Network Working Group                                           D. Mills
Request for Comments: 1361                        University of Delaware
                                                            August 1992


                 Simple Network Time Protocol (SNTP)

Status of this Memo

  This memo provides information for the Internet community.  It does
  not specify an Internet standard.  Distribution of this memo is
  unlimited.

Abstract

  This memorandum describes the Simple Network Time Protocol (SNTP),
  which is an adaptation of the Network Time Protocol (NTP) used to
  synchronize computer clocks in the Internet. SNTP can be used when
  the ultimate performance of the full NTP implementation described in
  RFC-1305 is not needed or justified. It involves no change to the
  current or previous NTP specification versions or known
  implementations, but rather a clarification of certain design
  features of NTP which allow operation in a simple, stateless RPC mode
  with accuracy and reliability expectations similar to the UDP/TIME
  protocol described in RFC-868.

  This memorandum does not obsolete or update any RFC. A working
  knowledge of RFC-1305 is not required for an implementation of SNTP.

1. Introduction

  The Network Time Protocol (NTP) specified in RFC-1305 [MIL92] is used
  to synchronize computer clocks in the global Internet. It provides
  comprehensive mechanisms to access national time and frequency
  dissemination services, organize the time-synchronization subnet and
  adjust the local clock in each participating subnet peer. In most
  places of the Internet of today, NTP provides accuracies of 1-50 ms,
  depending on the jitter characteristics of the synchronization source
  and network paths.

  RFC-1305 specifies the NTP protocol machine in terms of events,
  states, transition functions and actions and, in addition, optional
  algorithms to improve the timekeeping quality and mitigate among
  several, possibly faulty, synchronization sources. To achieve
  accuracies in the low milliseconds over paths spanning major portions
  of the Internet of today, these intricate algorithms, or their
  functional equivalents, are necessary. However, in many cases
  accuracies of this order are not required and something less, perhaps



Mills                                                           [Page 1]

RFC 1361                          SNTP                       August 1992


  in the order of one second, is sufficient. In such cases simpler
  protocols such as the Time Protocol [POS83], have been used for this
  purpose. These protocols usually involve a remote-procedure call
  (RPC) exchange where the client requests the time of day and the
  server returns it in seconds past some known reference epoch.

  NTP is designed for use by clients and servers with a wide range of
  capabilities and over a wide range of network delays and jitter
  characteristics. Most members of the Internet NTP synchronization
  subnet of today use software packages including the full suite of NTP
  options and algorithms, which are relatively complex, real-time
  applications. While the software has been ported to a wide variety of
  hardware platforms ranging from supercomputers to personal computers,
  its sheer size and complexity is not appropriate for many
  applications. Accordingly, it is useful to explore alternative access
  strategies using far simpler software appropriate for accuracy
  expectations in the order of a second.

  This memorandum describes the Simple Network Time Protocol (SNTP),
  which is a simplified access strategy for servers and clients using
  NTP as now specified and deployed in the Internet. There are no
  changes to the protocol or implementations now running or likely to
  be implemented in the near future. The access paradigm is identical
  to the UDP/Time Protocol and, in fact, it should be easily possible
  to adapt a UDP/Time client implementation, say for a personal
  computer, to operate using SNTP. Moreover, SNTP is also designed to
  operate in a dedicated server configuration including an integrated
  radio clock. With careful design and control of the various latencies
  in the system, which is practical in a dedicated design, it is
  possible to deliver time accurate to the order of microseconds.

  It is strongly recommended that SNTP be used only at the extremities
  of the synchronization subnet. SNTP clients should operate only at
  the leaves (highest stratum) of the subnet and in configurations
  where no SNTP client is dependent on another SNTP client for
  synchronization. SNTP servers should operate only at the root
  (stratum 1) of the subnet and then only in configurations where no
  other source of synchronization other than a reliable radio clock is
  available. The full degree of reliability ordinarily expected of
  primary servers is possible only using the redundant sources, diverse
  subnet paths and crafted algorithms of a full NTP implementation.
  This extends to the primary source of synchronization itself in the
  form of multiple radio clocks and backup paths to other primary
  servers should the radio clock fail or become faulty. Therefore, the
  use of SNTP rather than NTP in primary servers should be carefully
  considered.





Mills                                                           [Page 2]

RFC 1361                          SNTP                       August 1992


2. NTP Timestamp Format

  SNTP uses the standard NTP timestamp format described in RFC-1305 and
  previous versions of that document. In conformance with standard
  Internet practice, NTP data are specified as integer or fixed-point
  quantities, with bits numbered in big-endian fashion from zero
  starting at the left, or high-order, position. Unless specified
  otherwise, all quantities are unsigned and may occupy the full field
  width with an implied zero preceding bit zero.

  Since NTP timestamps are cherished data and, in fact, represent the
  main product of the protocol, a special timestamp format has been
  established. NTP timestamps are represented as a 64-bit unsigned
  fixed-point number, in seconds relative to 0h on 1 January 1900. The
  integer part is in the first 32 bits and the fraction part in the
  last 32 bits. This format allows convenient multiple-precision
  arithmetic and conversion to Time Protocol representation (seconds),
  but does complicate the conversion to ICMP Timestamp message
  representation (milliseconds). The precision of this representation
  is about 200 picoseconds, which should be adequate for even the most
  exotic requirements.

  Note that since some time in 1968 the most significant bit (bit 0 of
  the integer part) has been set and that the 64-bit field will
  overflow some time in 2036. Should NTP or SNTP be in use in 2036,
  some external means will be necessary to qualify time relative to
  1900 and time relative to 2036 (and other multiples of 136 years).
  Timestamped data requiring such qualification will be so precious
  that appropriate means should be readily available. There will exist
  a 200-picosecond interval, henceforth ignored, every 136 years when
  the 64-bit field will be zero, which by convention is interpreted as
  an invalid timestamp.

3. NTP Message Format

  Both NTP and SNTP are clients of the User Datagram Protocol (UDP)
  [POS83], which itself is a client of the Internet Protocol (IP)
  [DAR81]. The structure of the IP and UDP headers is described in the
  relevant specification documents and will not be described further in
  this memorandum. Following is a description of the SNTP message
  format, which follows the IP and UDP headers. The SNTP message format
  is identical to the NTP format described in RFC-1305, with the
  exception that some of the data fields are "canned," that is,
  initialized to prespecified values. The format of the NTP message
  data area, which immediately follows the UDP header, is shown below.






Mills                                                           [Page 3]

RFC 1361                          SNTP                       August 1992


                          1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |LI | VN  |Mode |    Stratum    |     Poll      |   Precision   |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                          Root Delay                           |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                       Root Dispersion                         |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                    Reference Identifier                       |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                   Reference Timestamp (64)                    |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                   Originate Timestamp (64)                    |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                    Receive Timestamp (64)                     |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                    Transmit Timestamp (64)                    |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
     |                                                               |
     |                                                               |
     |                  Authenticator (optional) (96)                |
     |                                                               |
     |                                                               |
     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  As described in the next section, in SNTP most of these fields are
  initialized with prespecified data. For completeness, the function of
  each field is briefly summarized below.

  Leap Indicator (LI): This is a two-bit code warning of an impending
  leap second to be inserted/deleted in the last minute of the current
  day, with bit 0 and bit 1, respectively, coded as follows:

     LI       Value     Meaning
     -------------------------------------------------------
     00       0         no warning
     01       1         last minute has 61 seconds
     10       2         last minute has 59 seconds)
     11       3         alarm condition (clock not synchronized)



Mills                                                           [Page 4]

RFC 1361                          SNTP                       August 1992


  Version Number (VN): This is a three-bit integer indicating the NTP
  version number, currently 3.

  Mode: This is a three-bit integer indicating the mode, with values
  defined as follows:

     Mode     Meaning
     ------------------------------------
     0        reserved
     1        symmetric active
     2        symmetric passive
     3        client
     4        server
     5        broadcast
     6        reserved for NTP control message
     7        reserved for private use

  The use of this field will be discussed in the next section.

  Stratum: This is a eight-bit integer indicating the stratum level of
  the local clock, with values defined as follows:

     Stratum  Meaning
     ----------------------------------------------
     0        unspecified or unavailable
     1        primary reference (e.g., radio clock)
     2-15     secondary reference (via NTP or SNTP)
     16-255   reserved

  Poll Interval: This is an eight-bit signed integer indicating the
  maximum interval between successive messages, in seconds to the
  nearest power of two. The values that normally appear in this field
  range from 6 to 10, inclusive.

  Precision: This is an eight-bit signed integer indicating the
  precision of the local clock, in seconds to the nearest power of two.
  The values that normally appear in this field range from -6 for
  mains-frequency clocks to -18 for microsecond clocks found in some
  workstations.

  Root Delay: This is a 32-bit signed fixed-point number indicating the
  total roundtrip delay to the primary reference source, in seconds
  with fraction point between bits 15 and 16. Note that this variable
  can take on both positive and negative values, depending on the
  relative time and frequency errors. The values that normally appear
  in this field range from negative values of a few milliseconds to
  positive values of several hundred milliseconds.




Mills                                                           [Page 5]

RFC 1361                          SNTP                       August 1992


  Root Dispersion: This is a 32-bit unsigned fixed-point number
  indicating the maximum error relative to the primary reference
  source, in seconds with fraction point between bits 15 and 16. The
  values that normally appear in this field range from zero to several
  hundred milliseconds.

  Reference Clock Identifier: This is a 32-bit code identifying the
  particular reference clock. In the case of stratum 0 (unspecified) or
  stratum 1 (primary reference), this is a four-octet, left-justified,
  zero-padded ASCII string. While not enumerated as part of the NTP
  specification, the following are representative ASCII identifiers:

     Stratum Code  Meaning
     ------------------------------------------------------------
     0   ascii     generic time service other than NTP, such as ACTS
                   (Automated Computer Time Service), TIME (UDP/Time
                   Protocol), TSP (TSP Unix time protocol), DTSS
                   (Digital Time Synchronization Service), etc.
     1   ATOM      calibrated atomic clock
     1   VLF       VLF radio (OMEGA, etc.)
     1   callsign  Generic radio
     1   LORC      LORAN-C radionavigation system
     1   GOES      Geostationary Operational Environmental Satellite
     1   GPS       Global Positioning Service
     2   address   secondary reference (four-octet Internet address of
                   the NTP server)

  Reference Timestamp: This is the local time at which the local clock
  was last set or corrected, in 64-bit timestamp format.

  Originate Timestamp: This is the local time at which the request
  departed the client for the server, in 64-bit timestamp format.

  Receive Timestamp: This is the local time at which the request
  arrived at the server, in 64-bit timestamp format.

  Transmit Timestamp: This is the local time at which the reply
  departed the server for the client, in 64-bit timestamp format.

  Authenticator (optional): When the NTP authentication mechanism is
  implemented, this contains the authenticator information defined in
  Appendix C of RFC-1305. In SNTP this field is ignored for incoming
  messages and is not generated for outgoing messages.








Mills                                                           [Page 6]

RFC 1361                          SNTP                       August 1992


4. SNTP Client Operations

  The model for an SNTP client operating with either an NTP or SNTP
  server is a RPC client with no persistent state. The client
  initializes the SNTP message header, sends the message to the server
  and strips the time of day from the reply. For this purpose all of
  the message-header fields shown above are set to zero, except the
  first octet. In this octet the Leap Indicator is set to zero (no
  warning) and the Mode to 3 (client). The Version Number must agree
  with the software version of the NTP or SNTP server; however, NTP
  Version 3 (RFC-1305) servers will also accept Version 2 (RFC-1119)
  and Version 1 (RFC-1059) messages, while NTP Version 2 servers will
  also accept NTP Version 1 messages. Version 0 (original NTP described
  in RFC-959) messages are no longer supported. Since there are NTP
  servers of all three versions operating in the Internet of today, it
  is recommended that the Version Number field be set to one.

  The server reply includes all the fields described above; however, in
  SNTP only the Transmit Timestamp has explicit meaning. The integer
  part of this field contains the server time of day in the same format
  as the Time Protocol. While the fraction part of this field will
  usually be valid, the accuracy achieved with the SNTP mode of access
  probably does not justify its use.

  The following table is a summary of the SNTP client operations. There
  are three recommended error checks shown in the table. In all NTP
  versions, if the Leap Indicator field is 3 or the Transmit Timestamp
  is zero (unsynchronized), the server has never synchronized or not
  synchronized to a valid timing source within the last 24 hours. If
  the Stratum field is 0 (unspecified or unavailable), the server has
  never synchronized, has lost reachability with all timing sources or
  is synchronized by some protocol other than NTP. Whether to believe
  the transmit timestamp or not in this case is at the discretion of
  the client implementation.

















Mills                                                           [Page 7]

RFC 1361                          SNTP                       August 1992


     Field Name              Request        Reply
     -------------------------------------------------------------
     Leap Indicator (LI)     0              if 3 (unsynchronized),
                                            disregard
     Version Number (VN)     (see text)     ignore
     Mode                    3 (client)     ignore
     Stratum                 0              if 0 (unspecified),
                                            disregard
     Poll                    0              ignore
     Precision               0              ignore
     Root Delay              0              ignore
     Root Dispersion         0              ignore
     Reference Identifier    0              ignore
     Reference Timestamp     0              ignore
     Originate Timestamp     0              ignore
     Receive Timestamp       0              ignore
     Transmit Timestamp      0              time of day (seconds only);
                                            if 0 (unsynchronized),
                                            disregard
     Authenticator           (not used)     ignore

5. SNTP Server Operations

  The model for an SNTP server operating with either an NTP or SNTP
  client is an RPC server with no persistent state. The SNTP server
  ignores all header fields except the first octet, modifies certain
  fields and returns the message to the sender. Since an SNTP server
  ordinarily does not implement the full set of NTP algorithms intended
  to support the highest quality service, it is recommended that an
  SNTP server be operated only in conjunction with a source of outside
  synchronization, such as a radio clock. In this case the server
  always operates at stratum 1.

  The first octet is interpreted as follows. The Leap Indicator and
  Version Number fields are ignored. Optionally, messages with version
  numbers other than 1, 2, or 3 can be discarded. For primary servers
  connected to a functioning radio clock, the Leap Indicator field is
  set to zero and the Stratum field is set to one in the reply.
  otherwise, these fields are set to 3 and zero, respectively. In any
  case the Version Number and Poll fields are copied intact to the
  reply message header. If The Mode field is set to 3 (client), it is
  changed to 4 (server) in the reply; otherwise, this field is set to 2
  (symmetric passive).

  The Stratum field is set to reflect the maximum reading error of the
  local clock. For all practical cases it is computed as the negative
  of the number of significant bits to the right of the decimal point
  in the NTP timestamp format. The Root Delay and Root Dispersion



Mills                                                           [Page 8]

RFC 1361                          SNTP                       August 1992


  fields are set to zero for a primary server; optionally, the Root
  Dispersion can be set to a value corresponding to the expected
  (constant) maximum expected error of the primary reference source.
  The Reference Identifier is set to designate the primary reference
  source, as indicated in the table above. If this information is
  unspecified or unavailable, the field is set to zero.

  The timestamp fields are set as follows. The Reference Timestamp,
  Receive Timestamp and Transmit Timestamp fields are set to the time
  of day at the server. The Originate Timestamp field is copied
  unchanged from the request. The following table summarizes these
  actions.

     Field Name              Request        Reply
     ----------------------------------------------------------
     Leap Indicator (LI)     ignore         0 (normal), 3
                                            (unsynchronized)
     Version Number (VN)     ignore         copied from request
     Mode                    (see text)     (see text)
     Stratum                 ignore         server stratum (1)
     Poll                    ignore         copied from request
     Precision               ignore         server precision
     Root Delay              ignore         0
     Root Dispersion         ignore         0 (see text)
     Reference Identifier    ignore         source identifier or 0
     Reference Timestamp     ignore         time of day or 0
     Originate Timestamp     ignore         copied from request
     Receive Timestamp       ignore         time of day or 0
     Transmit Timestamp      ignore         time of day or 0
     Authenticator           ignore         (not used)

6. References

  [DAR81] Postel, J., "Internet Protocol - DARPA Internet Program
  Protocol Specification", RFC 791, DARPA, September 1981.

  [MIL92] Mills, D., "Network Time Protocol (Version 3) Specification,
  Implementation and Analysis", RFC 1305, University of Delaware,
  March 1992.

  [POS80] Postel, J., "User Datagram Protocol", RFC 768,
  USC/Information Sciences Institute, August 1980.

  [POS83] Postel, J., and K. Harrenstien, "Time Protocol", RFC 868,
  USC/Information Sciences Institute, SRI, May 1983.






Mills                                                           [Page 9]

RFC 1361                          SNTP                       August 1992


Security Considerations

  Security issues are not discussed in this memo.

Author's Address

  David L. Mills
  Electrical Engineering Department
  University of Delaware
  Newark, DE 19716

  Phone: (302) 831-8247

  EMail: [email protected]





































Mills                                                          [Page 10]