Network Working Group                                            A. Katz
Request for Comments: 1314                                      D. Cohen
                                                                    ISI
                                                             April 1992


       A File Format for the Exchange of Images in the Internet

Status of This Memo

  This document specifies an IAB standards track protocol for the
  Internet community, and requests discussion and suggestions for
  improvements.  Please refer to the current edition of the "IAB
  Official Protocol Standards" for the standardization state and status
  of this protocol.  Distribution of this memo is unlimited.

Abstract

  This document defines a standard file format for the exchange of
  fax-like black and white images within the Internet.  It is a product
  of the Network Fax Working Group of the Internet Engineering Task
  Force (IETF).

  The standard is:

       ** The file format should be TIFF-B with multi-page files
          supported.  Images should be encoded as one TIFF strip
          per page.

       ** Images should be compressed using MMR when possible.  Images
          may also be MH or MR compressed or uncompressed.  If MH or MR
          compression is used, scan lines should be "byte-aligned".

       ** For maximum interoperability, image resolutions should
          either be 600, 400, or 300 dpi; or else be one of the
          standard Group 3 fax resolutions (98 or 196 dpi
          vertically and 204 dpi horizontally).

  Note that this specification is self contained and an implementation
  should be possible without recourse to the TIFF references, and that
  only the specific TIFF documents cited are relevant to this
  specification.  Updates to the TIFF documents do not change this
  specification.

  Experimentation with this file format specified here is encouraged.






Katz & Cohen                                                    [Page 1]

RFC 1314                 Image Exchange Format                April 1992


1.  Introduction

  The purpose of this document is to define a standard file format for
  exchange of black and white images using the Internet.  Since many
  organizations have already started to accumulate and exchange scanned
  documents it is important to reach agreement about an interchange
  file format in order to promote and facilitate the exchange and
  distribution of such documents.  These images may originate from
  scanners, software, or facsimile (fax) machines.  They may be
  manipulated by software, communicated, shared, duplicated, displayed,
  printed by laser printers, or faxed.

  This file format provides for the uniform transfer of high quality
  images at a reasonable cost and with reasonable speed whether these
  files are generated by scanners, totally by software (e.g., text-to-
  fax, bitmap-to-fax, OCR, etc), or by fax.  Also the intent of this
  document is to remain compatible with future moves to multi-level
  (i.e., gray-scale), higher resolution, or color images.  The format
  proposed here is supported by both commercially available hardware
  and commercial and public domain software for most popular platforms
  in current use.

  The file format for images is a totally separate issue from how such
  files are to be communicated.  For example, FTP or SMTP could be used
  to move an image file from one host to another, although there are
  complications in the use of SMTP as currently implemented due to file
  size and the need to move binary data.  (There is currently a
  proposal for removing these limitations from SMTP and in particular
  extending it to allow binary data.  See reference [1].)

  One major potential application of the communications format defined
  here is to allow images to be sent to fax machines using the
  Internet.  It is intended that one or more separate companion
  documents will be formulated to address the issues of standardization
  in the areas of protocols for transmitting images through the
  Internet and the issues of addressing fax machines and routing faxes.
  Just as the exchange format is separate from the transmission
  mechanism, it is also separate from how hosts store images.

  This document specifies a common exchange format; it does not require
  a host to store images in the format specified here, only to convert
  between the host's local image storage formats and the exchange
  format defined here for the purpose of exchanging images with other
  hosts across the network.

  This standard specifies the use of TIFF (Tagged Image File Format,
  see below) as a format for exchange of image files.  This is not a
  specific image encoding, but a framework for many encoding



Katz & Cohen                                                    [Page 2]

RFC 1314                 Image Exchange Format                April 1992


  techniques, that can be used within the TIFF framework.  For example,
  within TIFF it is possible to use MMR (the data encoding of CCITT
  Group 4 fax, see below), MH or MR (the data encodings of CCITT Group
  3 fax), or other encoding methods.

  Which encoding technique to use is not specified here.  Instead, with
  time the encoding schemes used by most document providers will emerge
  as the de-facto standard.  Therefore, we do not declare any as "the
  standard data encoding scheme," just as we do not declare that
  English is the standard publication language.  (However, we expect
  that most document providers will use MMR in the immediate future
  because it offers much better compression ratios than MH or MR.)

  Similarly, TIFF does not require that an image be communicated at a
  specific resolution.  Resolution is a parameter in the TIFF
  descriptive header.  We do suggest that images now be sent using one
  of a set of common resolutions in the interests of interoperability,
  but the format accommodates other resolutions that may be required by
  specialized applications or changing technologies.

  Occasionally, image files will have to be converted, such as in the
  case where a document that was scanned at 400 dpi is to be printed on
  a 300 dpi printer.  This conversion could be performed by the
  document provider, by the consumer, or by a third party.  This
  document specifies neither who performs the conversion, nor which
  algorithms should be used to accomplish it.

  Note that this standard does not attempt to define an exchange format
  for all image types that may be transmitted in the Internet.  Nothing
  in this standard precludes it from being used for other image type
  such as gray-scale (e.g., JPEG) or color images but, for the purposes
  of standardization, the scope of this document is restricted to
  monochromatic bitmapped images.

  The developers of this standard recognize that it may have a limited
  lifespan as Office Document Architecture (ODA) matures and comes into
  use in the Internet; ultimately the class of images covered by this
  standard will likely be subsumed by the more general class of images
  supported by the ODA standards.  However, at present, there does not
  appear to be a sufficient installed base of ODA compliant software
  and the ODA standards are not fully mature.  This standard is
  intended to fill the need for a common image transfer format until
  ODA is ready.  Finally, we believe that it should be possible to
  automatically map images encoded in the format specified here into a
  future ODA-based image interchange format, thus providing a
  reasonable transition path to these future standards.





Katz & Cohen                                                    [Page 3]

RFC 1314                 Image Exchange Format                April 1992


2.  Relationship to Fax

  Transmission of facsimile (fax) images over phone lines is becoming
  increasingly widespread.  The standard of most fax machines in the
  U.S.  is CCITT Group 3 (G3), specified in Recommendations T.4 and
  T.30 [2] and in EIA Standards EIA-465 and EIA-466.  G3 faxes are 204
  dots per inch (dpi) horizontally and 98 dpi (196 dpi optionally, in
  fine-detail mode) vertically.  Since G3 neither assumes error free
  transmission nor retransmits when errors occur, the encoding scheme
  used is differential only over small segments never exceeding 2 lines
  at standard resolution or 4 lines for fine-detail.  (The incremental
  G3 encoding scheme is called two-dimensional and the number of lines
  so encoded is specified by a parameter called k.)

  CCITT Group 4 fax (G4) is defined by the T.400 and T.500 series of
  Recommendations as well as Recommendation T.6 [2].  It provides for
  400 dpi (both vertical and horizontal) and is a fully two-dimensional
  encoding scheme (k is infinite) called MMR (Modified Modified READ,
  where READ stands for: Relative Element Address Designate).  G4
  assumes an error free transmission medium (generally an X.25 Public
  Data Network, or PDN).  Because of this, G4 is not in widespread use
  in the U.S. today.

  The traditional fax bundles together four independent issues:

       (1) Data presentation and compression;
       (2) Data transmission;
       (3) Image input from paper ("scanning"); and
       (4) Image output to paper ("printing").

  This bundling supports, for example, the high quality CCITT Group 4
  (G4) images (400x400 dpi) but only over X.25 public data networks
  with error correction,  and similarly it supports the mid-quality
  CCITT Group 3 (204x98 and 204x196 dpi) but only over phone voice
  circuits (the Switched Telephone Network, or STN) without error
  correction.  This bundling does not support the use of any other data
  transmission capabilities (e.g., FTP over LANs and WANs), nor
  asynchrony between the scanning and the printing, nor image storage,
  nor the use of the popular laser printers for output (even though
  they are perfectly capable of doing so).

  In conventional fax, images are never stored.  In today's computer
  network environment, a better model is:

       (1) Images are scanned into files or created by software;
       (2) These image files are stored, manipulated, or communicated;
       (3) Images in a file are printed or displayed.




Katz & Cohen                                                    [Page 4]

RFC 1314                 Image Exchange Format                April 1992


  The only feature of the CCITT fax that should be used is the encoding
  technique (preferably MMR, but with MR or MH allowed) which may be
  implemented with a variety of fax-oriented chips at low cost due to
  the popularity of fax.

  "Sending a fax" means both encoding (and decoding) the fax images as
  well as transmitting the data.  Since the Internet ALREADY provides
  several mechanisms for data transmission (in particular, FTP for
  general file transmission), it is unnecessary to use the data
  transmission methods specified in the CCITT standard.  Within the
  Internet, each fax image should be stored in a file and these files
  could be transferred (e.g., using FTP, SMTP, RPC-based methods,
  etc.).

  Fax machines should be considered just as scanners and printers are,
  as I/O devices between paper and files; but not as a transmission
  means.  Higher quality Group 4 images are thus supported at low cost,
  while enjoying the freedom to use any computerized file transfer and
  duplication mechanism, standard laser printers, multiple printing
  (possibly at multiple remote sites) of the same image without having
  to rescan it physically, and a variety of software for various
  processing of these images, such as OCR and various drawing programs.
  We should be able to interoperate with files created by fax machines,
  scanners, or software and to be able to print all of them on fax
  machines or on laser printers.

  The CCITT Recommendations assume realtime communications between fax
  machines and do not therefore specify any kind of fax file format.
  We propose using TIFF [3] which seems to be emerging as a standard,
  for encapsulation of encoded images.  Because they assume realtime
  communications, the CCITT fax protocols require negotiations to take
  place between the sender and receiver.  For example, they negotiate
  whether to use two-dimensional coding (and with what k parameter) and
  what (if any) padding there is between scan lines.

  In our approach, the image in the file is already compressed in a
  particular manner.  If it is to be sent to an ordinary fax machine
  using a fax board/modem, that board will perform the negotiations
  with the receiving fax machine.  In the cases where the receiver
  cannot handle the type of compression used in the file, it will be
  necessary to convert the image to another compression scheme before
  transmission.  (Most fax cards seem to either store images using the
  default values of the parameters which are negotiated or in a format
  which can quickly be converted to this.  With currently available
  hardware and software, any necessary format conversion should be easy
  to accomplish.)

  In conventional fax, if the compression used for a particular image



Katz & Cohen                                                    [Page 5]

RFC 1314                 Image Exchange Format                April 1992


  is "negative" (i.e., the compressed form is larger than the
  uncompressed form, something that happens quite frequently with
  dithered photographic images), the larger compressed form of the
  image is still sent.  If the images are first scanned into files,
  this problem could be recognized and the smaller, uncompressed file
  sent instead.  (Also, Recommendations T.4 and T.6 [2] allow for an
  "uncompressed mode."  Thus, lines which have negative compression may
  each be sent uncompressed.  However, very few G3 fax machines support
  this mode.)

3.  Image File Format

  Image files should be in the TIFF-B format which is the bi-level
  subclass of TIFF.  TIFF and TIFF-B are described in reference [3],
  cited at the end of this document.  Images should be compressed using
  MMR (the G4 compression scheme) because it offers superior
  compression ratios.  However, images may also be compressed using MH
  or MR (the G3 methods).  MMR offers much better compression ratios
  than these (which are used in G3 fax because of the lack of an
  error-free communications path).

  TIFF-F, described in [4], is the proposed subclass of TIFF-B for fax
  images.  However, since TIFF-F was intended for use with G3, it
  recommends against certain features we recommend.  Specifically, it
  suggests not using MMR or MR compression (we recommend MMR and allow
  MR) and prohibits uncompressed mode (which we allow and suggest for
  some photographic images).  Apart from these, the TIFF-F restrictions
  should be followed.  (Complete compatibility between the format
  specified here and TIFF-F can only be guaranteed for MH compressed
  images.)

       [NOTE: Aldus Corp., the TIFF Developer, considers fax
       applications to be outside the scope of mainstream TIFF
       since it is not a part of general publishing which is
       what TIFF was originally designed for.  They specify the
       LZW [5] compression scheme rather than MMR.  We, however,
       are concerned with the transmission and storage of images
       rather than publishing.  Therefore, we are more concerned
       with compression ratios and compatibility with CCITT fax
       than Aldus is.]

  TIFF itself allows for gray-scale and color images.  Image files
  should be restricted to TIFF-B for now because most of the currently
  available hardware is bi-level (1 bit per pixel).  In the future,
  when gray-scale or color scanners, printers, and fax becomes
  available, the file format suggested here can already accommodate it.
  (For example, though JPEG is not currently a TIFF defined compression
  type, work is currently underway for including it as such.)



Katz & Cohen                                                    [Page 6]

RFC 1314                 Image Exchange Format                April 1992


       [NOTE: In this document, we will use the term "reader"
       or "TIFF reader" to refer to the process or device
       which reads and parses a TIFF file.]

3.A. TIFF File Format

  Figure 1 below (reproduced here from Figure 1 of reference [3])
  depicts the structure of a TIFF file.

  TIFF files start with a file header which specifies the byte order
  used in the file (i.e., Big or Little Endian), the TIFF version
  number, and points to the first "Image File Directory" (IFD).  If the
  first two bytes are hex 4D4D, the byte order is from most to least
  significant for both 16 and 32 bit integers (Big Endian).  If the
  first two bytes are hex 4949, the byte order is from least to most
  significant (Little Endian).  In both formats, character strings are
  stored into sequential bytes and are null terminated.

  The next two bytes (called the TIFF Version) must be 42 (hex 002A).
  This does not refer to the current TIFF revision number.  The
  following 4 bytes contain the offset (in bytes from the beginning of
  the file) to the first IFD.

  An IFD contains a 2 byte count of the number of entries in the IFD, a
  sequence of 12 byte directory entries, and a 4 byte pointer to the
  next IFD.  One of these fields (StripOffsets) points to (parts of) an
  image in the file.  There may be more than one image in the file
  (e.g., a "multi-page" TIFF file) and therefore more then one IFD.
  IFD field entries may appear in any order.

  Each directory entry is 12 bytes and consists of a tag, its type, a
  length, and an offset to its value.  If the value can fit into 4
  bytes (i.e., if the type is BYTE, SHORT, or LONG), the actual value
  rather than an offset is given.  If the value is less than 4 bytes
  (i.e., if the type is BYTE or SHORT), it is left-justified within the
  4 byte value offset.  More details about directory entries and the
  possible tags will be given in Section 3.C.

  All pointers (called offsets in the TIFF reference [3]) are the
  number of bytes from the beginning of the file and are 4 bytes long.
  The first byte of the file has an offset of 0.  In the case of only
  one image per file, there should therefore be only one IFD.  The last
  IFD's pointer to the next IFD is set to hex 00000000 (32 bits).

  The entries in an IFD must be sorted in ascending order by Tag.






Katz & Cohen                                                    [Page 7]

RFC 1314                 Image Exchange Format                April 1992


             Header
       +--------+--------+                     Directory Entry
     0 |        |        | Byte Order        +--------+--------+
       +--------+--------|               X   |        |        | Tag
     2 |        |        | Version(42)       +--------+--------|
       +--------+--------|               X+2 |        |        | Type
     4 |        |        | Offset of         +--------+--------|
       +-     - A -     -+  0th IFD      X+4 |        |        |
     6 |        |        |                   +-               -+ Length
       +--------+--------+                   |        |        |
                |                            +--------+--------+
                |                        X+8 |        |        | Value
                |                            +-     - Y -     -+   or
                V                            |        |        | Value
                                             +--------+--------+ Offset
               IFD
       +--------+--------+                            |
 A     |      - B -      | Entry Count                |
       +--------+--------|                            |
       |        |        |                            V
 A+2                       Entry 0
       |        |        |                   +--------+--------+
       +--------+--------+                   |        |        |
       |        |        |                 Y                     Value
 A+14                      Entry 1           |        |        |
       |        |        |                   +--------+--------|
       +--------+--------+
       |        |        |
 A+26                      Entry 2
       |        |        |
       +--------+--------+
       |        |        |    .
                              .
       |        |        |    .
       +--------+--------+
       |        |        |
                            Entry B-1
       |        |        |
       +--------+--------+
       |        |        |  Offset of
A+2+B*12       - C -      +  Next IFD
       |        |        |
       +--------+--------+
                |
                V
           (next IFD)

                Figure 1: The Structure of a TIFF File



Katz & Cohen                                                    [Page 8]

RFC 1314                 Image Exchange Format                April 1992


3.B. Image Format and Encoding Issues

  Images in TIFF files are organized as horizontal strips for fast
  access to individual rows.  One can specify how many rows there are
  in each strip and all of the strips are the same size (except
  possibly the last one).  Each strip must begin on a byte boundary but
  successive rows are not so required.  For two-dimensional G3
  compression (MR), each strip must begin with an "absolute" one-
  dimensional line.  For MMR (G4) compression, each strip must be
  encoded as if it were a separate image.

  For a variety of reasons, each page must be a single strip (e.g., not
  broken up into multiple strips).

  One problem with multiple strips per page is that images which come
  from G4 fax machines as well as most scanned images will be generated
  as a single strip per page.  These would have to be decoded and re-
  encoded as multiple strips (remember that for MMR compression, each
  strip must be start with a one-dimensionally encoded line).

  Another problem with multiple strips per page arises in MR
  compression.  Here, there MAY be at most k-1 two-dimensionally
  encoded lines following a one-dimensionally encoded line, but this is
  not required.  It is possible to have one-dimensional lines more
  frequently than every k lines.  However, since each strip (except
  possibly the last one) is required to be the same size, it may be
  necessary to re-encode the image to insure that each strip starts
  with a one-dimensional line.  This is not a problem if each page is a
  single strip.

       [NOTE: The TIFF document [3] suggests using strips which
       are about 8K bytes long.  However, TIFF-F [4] recommends
       that each page be a single strip regardless of its size.
       The format specified in this document follows the TIFF-F
       recommendation.]

  Also, as TIFF-F recommends, all G3 encoded images (MH and MR) should
  be "byte-aligned."  This means that extra zero bits (fill bits) are
  added before each EOL (end-of-line) so that every line starts on a
  byte boundary.

  In addition, as in the TIFF-F specification, the RTC (Return to
  Control signal which consists of 6 continuous EOL's) of G3 shall not
  be included at the end of G3 encoded documents.  RTC is to be
  considered part of the G3 transmission protocol and not part of the
  encoding.  Most, if not all, G3 fax modems attach RTC to outgoing
  images and remove it from incoming ones.




Katz & Cohen                                                    [Page 9]

RFC 1314                 Image Exchange Format                April 1992


  For MMR (G4) encoded files, readers should be able to read images
  with only one EOFB (End Of Facsimile Block) at the end of the page
  and should not assume that Facsimile Blocks are of any particular
  size.  (It has been reported that some MMR readers assume that all
  Facsimile Blocks are the maximum size.)

  Systems may optionally choose to store the entire image uncompressed
  if the compression increases the size of the image file.  Also,
  uncompressed mode (specified in Group3Options or Group4Options, see
  below) allows portions of the image to be uncompressed.

  The multi-page capability of TIFF is supported and should be used for
  multi-page documents.  TIFF files which have multiple pages have an
  IFD for each page of the document each of which describes and points
  to a single page image.  (Note: though the current TIFF specification
  does not specifically prohibit having a single IFD point to an image
  which is actually multiple pages, with one strip for each page, most
  if not all TIFF readers would probably not be able to read such a
  file.  Therefore, this should not be done.)

    [A NOTE ON TIFF AND MULTI-PAGE DOCUMENTS:

       Since most publications (e.g., reports, books, and
       magazine articles) are composed of more than a single
       page, multi-page TIFF files should be used where
       appropriate.  However, many current TIFF implementations
       now only handle single-page files.

       It is hoped that in the future, more TIFF implementations
       will handle multi-page files correctly.  In the meantime,
       it would be useful to develop a utility program which
       could join several single-page TIFF files into a single
       multi-page file and also separate a multi-page TIFF file
       into several single page files.

       For example, the utility could take a single TIFF file
       with N pages, called doc.tif, and create the files
       doc.000, doc.001, doc.002, ..., doc.N.  doc.000 would be
       an ASCII listing of the files created.  This naming
       scheme is compatible with that used by the image systems
       we have seen which only handle single page files.

       In going the other way, the N+1 single page files could
       be combined into a single multi-page TIFF file.  In this
       case, if the file doc.000 exists but contains information
       contrary to what is found in looking for the files
       doc.001, doc.002, ..., the program would notify the user.]




Katz & Cohen                                                   [Page 10]

RFC 1314                 Image Exchange Format                April 1992


3.C. TIFF Fields

  TIFF is tag or field based.  The various fields and their format are
  listed in [3].  There are Basic Fields (common to all TIFF files),
  Informational Fields (which provide useful information to a user),
  Facsimile Fields (used here), and Private Fields.

  Each directory entry contains:

      The Tag for the field (2 bytes)

      The field Type (2 bytes)

      The field Length (4 bytes)
          (This is in terms of the data type, not in bytes.  For
           example, a single 16-bit word or SHORT has a Length
           of 1, not 2)

      The Value Offset (4 bytes)
          (Pointer to the actual value, which must begin on a
           word boundary.  Therefore, this offset will always
           be an even number.  If the Value fits into 4 bytes, the
           Value Offset contains the Value instead.  If the Value
           takes less than 4 bytes, it is left justified)


  The allowed types and their codes are:

       1 = BYTE        8-bit unsigned integer (1 byte)

       2 = ASCII       8-bit ASCII terminated with a null (variable
                       length)

       3 = SHORT       16-bit unsigned integer (2 bytes)

       4 = LONG        32-bit unsigned integer (4 bytes)

       5 = RATIONAL    Two LONGs (64 bits) representing the
                       numerator and denominator of a fraction.
                       In this document, RATIONAL's will be written
                       as numerator/denominator. (8 bytes)

  For ASCII, the Length specifies the number of characters and includes
  the null.  It does not, however, include padding if such is
  necessary.

  (Note that ASCII strings of length 3 or less may be stored in the
  Value Offset field instead of being pointed to.)



Katz & Cohen                                                   [Page 11]

RFC 1314                 Image Exchange Format                April 1992


  The following fields should be used in a TIFF image file.  Only the
  Basic Fields are mandatory; the others are optional (except that for
  MH and MR encoded files, the Group3Options Facsimile Field is
  mandatory).  The optional fields have default values which are given
  in the TIFF specification.  (Note that the TIFF reference [3]
  recommends not relying on the default values.)

  Some fields contain one or more flag bits all stored as one value.
  In these cases, the bit labeled 0 is the least significant bit (i.e.,
  Little Endian order).  Where there is more than one suggested value
  for a tag, the possible values are separated by |.

  Note that some fields (such as ImageLength or ImageWidth) can be of
  more than one type.

  It would be useful to develop a TIFF viewer and editor which would
  allow one to read, add, and edit the fields in a TIFF file.  Such an
  editor would display fields in sorted order and force the inclusion
  of all mandatory fields.  Also, resolution and position should always
  be displayed or specified together with their units.

  3.C.1.  Basic Fields (Mandatory)

     Basic Fields are those which are fundamental to the pixel
     architecture or visual characteristics of an image.  The following
     Basic Fields should be included in a TIFF image file:

          FIELD NAME
      (TAG in hex, TYPE)       VALUE           DESCRIPTION
      ------------------       -----           -----------

        BitsPerSample            1             Number of bits
         (0102, SHORT)                         per pixel (bi-level for
                                               now, but may allow
                                               more later)

        Compression              4             Type of Compression
         (0103, SHORT)      (could also be       1 = Uncompressed
                               1 or 3)           3 = G3 (MH or MR)
                                                 4 = G4 (MMR)
                                                Use 4 if possible

        ImageLength       <image's length>     Length of the Image
         (0101, SHORT                             in scan lines
           or LONG)

        ImageWidth         <image's width>     Width of the Image
         (0100, SHORT                             in pixels



Katz & Cohen                                                   [Page 12]

RFC 1314                 Image Exchange Format                April 1992


           or LONG)

        NewSubFileType     0 usually           Flag bits indicating
         (00FE, LONG)       bit 0: 1 if           the kind of image.
                             reduced           (see the TIFF
                             resolution of        reference [3])
                             another image
                            bit 1: 1 if
                             single page of a
                             multi-page image
                            bit 2: 1 if
                             image defines a
                             transparency
                             mask

        Photometric-       0 for positive
          Interpretation    image (0 imaged
         (0106, SHORT)      as white, 1 as
                            black)
                           1 means reverse
                            black and white

        RowsPerStrip    <Number of Rows>       Number of Rows in
         (0116, SHORT                          Each Strip.  Each
          or LONG)                             page should be a
                                               single strip.

        SamplesPerPixel          1             (since are Bi-level
         (0115, SHORT)                          images)

        StripByteCounts    count1, count2...   Number of Bytes in
         (0117, SHORTs                          each strip of the
           or LONGs)                            images.  (The Value
                                                is an offset which
                                                points to a series
                                                of counts, each of
                                                which is the same
                                                Type, LONG or SHORT.
                                                The Length is the
                                                same as the number
                                                of strips.)

        StripOffsets       off1, off2,...      Pointers to the strips
         (0111, SHORTs                          of the image (remember,
           or LONGs)                            one strip per page).
                                                (The Value is an offset
                                                 which points to a
                                                 series of offsets,



Katz & Cohen                                                   [Page 13]

RFC 1314                 Image Exchange Format                April 1992


                                                 each of which points
                                                 to the actual image
                                                 data for the strip.)

        ResolutionUnit         2 | 3           Units of Resolution
         (0128, SHORT)      See Below, 3.C.6     2: Inches
                                                 3: Centimeters

        XResolution        See Below, 3.C.6    Resolution in the X
         (011A, RATIONAL)                       direction in pixels
                                                per ResolutionUnit
                                                (we suggest 400 dots
                                                per inch when possible)

        YResolution        See Below, 3.C.6    Resolution in the Y
         (011B, RATIONAL)                        direction in pixels
                                                per ResolutionUnit
                                                (we suggest 400 dots
                                                per inch when possible)

  3.C.2.  Informational Fields (Optional)

     The following Informational Fields are optional.  They provide
     useful information to a user.  All Field values are ASCII strings.

      NAME (TAG in hex)                DESCRIPTION
      ----------------                 -----------

        Artist (013B)           Person Who Created the Image

        DateTime (0132)         Date and Time of Image Creation

        HostComputer (013C)     Name of Computer Image was Created On

        ImageDescription        A Short Text Description
          (010E)

        Make (010F)             Manufacturer of Hardware (Scanner) Used

        Model (0110)            Model Number of Hardware (Scanner) Used

        Software (0131)         Software Package that Created the Image

  3.C.3.  Facsimile Fields (Optional, Mandatory for G3 Compression)

     In addition to the above, the Facsimile Fields below should be
     used.  The TIFF document recommends that they not be used for
     interchange between applications, but they are now in wide enough



Katz & Cohen                                                   [Page 14]

RFC 1314                 Image Exchange Format                April 1992


     use for just that.  These fields are optional and default to 0
     (all bits off).

          FIELD NAME
      (TAG in hex, TYPE)       VALUE               DESCRIPTION
      ------------------       -----               -----------

        Group3Options      bit 0: 1 for         Flag bits indicating
         (0124, LONG)       2-dimensional       Options for G3
                            coding
                             (i.e., MR with
                              k > 1)
                           bit 1: 1 if
                            uncompressed
                            mode MAY be used,
                            0 if uncompressed
                            mode IS NOT used.
                           bit 2: 1 if fill     (As allowed by the G3
                            bits have been       protocol, fill bits
                            added                may be added between
                                                 each line of data
                                                 and the EOL.  Since
                                                 fill bits are used to
                                                 "byte-align" G3 image
                                                 files, bit 2 should be
                                                 set to 1 for these
                                                 images.)


        Group4Options      bit 0: unused        Flag bits indicating
         (0125, LONG)      bit 1: 1 if          Options for G4
                            uncompressed
                            mode MAY be used,
                            if this bit is 0
                            it means that
                            uncompressed mode
                            IS NOT used.

  3.C.4.  Storage and Retrieval Fields (Optional)

     The following fields are optional and may be useful for document
     storage and retrieval.









Katz & Cohen                                                   [Page 15]

RFC 1314                 Image Exchange Format                April 1992


          FIELD NAME
      (TAG in hex, TYPE)                DESCRIPTION
      ------------------                -----------

        DocumentName               Name of the Document
         (010D, ASCII)

        PageName                   Name of the Page
         (011D, ASCII)

        PageNumber                 Page Number in a Multi-Page Document
         (0129, SHORTs)             Two SHORT Values are specified, the
                                    first is the page number and the
                                    second is the total number of pages
                                    in the document.  The first page
                                    is page 0.  (NOTE:  This does not
                                    necessarily correspond to page
                                    numbers which may be printed
                                    in the image.)

        XPosition                  X Offset of the Left Side of
         (011E, RATIONAL)          the Image, in ResolutionUnits

        YPosition                  Y Offset of the Top of
         (011F, RATIONAL)          the Image, in ResolutionUnits

  3.C.5.  TIFF-F Fields (NOT Recommended)

     TIFF-F defines the following new fields for G3 (MH) encoded
     images.  Since these fields are not defined in TIFF-B itself,
     their use is not recommended.  However, since TIFF-F files may
     include these tags for image data which came from a G3 fax
     machine, readers should be prepared for them.

     These three fields deal with corrupted image data which is due to
     the fact that G3 devices may not perform error correction on bad
     data.

          FIELD NAME
      (TAG in hex, TYPE)                DESCRIPTION
      ------------------                -----------

        BadFaxLines                Number of Bad fax scan lines
         (0146, SHORT or LONG)     encountered during fax reception
                                   (but not necessarily in the file)

        CleanFaxData               0 means no bad lines received
         (0147, SHORT)             1 means bad lines were regenerated



Katz & Cohen                                                   [Page 16]

RFC 1314                 Image Exchange Format                April 1992


                                       by the receiving device
                                   2 means bad lines were detected
                                       but not regenerated

       ConsecutiveBadFaxLines      The maximum number of consecutive
         (0148, SHORT or LONG)     bad fax lines (but not necessarily
                                   in the file)

  3.C.6.  More on Representing Resolutions

     The tags XResolution and YResolution are both RATIONALs, i.e., the
     ratio of two LONGS.  G3 fax resolutions are actually specified in
     dots (or lines) per mm while G4 is in dots per inch (actually,
     dots per 25.4 mm).

     For example, G3 horizontal resolution is defined to be 1728 dots
     per 215 mm which comes out to 80.4 dots per cm or about 203 dots
     per inch.  It is frequently referred to as just 200 dpi.  To avoid
     any possibility of problems due to round off error, this should be
     represented by having XResolution = 17280/215 and ResolutionUnit =
     3 (cm).  However when reading, 204/1 or even 200/1 with
     ResolutionUnit = 2 (inches) should be recognized as representing
     the same resolution.

     For G4, on the other hand, the resolution 400 dots/inch should be
     represented by an XResolution of 400/1 and ResolutionUnit = 2.

     The following table shows various ways of representing the
     standard resolutions in order of preference:


                  ResolutionUnit    XResolution       YResolution
                  --------------    -----------       -----------

       G3 normal       3             17280/215         3850/100
                       3                80/1           3850/100
                       3             17280/215          385/10
                       3                80/1            385/10
                       2              2042/10          9779/100
                       2               204/1             98/1
                       2               200/1            100/1

       G3 fine         3             17280/215           77/1
                       3                80/1             77/1
                       2              2042/10         19558/100
                       2               204/1            196/1
                       2               200/1            200/1




Katz & Cohen                                                   [Page 17]

RFC 1314                 Image Exchange Format                April 1992


       G4 200 dpi      2               200/1            200/1

       G4 300 dpi      2               300/1            300/1

       Other 300 dpi   2               300/1            300/1

       G4 400 dpi      2               400/1            400/1

       600 dpi         2               600/1            600/1

     It is suggested that Image readers be able to handle all of the
     above representations.

4.  A Sample TIFF Image File

  Below is a sample of what might be in a TIFF file for an MMR (G4)
  encoded single image which is about 100K bytes compressed at 400 dpi.
  A generic outline is given first, followed by a more detailed hex
  listing.

4.A. Sample File

  Comments are to the right and are preceded by a semicolon.  Note that
  tags must be sorted in order of the tag codes.

  0:, IFDADDR:, and STRIP0: are addresses within the file and denote
  the number of bytes from the beginning of the file.

  Header:

   0:  Byte Order=     hex 4D4D        ;first bytes of the file, from
                                       ;most significant bit to least
                                       ;significant (big endian)
       Version=        42 (hex 002A)   ;Must be 42
       First IFD=      IFDADDR         ;Address of first (and only) IFD

  Image File Directory (the only one in this example):

  IFDADDR:

       IFD Entry Count=      24        ;(NOT A TAG) Count of
                                       ; Number of IFD Entries


       NewSubFileType=        0
       ImageWidth=         3400        ;8.5 inches at 400 dpi
       ImageLength=        4400        ;11 inches at 400 dpi
       BitsPerSample=         1        ;Bi-Level



Katz & Cohen                                                   [Page 18]

RFC 1314                 Image Exchange Format                April 1992


       Compression=           4        ;MMR
       Photometric-
          Interpretation=     0
       DocumentName=       "LAMap1"
       ImageDescription=   "A map of Los Angeles"
       Make=               "Fujitsu"
       Model=              "M3093E"
       StripOffsets=       <STRIP0>    ;There is only one strip in
                                       ;this example.  However, note
                                       ;that strips can be in any
                                       ;order.  (Offsets are from the
                                       ;beginning of the TIFF file.)

       SamplesPerPixel=       1        ;Bi-Level
       RowsPerStrip=       4400        ;Entire image in 1 strip
       StripByteCounts=    <COUNT0>    ;Byte count of entire
                                       ;compressed image

       XResolution=        400/1
       YResolution=        400/1
       XPosition=            0/1       ;position of left side of image
       YPosition=            0/1       ;position of top of image
       Group4Options=    hex 00000002  ;bit 1 on means uncompressed
                                       ;mode MAY be used

       ResolutionUnit=        2        ;Inches
       Software=           "Xionics"
       DateTime=           "1990:10:05 15:00:00"
       Artist=             "Joe Pro"
       HostComputer=       "Tardis.Isi.Edu"

       Next IFD Pointer=  hex 00000000 ;(NOT A TAG) Indicates no
                                       ; more IFDs in this file

   Image Data:

   <STRIP0>:       <actual compressed image data>

   [end of TIFF file]

  In this example there is only one strip.  Note that if there were
  more than one, the TIFF specification does not require them to be in
  any particular order.  Strips may be given in any order and TIFF
  readers must use the StripOffsets to locate them.

  Also, the TIFF document recommends not relying on the default values
  of the tags.




Katz & Cohen                                                   [Page 19]

RFC 1314                 Image Exchange Format                April 1992


4.B. Detailed Hex Listing

  All offsets and values are represented by hex except for ASCII
  strings which are double quoted.  Remember that Value Offsets must
  always be an even number since the value it points to must always be
  on a 16-bit word boundary.

  Entries in the Name column are for reference and are not actually a
  part of the TIFF file.

  Offset      Name                  Value
  ----        -------------------   -------------------------------------
 Header (first byte is Offset 0):
  0000        Byte Order             4D4D
  0002        Version                002A
  0004        1st. IFD pointer       00000010

 IFD (IFDADDR from above is 0010 here):
  0010        Entry Count            0018
  0012        NewSubFileType         00FE   0004   00000001  00000000
  001E        ImageWidth             0100   0004   00000001  00000D48
  002A        ImageLength            0101   0004   00000001  00001130
  0036        BitsPerSample          0102   0003   00000001  00010000
  0042        Compression            0103   0003   00000001  00040000
  004E        Photometric Interp.    0106   0003   00000001  00000000
  005A        DocumentName           010D   0002   00000007  00000136
  0066        ImageDescription       010E   0002   00000015  0000013E
  0072        Make                   010F   0002   00000008  00000154
  007E        Model                  0110   0002   00000007  0000015C
  008A        StripOffsets           0111   0004   00000001  000001A8
  0096        SamplesPerPixel        0115   0003   00000001  00010000
  00A2        RowsPerStrip           0116   0004   00000001  00001130
  00AE        StripByteCounts        0117   0004   00000001  <COUNT0>
  00BA        XResolution            011A   0005   00000001  00000164
  00C6        YResolution            011B   0005   00000001  00000164
  00D2        XPosition              011E   0005   00000001  0000016C
  00DE        YPosition              011F   0005   00000001  0000016C
  00EA        Group4Options          0125   0004   00000001  00000002
  00F6        ResolutionUnit         0128   0003   00000001  00020000
  0102        Software               0131   0002   00000008  00000174
  010E        DateTime               0132   0002   00000014  0000017C
  011A        Artist                 013B   0002   00000008  00000190
  0126        HostComputer           013C   0002   0000000F  00000198
  0132        Next IFD Pointer       00000000

 Fields Offsets Point to:
  0136        DocumentName          "LAMap1"
  013E        ImageDescription      "A map of Los Angeles"



Katz & Cohen                                                   [Page 20]

RFC 1314                 Image Exchange Format                April 1992


  0154        Make                  "Fujitsu"
  015C        Model                 "M3093E"
  0164        X,Y Resolution        00000190 00000001
  016C        X,Y Position          00000000 00000001
  0174        Software              "Xionics"
  017C        DateTime              "1990:10:05 15:00:00"
  0190        Artist                "Joe Pro"
  0198        HostComputer          "Tardis.Isi.Edu"

 Image Data (<STRIP0> from above is here 01A8)
  01A8        Compressed Data for single strip, of length <COUNT0> bytes

   [end of TIFF file]

NOTE:  Since in this example there is only a single strip, there is only
      one count for StripByteCounts and one offset for StripOffsets.
      Thus, each of these only takes 4 bytes and will fit in the
      Value Offset instead of being pointed to.

5.  Conclusions

  Bitmapped images transferred within the Internet should be in the
  following format:

       1. The file format should be TIFF-B with multi-page files
          supported.  Images should be encoded as one TIFF strip
          per page.

       2. Images should be compressed using MMR when possible.  Images
          may also be MH or MR compressed or uncompressed.  If MH or MR
          compression is used, scan lines should be "byte-aligned".

       3. For maximum interoperability, image resolutions should
          either be 600, 400, or 300 dpi; or else be one of the
          standard Group 3 fax resolutions (98 or 196 dpi
          vertically and 204 dpi horizontally).

  Note that this specification is self contained and an implementation
  should be possible without recourse to the TIFF references, and that
  only the specific TIFF documents cited are relevant to this
  specification.  Updates to the TIFF documents do not change this
  specification.

  Existing commercial off-the-shelf products are available which can
  handle images in the above format.  ISI would be delighted to help
  those interested in assembling a system.





Katz & Cohen                                                   [Page 21]

RFC 1314                 Image Exchange Format                April 1992


6.  Acknowledgments

  Many contributions to this work were made by members of the IETF
  Network Fax Working Group especially by its chairman, Mark Needleman
  and by Clifford Lynch of the University of California Office of the
  President, Library Automation.  Also, Kiyo Inaba of Ricoh Co. Ltd.
  made a number of helpful suggestions.

7.  References

  [1] Borenstein, N., and N. Freed, "Mechanisms for Specifying and
      Describing the Format of Internet Message Bodies", RFC in
      preparation.

  [2] International Telegraph and Telephone Consultative Committee
      (CCITT), Red Book, October, 1984.

  [3] Aldus Corp., Microsoft Corp., "Tag Image File Format
      Specification", Revision 5.0, Final, 1988.

  [4] Cygnet Corporation, "The Spirit of TIFF Class F, 1990", available
      from Cygnet Technologies, 2560 9th., Suite 220, Berkeley, CA
      94710, FAX: (415) 540-5835.

  [5] Welch, T., "A Technique for High Performance Data Compression",
      IEEE Computer, Vol. 17, No. 6, Page 8, June 1984.

8.  Security Considerations

  While security issues are not directly addressed by this document, it
  is important to note that the file format described in this document
  is intended for the communications of files between systems and
  across networks. Thus the same precautions and cares should be
  applied to these files as would be to any files received from remote
  and possibly unknown systems.
















Katz & Cohen                                                   [Page 22]

RFC 1314                 Image Exchange Format                April 1992


9.  Authors' Addresses

  Alan Katz
  USC Information Sciences Institute
  4676 Admiralty Way #1100
  Marina Del Rey, CA  90292-6695

  Phone: 310-822-1511
  Fax:  310-823-6714
  EMail: [email protected]

  Danny Cohen
  USC Information Sciences Institute
  4676 Admiralty Way #1100
  Marina Del Rey, CA  90292-6695

  Phone: 310-822-1511
  Fax:  310-823-6714
  EMail: [email protected]
































Katz & Cohen                                                   [Page 23]