Network Working Group                                          D. Provan
Request for Comments: 1201                                  Novell, Inc.
Obsoletes:  RFC 1051                                       February 1991


             Transmitting IP Traffic over ARCNET Networks

Status of this Memo

  This memo defines a protocol for the transmission of IP and ARP
  packets over the ARCnet Local Area Network.  This RFC specifies an
  IAB standards track protocol for the Internet community, and requests
  discussion and suggestions for improvements.  Please refer to the
  current edition of the "IAB Official Protocol Standards" for the
  standardization state and status of this protocol.  Distribution of
  this memo is unlimited.

1.  Introduction

  This memo specifies a method of encapsulating Internet Protocol (IP)
  [1] and Address Resolution Protocol (ARP) [2] datagrams for
  transmission across ARCNET [3] using the "ARCNET Packet Header
  Definition Standard" [4].  This memo offers a replacement for RFC
  1051.  RFC 1051 uses an ARCNET framing protocol which limits
  unfragmented IP packets to 508 octets [5].

2.  ARCNET Packet Format

  In 1989, Apple Computers, Novell, ACTINET Systems, Standard
  Microsystems, and Pure Data Research agreed to use the ARCNET
  datalink protocol defined in "ARCNET Packet Header Definition
  Standard" [4].  We'll begin with a brief description of that
  protocol.

2.1.  ARCNET Framing

  ARCNET hardware supports two types of frames: short frames, which are
  always 256 octets long, and long frames, which are always 512 octets
  long.  All frames begin with a hardware header and end with the
  client's data preceded by a software header.  Software places padding
  in the middle of the packet between the hardware header and the
  software header to make the frame the appropriate fixed length.
  Unbeknown to the software, the hardware removes this padding during
  transmission.

  Short frames can hold from 0 to 249 octets of client data.  Long
  frames can hold from 253 to 504 octets of client data.  To handle
  frames with 250, 251, or 252 octets of data, the datalink protocol



Provan                                                          [Page 1]

RFC 1201                      IP on ARCNET                 February 1991


  introduces a third frame type: the exception frame.

  These three frame formats are shown here.  Except as noted, each
  block represents one octet.


      Short Frame             Long Frame          Exception Frame

   +---------------+      +---------------+      +---------------+
   |     source    |      |     source    |      |     source    |
   +---------------+      +---------------+      +---------------+
   |  destination  |      |  destination  |      |  destination  |
   +---------------+      +---------------+      +---------------+
   |     offset    |      |       0       |      |       0       |
   +---------------+      +---------------+      +---------------+
   .     unused    .      |     offset    |      |     offset    |
   .  (offset - 3  .      +---------------+      +---------------+
   .     octets)   .      .     unused    .      .     unused    .
   +---------------+      .  (offset - 4  .      .  (offset - 4  .
   |  protocol ID  |      .     octets)   .      .     octets)   .
   +---------------+      +---------------+      +---------------+
   |  split flag   |      |  protocol ID  |      |  protocol ID  |
   +---------------+      +---------------+      +---------------+
   |   sequence    |      |  split flag   |      | flag: FF hex  |
   +    number     +      +---------------+      +---------------+
   |  (2 octets)   |      |   sequence    |      | padding: 0xFF |
   +---------------+      +    number     +      +---------------+
   .               .      |  (2 octets)   |      | padding: 0xFF |
   .  client data  .      +---------------+      +---------------+
   . (256 - offset .      .               .      | (protocol ID) |
   .   - 4 octets) .      .               .      +---------------+
   .               .      .               .      |  split flag   |
   +---------------+      .               .      +---------------+
                          .               .      |   sequence    |
                          .  client data  .      +    number     +
                          . (512 - offset .      |  (2 octets)   |
                          .   - 4 octets) .      +---------------+
                          .               .      .               .
                          .               .      .  client data  .
                          .               .      . (512 - offset .
                          .               .      .   - 8 octets) .
                          .               .      .               .
                          +---------------+      +---------------+

     These packet formats are presented as software would see them
     through ARCNET hardware.  [3] refers to this as the "buffer
     format".  The actual format of packets on the wire is a little
     different: the destination ID is duplicated, the padding between



Provan                                                          [Page 2]

RFC 1201                      IP on ARCNET                 February 1991


     the offset field and the protocol ID field is not transmitted, and
     there's some hardware framing information.  In addition, the
     hardware transmits special packets for buffer allocation and
     reception acknowledgement which are not described here [3].

2.2.  Datalink Layer Fragmentation

  ARCNET hardware limits individual frames to 512 octets, which allows
  504 octets of client data.  This ARCNET datalink protocol allows the
  datalink layer to break packets into as many as 120 fragments for
  transmission.  This allows ARCNET clients to transmit up to 60,480
  octets in each packet.

  The "split flag" describes datalink layer packet fragments.  There
  are three cases: an unfragmented packet, the first fragment of a
  fragmented packet, and any other fragment of a fragmented packet.

  Unfragmented packets always have a split flag of zero.

  The first fragment of a fragmented packet has a split flag equal to
  ((T-2)*2)+1, where T is the total number of fragments to expect for
  the packet.

  Subsequent fragments of a fragmented packet have a split flag equal
  to ((N-1)*2), where N is the number of this fragment.  For example,
  the fourth fragment of a packet will always have the split flag value
  of six ( (4-1)*2 ).

  The receiving station can identify the last fragment of a packet
  because the value of its 8-bit split flag will be one greater than
  the split flag of the first fragment of the packet.

     A previous version of this ARCNET datalink protocol definition
     only allowed packets which could be contained in two fragments.
     In this older standard, the only legal split flags were 0, 1, and
     2.  Compatibility with this older standard can be maintained by
     configuring the maximum client data length to 1008 octets.

  No more that 120 fragments are allowed.  The highest legal split flag
  value is EE hex.  (Notice that the split flag value FF hex is used to
  flag exception packets in what would otherwise be a long packet's
  split flag field.)

  All fragments of a single packet carry the same sequence number.

2.3.  Datalink Layer Reassembly

  The previous section provides enough information to implement



Provan                                                          [Page 3]

RFC 1201                      IP on ARCNET                 February 1991


  datalink reassembly.  To avoid buffer allocation problems during
  reassembly, we recommend allocating enough space for the entire
  reassembled packet when the first fragment arrives.

  Since fragments are sent in order, the reassembly procedure can give
  up on a packet if it receives a fragment out of order.  There is one
  exception, however.  It is possible for successfully received
  fragments to be retransmitted.  Reassembly software should ignore
  repetitious fragments without giving up on the packet.

  Since fragments will be sent briskly, the reassembly procedure can
  give up on a partially reassembled packet if no additional fragments
  for it arrive within a few seconds.

2.4.  Datalink Layer Retransmission

  For each unicast ARCNET packet, the hardware indicates to the sender
  whether or not the receiver acknowledged the packet.  To improve
  reliability, datalink implementations are encouraged to retransmit
  unacknowledged packets or packet fragments.  Several retransmissions
  may be necessary.  Broadcast packets, however, are never acknowledged
  and, therefore, they should never be retransmitted.

  Packets which are successfully received may not be successfully
  acknowledged.  Consequently, retransmission by the datalink
  implementation can cause duplicate packets or duplicate fragments.
  Duplicate packets are not a problem for IP or ARP.  As mentioned in
  the previous section, ARCNET reassembly support should ignore any
  redundant fragments.

3.  Transmitting IP and ARP Datagrams

  IP and ARP datagrams are carried in the client data area of ARCNET
  packets.  Datalink support places each datagram in an appropriate
  size ARCNET frame, fragmenting IP datagrams larger than 504 octets
  into multiple frames as described in the previous section.

4.  IP Address Mappings

  This section explains how each of the three basic 32-bit internet
  address types are mapped to 8-bit ARCNET addresses.

4.1.  Unicast Addresses

  A unicast IP address is mapped to an 8-bit ARCNET address using ARP
  as specified in [2].  A later section covers the specific values
  which should be used in ARP packets sent on ARCNET networks.




Provan                                                          [Page 4]

RFC 1201                      IP on ARCNET                 February 1991


     It is possible to assign IP addresses such that the last eight
     bits are the same as the 8-bit ARCNET address.  This would allow
     direct mapping of IP address to ARCNET address without using a
     discovery protocol.  Some implementations might provide this as an
     option, but it is not recommended practice.  Although such hard-
     wired mapping is initially appealing, experience shows that ARP is
     a much more flexible and convenient approach which has a very
     small cost.

4.2.  Broadcast Addresses

  All IP broadcast addresses must be mapped to the ARCNET broadcast
  address of 0.

     Unlike unicast packets, ARCNET does not attempt to insure delivery
     of broadcast packets, so they may be lost.  This will not have a
     major impact on IP since neither IP nor ARP expect all packets to
     be delivered.

4.3.  Multicast Addresses

  Since ARCNET provides no support for multicasts, all IP multicast
  addresses must be mapped to the ARCNET broadcast address of 0.

5.  ARP

  The hardware address length is 1 octet for ARP packets sent over
  ARCNET networks.  The ARP hardware type for ARCNET is 7.  ARP request
  packets are broadcast by directing them to ARCNET broadcast address,
  which is 0.

6.  RARP

  Reverse Address Resolution Protocol [6] packets can also be
  transmitted over ARCNET.  For the purposes of datalink transmission
  and reception, RARP is identical to ARP and can be handled the same
  way.  There are a few differences to notice, however, between RARP
  when running over ARCNET, which has a one octet hardware address, and
  Ethernet, which has a six octet hardware address.

  First, there are only 255 different hardware addresses for any given
  ARCNET while there's an very large number of possible Ethernet
  addresses.  Second, ARCNET hardware addresses are more likely to be
  duplicated on different ARCNET networks; Ethernet hardware addresses
  will normally be globally unique.  Third, an ARCNET hardware address
  is not as constant as an Ethernet address:  ARCNET hardware addresses
  are set by switches, not fixed in ROM as they are on Ethernet.




Provan                                                          [Page 5]

RFC 1201                      IP on ARCNET                 February 1991


7.  Maximum Transmission Unit

  The maximum IP packet length possible using this encapsulation method
  is 60,480 octets.  Since this length is impractical, all ARCNET
  implementations on a given ARCNET network will need to agree on a
  smaller value.  Therefore, the maximum packet size MUST be
  configurable in implementations of this specification.

  In any case, implementations must be able to send and receive IP
  datagrams up to 576 octets in length, and are strongly encouraged to
  handle IP datagrams up to 1500 octets in length.

  Implementations may accept arriving IP datagrams which are larger
  than their configured maximum transmission unit.  They are not
  required to discard such datagrams.

  To minimize the amount of ARCNET fragmentation, implementations may
  want to aim at an optimum IP packet size of 504 bytes.  This avoids
  the overhead of datalink fragmentation, but at the expense of
  increasing the number of IP packets which must be handled by each
  node in the path.  In addition to encouraging local applications to
  generate smaller packets, an implementation might also use the TCP
  maximum segment size option to indicate a desire for 464 octet TCP
  segments [7], or it might  announce an IP MTU of 504 octets through
  an MTU discovery mechanism such as [8].  These would inform non-
  ARCNET nodes of the smaller optimum packet size.

8.  Assigned Numbers

  Datapoint Corporation assigns ARCNET protocol IDs to identify
  different protocols running on the same ARCNET medium.  For
  implementations of this specification, Datapoint has assigned 212
  decimal to IP, 213 decimal to ARP, and 214 decimal to RARP.  These
  are not the numbers assigned to the IP encapsulation defined by RFC
  1051 [5].  Implementations of RFC 1051 can exist on the same ARCNET
  as implementations of this specification, although the two would not
  be able to communicate with each other.

  The Internet Assigned Numbers Authority (IANA) assigns ARP hardware
  type values.  It has assigned ARCNET the ARP hardware type of 7 [9].

Acknowledgements

  Several people have reviewed this specification and provided useful
  input.  I'd like to thank Wesley Hardell at Datapoint and Troy Thomas
  at Novell's Provo office for helping me figure out ARCNET.  In
  addition, I particularly appreciate the effort by James VanBokkelen
  at FTP Software who picked on me until all the fuzzy edges were



Provan                                                          [Page 6]

RFC 1201                      IP on ARCNET                 February 1991


  smoothed out.

  The pioneering work in transmitting IP traffic on ARCNET networks was
  done by Philippe Prindeville.

References

  [1] Postel, J., "Internet Protocol", RFC 791, DARPA, September 1981.

  [2] Plummer, D., "An Ethernet Address Resolution Protocol", RFC 826,
      MIT, November 1982.

  [3] Datapoint, Corp., "ARCNET Designer's Handbook", Document Number
      61610, 2nd Edition, Datapoint Corporation, 1988.

  [4] Novell, Inc., "ARCNET Packet Header Definition Standard", Novell,
      Inc., November 1989.

  [5] Prindeville, P., "A Standard for the Transmission of IP Datagrams
      and ARP Packets over ARCNET Networks", RFC 1051, McGill
      University, March 1988.

  [6] Finlayson, R., Mann, T., Mogul, J., and M. Theimer, "A Reverse
      Address Resolution Protocol", RFC 903, Stanford, June 1984.

  [7] Postel, J., "Transmission Control Protocol", RFC 793, DARPA,
      September 1981.

  [8] Mogul, J., Kent, C., Partridge, C., and K. McCloghrie, "IP MTU
      Discovery Options", RFC 1063, DEC, BBN, TWG, July 1988.

  [9] Reynolds, J., and J. Postel, "Assigned Numbers", RFC 1060,
      USC/Information Sciences Institute, March 1990.

Security Considerations

  Security issues are not discussed in this memo.

Author's Address

  Don Provan
  Novell, Inc.
  2180 Fortune Drive
  San Jose, California, 95131

  Phone: (408) 473-8440
  EMail: [email protected]




Provan                                                          [Page 7]