    |   |  FIN-  |   |  e''' |        |   |    |
      |        /------|-->| WAIT-1*|---|------>|CLOSING*|   |    |
      |       /       |   |________|   |       |________|   |    |
      |      /        |          |     |            |       |    |
      |     /         |          | c   |            | c     |    |
  ____V___ /      ____V___       V_____V_       ____V___    V____V__
 | SYN-   |  b'' |  SYN-  |  c  |  FIN-  | e'' |        |  | LAST-  |
 |  SENT* |----->|RECEIVD*|---->| WAIT-1 |---->|CLOSING |  |   ACK  |
 |________|      |________|     |________|     |________|  |________|
                                    |               |           |
                                    | f             | f         | f
                                 ___V____       ____V___     ___V____
                                |  FIN-  | e   |TIME-   | g |        |
                                | WAIT-2 |---->|   WAIT |-->| CLOSED |
                                |________|     |________|   |________|

      Figure 11: Complete State Diagram with TAO



  The relationship between starred and unstarred states is very
  regular.  As a result, the state extensions can be implemented very
  simply using the standard TCP FSM with the addition of two "hidden"
  boolean flags, as described in the functional specification memo



Braden                                                         [Page 30]

RFC 1379              Transaction TCP -- Concepts          November 1992


  [TTCP-FS].

  As an example of the application of Figure 11, consider the minimal
  transaction shown in Figure 12.


      TCP A  (Client)                                 TCP B (Server)
      _______________                                 ______________

      CLOSED                                                  LISTEN

  1.  SYN-SENT*    --> <SYN,data1,FIN,CC=x1> -->     CLOSE-WAIT*
                                                     (TAO test OK=>
                                                      data1->user_B)

                                                            LAST-ACK*
             <-- <SYN,ACK(FIN),data2,FIN,CC=y1,CC.ECHO=x1> <--
  2.  TIME-WAIT
   (TAO test OK,
    data2->user_A)


  3.  TIME-WAIT          --> <ACK(FIN),CC=x2> -->              CLOSED

      (timeout)
        CLOSED


            Figure 12: Minimal Transaction Sequence

  Sending segment #1 leaves the client end in SYN-SENT* state, which
  differs from SYN-SENT state in recording the fact that a FIN has been
  sent.  At the server end, passing the TAO test enters ESTABLISHED*
  state, which passes the data to the user as in ESTABLISHED state and
  also records the fact that the connection is half synchronized.  Then
  the server processes the FIN bit of segment #1, moving to CLOSE-WAIT*
  state.

  Moving to CLOSE-WAIT* state should cause the server to send a segment
  containing SYN and ACK(FIN).  However, transmission of this segment
  is deferred so the server can piggyback the response data and FIN on
  the same segment, unless a timeout occurs first.  When the server
  does send segment #2 containing the response data2 and a FIN, the
  connection advances from CLOSE-WAIT* to LAST-ACK* state; the
  connection is still half-synchronized from B's viewpoint.

  Processing segment #2 at the client again results in multiple
  transitions:



Braden                                                         [Page 31]

RFC 1379              Transaction TCP -- Concepts          November 1992


      SYN-SENT* -> FIN-WAIT-1* -> CLOSING* -> CLOSING -> TIME-WAIT

  These correspond respectively to receiving a SYN, a FIN, an ACK for
  A's SYN, and an ACK for A's FIN.

  Figure 13 shows a slightly more complex example, a transaction
  sequence in which request and response data each require two
  segments.  This figure assumes that both client and server TCP are
  well-behaved, so that e.g., the client sends the single segment #5 to
  acknowledge both data segments #3 and #4.  SEG.CC values are omitted
  for clarity.


       _T_C_P__A                                            _T_C_P__B


   1.  SYN-SENT*      --> <SYN,data1>   -->         ESTABLISHED*
                                                   (TAO OK,
                                                    data1-> user)

   2.  SYN-SENT*      --> <data2,FIN>   -->          CLOSE-WAIT*
                                                   (data2-> user)

   3.  FIN-WAIT-2     <-- <SYN,ACK(FIN),data3> <--   CLOSE-WAIT*
        (data3->user)

   4.  TIME_WAIT      <-- <ACK(FIN),data4,FIN> <--     LAST-ACK*
        (data4->user)

   5.  TIME-WAIT      --> <ACK(FIN)> -->                  CLOSED


        Figure 13. Multi-Packet Request/Response Transaction


7.  CONCLUSIONS AND ACKNOWLEDGMENTS

  TCP was designed to be a highly symmetric protocol.  This symmetry is
  evident in the piggy-backing of acknowledgments on data and in the
  common header format for data segments and acknowledgments.  On the
  other hand, the examples and discussion in this memo are in general
  highly unsymmetrical; the actions of a "client" are clearly
  distinguished from those of a "server".  To explain this apparent
  discrepancy, we note the following.  Even when TCP is used for
  virtual circuit service, the data transfer phase is symmetrical but
  the open and close phases are not.  A minimal transaction, consisting
  of one segment in each direction, compresses the open, data transfer,
  and close phases together, and making the asymmetry of the open and



Braden                                                         [Page 32]

RFC 1379              Transaction TCP -- Concepts          November 1992


  close phases dominant.  As request and response messages increase in
  size, the virtual circuit model becomes increasingly relevant, and
  symmetry again dominates.

  TCP's 3-way handshake precludes any performance gain from including
  data on a SYN segment, while TCP's full-duplex data-conserving close
  sequence ties up communication resources to the detriment of high-
  speed transactions.  Merely loading more control bits onto TCP data
  segments does not provide efficient transaction service.  To use TCP
  as an effective transaction transport protocol requires bypassing the
  3-way handshake and shortening the TIME-WAIT delay.  This memo has
  proposed a backwards-compatible TCP extension to accomplish both
  goals.  It is our hope that by building upon the current version of
  TCP, we can give a boost to community acceptance of the new
  facilities.  Furthermore, the resulting protocol implementations will
  retain the algorithms that have been developed for flow and
  congestion control in TCP [Jacobson88].

  O'Malley and Peterson have recently recommended against backwards-
  compatible extensions to TCP, and suggested instead a mechanism to
  allow easy installation of alternative versions of a protocol [RFC-
  1263].  While this is an interesting long-term approach, in the
  shorter term we suggest that incremental extension of the current TCP
  may be a more effective route.

  Besides the backward-compatible extension proposed here, there are
  two other possible approaches to making efficient transaction
  processing widely available in the Internet: (1) a new version of TCP
  or (2) a new protocol specifically adapted to transactions.  Since
  current TCP "almost" supports transactions, we favor (1) over (2).  A
  new version of TCP that retained the semantics of STD-007 but used 64
  bit sequence numbers with the procedures and states described in
  Sections 3, 4, and 6 of this memo would support transactions as well
  as virtual circuits in a clean, coherent manner.

  A potential application of transaction-mode TCP might be SMTP.  If
  commands and responses are batched, in favorable cases complete SMTP
  delivery operations on short messages could be performed with a
  single minimal transaction; on the other hand, the body of a message
  may be arbitrarily large.  Using a TCP extended as in this memo could
  significantly reduce the load on large mail hosts.

  This work began as an elaboration of the concept of TAO, due to Dave
  Clark.  I am grateful to him and to Van Jacobson, John Wroclawski,
  Dave Borman, and other members of the End-to-End Research group for
  helpful ideas and critiques during the long development of this work.
  I also thank Liming Wei, who tested the initial implementation in Sun
  OS.



Braden                                                         [Page 33]

RFC 1379              Transaction TCP -- Concepts          November 1992


APPENDIX A -- TIME-WAIT STATE AND THE 2-PACKET EXCHANGE

  This appendix considers the implications of reducing TIME-WAIT state
  delay below that given in formula [2].

  An immediate consequence of this would be the requirement for the
  server host to accept an initial SYN for a connection in LAST-ACK
  state.  Without the transaction extensions, the arrival of a new
  <SYN> in LAST-ACK state looks to TCP like a half-open connection, and
  TCP's rules are designed to restore correspondence by destroying the
  state (through sending a RST segment) at one end or the other.  We
  would need to thwart this action in the case of transactions.

  There are two different possible ways to further reduce TIME-WAIT
  delay.

  (1)  Explicit Truncation of TIME-WAIT state

       TIME-WAIT state could be explicitly truncated by accepting a new
       sendto() request for a connection in TIME-WAIT state.

       This would allow the ACK(FIN) segment to be delayed and sent
       only if a timeout occurs before a new request arrives.  This
       allows an ideal 2-segment exchange for closely-spaced
       transactions, which would restore some symmetry to the
       transaction exchange.  However, explicit truncation would
       represent a significant change in many implementations.

       It might be supposed that even greater symmetry would result if
       the new request segment were a <SYN,ACK> that explicitly
       acknowledges the previous reply, rather than a <SYN> that is
       only an implicit acknowledgment.  However, the new request
       segment might arrive at B to find the server side in either
       LAST-ACK or CLOSED state, depending upon whether the ACK(FIN)
       had arrived.  In CLOSED state, a <SYN,ACK> would not be
       acceptable.  Hence, if the client sent an initial <SYN,ACK>
       instead of a <SYN> segment, there would be a race condition at
       the server.

  (2)  No TIME-WAIT delay

       TIME-WAIT delay could be removed entirely.  This would imply
       that the ACK(FIN) would always be sent (which does not of course
       guarantee that it will be received).  As a result, the arrival
       of a new SYN in LAST-ACK state would be rare.

       This choice is much simpler to implement.  Its drawback is that
       the server will get a false failure report if the ACK(FIN) is



Braden                                                         [Page 34]

RFC 1379              Transaction TCP -- Concepts          November 1992


       lost.  This may not matter in practice, but it does represent a
       significant change of TCP semantics.  It should be noted that
       reliable delivery of the reply is not an issue.  The client
       enter TIME-WAIT state only after the entire reply, including the
       FIN bit, has been received successfully.

  The server host B must be certain that a new request received in
  LAST-ACK state is indeed a new SYN and not an old duplicate;
  otherwise, B could falsely acknowledge a previous response that has
  not in fact been delivered to A.  If the TAO comparison succeeds, the
  SYN must be new; however, the server has a dilemma if the TAO test
  fails.

  In Figure A.1, for example, the reply segment from the first
  transaction has been lost; since it has not been acknowledged, it is
  still in B's retransmission queue.  An old duplicate request, segment
  #3, arrives at B and its TAO test fails.  B is in the position of
  having old state it cannot discard (the retransmission queue) and
  needing to build new state to pursue a 3-way handshake to validate
  the new SYN.  If the 3-way handshake failed, it would need to restore
  the earlier LAST-ACK* state.  (Compare with Figure 15 "Old Duplicate
  SYN Initiates a Reset on Two Passive Sockets" in STD-007).  This
  would be complex and difficult to accomplish in many implementations.


      TCP A  (Client)                               TCP B (Server)
      _______________                               ______________

        CLOSED                                          LISTEN


  1.    SYN-SENT*       --> <SYN,data1,FIN> -->    CLOSE-WAIT*
                                                    (TAO test OK;
                                                     data1->server)

  2.        (lost) X<-- <SYN,ACK(FIN),data2,FIN> <-- LAST-ACK*

                  (old duplicate)
  3.                     ... <SYN,data3,FIN> -->     LAST-ACK*
                                                 (TAO test fail;
                                                  3-way handshake?)

                Figure A.1: The Server's Dilemma


  The only practical action A can taken when the TAO test fails on a
  new SYN received in LAST-ACK state is to ignore the SYN, assuming it
  is really an old duplicate.  We must pursue the possible consequences



Braden                                                         [Page 35]

RFC 1379              Transaction TCP -- Concepts          November 1992


  of this action.

  Section 3.1 listed four possible reasons for failure of the TAO test
  on a legitimate SYN segment: (1) no cached state, (2) out-of-order
  delivery of SYNs, (3) wraparound of CCgen relative to the cached
  value, or (4) the M values advance too slowly.   We are assuming that
  there is a cached CC value at B (otherwise, the SYN cannot be
  acceptable in LAST-ACK state).  Wrapping the CC space is very
  unlikely and probably impossible; it is difficult to imagine
  circumstances which would allow the new SYN to be delivered but not
  the ACK(FIN), especially given the long wraparound time of CCgen.

  This leaves the problem of out-of-order delivery of two nearly-
  concurrent SYNs for different ports.  The second to be delivered may
  have a lower CC option and thus be locked out.  This can be solved by
  using a new CCgen value for every retransmission of an initial SYN.

  Truncation of TIME-WAIT state and acceptance of a SYN in LAST-ACK
  state should take place only if there is a cached CC value for the
  remote host.  Otherwise, a SYN arriving in LAST-ACK state is to be
  processed by normal TCP rules, which will result in a RST segment
  from either A or B.

  This discussion leads to a paradigm for rejecting old duplicate
  segments that is different from TAO.  This alternative scheme is
  based upon the following:

  (a)  Each retransmission of an initial SYN will have a new value of
       CC, as described above.

       This provision takes care of reordered SYNs.

  (b)  A host maintains a distinct CCgen value for each remote host.
       This value could easily be maintained in the same cache used for
       the received CC values, e.g., as cache.CCgen[].

       Once the caches are primed, it should always be true that
       cache.CCgen[B] on host A is equal to cache.CC[A] on host B, and
       the next transaction from A will carry a CC value exactly 1
       greater.  Thus, there is no problem of wraparound of the CC
       value.

  (c)  A new SYN is acceptable if its SEG.CC > cache.CC[client],
       otherwise the SYN is ignored as an old duplicate.

  This alternative paradigm was not adopted because it would be a
  somewhat greater perturbation of TCP rules, because it may not have
  the robustness of TAO, and because all of its consequences may not be



Braden                                                         [Page 36]

RFC 1379              Transaction TCP -- Concepts          November 1992


  understood.


REFERENCES

   [Birrell84]  Birrell, A. and B. Nelson, "Implementing Remote
     Procedure Calls", ACM TOCS, Vo. 2, No. 1, February 1984.

   [Clark88]  Clark, D., "The Design Philosophy of the Internet
     Protocols", ACM SIGCOMM '88, Stanford, CA, August 1988.

   [Clark89]  Clark, D., Private communication, 1989.

   [Garlick77]  Garlick, L., R. Rom, and J. Postel, "Issues in Reliable
     Host-to-Host Protocols", Proc. Second Berkeley Workshop on
     Distributed Data Management and Computer Networks, May 1977.

   [HR-COMM]  Braden, R., Ed., "Requirements for Internet Hosts --
     Communication Layers", STD-003, RFC-1122, October 1989.

   [Jacobson88] Jacobson, V., "Congestion Avoidance and Control",
     SIGCOMM '88, Stanford, CA., August 1988.

   [Jacobson90] Jacobson, V., private communication, 1990.

   [Liskov90]  Liskov, B., Shrira, L., and J. Wroclawski, "Efficient
     At-Most-Once Messages Based on Synchronized Clocks", ACM SIGCOMM
     '90, Philadelphia, PA, September 1990.

   [RFC-955]  Braden, R., "Towards a Transport Service Transaction
     Protocol", RFC-955, September 1985.

   [RFC-1185]  Jacobson, V., Braden, R., and Zhang, L., "TCP Extension
     for High-Speed Paths", RFC-1185, October 1990.

   [RFC-1263]  O'Malley, S. and L. Peterson, "TCP Extensions Considered
     Harmful", RFC-1263, University of Arizona, October 1991.

   [RFC-1323]  Jacobson, V., Braden, R., and Borman, D., "TCP
     Extensions for High Performance, RFC-1323, February 1991.

   [RFC-1337]  Braden, R., "TIME-WAIT Assassination Hazards in TCP",
     RFC-1337, May 1992.

   [STD-007]  Postel, J., "Transmission Control Protocol - DARPA
     Internet Program Protocol Specification", STD-007, RFC-793,
     September 1981.




Braden                                                         [Page 37]

RFC 1379              Transaction TCP -- Concepts          November 1992


   [TTCP-FS]  Braden, R., "Transaction TCP -- Functional
     Specification", Work in Progress, September 1992.

   [Watson81]  Watson, R., "Timer-based Mechanisms in Reliable
     Transport Protocol Connection Management", Computer Networks, Vol.
     5, 1981.

Security Considerations

  Security issues are not discussed in this memo.

Author's Address

  Bob Braden
  University of Southern California
  Information Sciences Institute
  4676 Admiralty Way
  Marina del Rey, CA 90292

  Phone: (310) 822-1511
  EMail: [email protected]






























Braden                                                         [Page 38]