Network Working Group                                       J. Crowcroft
Request for Comments:  1165                                          UCL
                                                              J. Onions
                                                  Nottingham University
                                                              June 1990



               Network Time Protocol (NTP) over the OSI
                      Remote Operations Service

Status of this Memo

  This memo suggests an Experimental Protocol for the OSI and Internet
  communities.  Hosts in either community, and in particular those on
  both are encouraged to experiment with this mechanism.  Please refer
  to the current edition of the "IAB Official Protocol Standards" for
  the standardization state and status of this protocol.  Distribution
  of this memo is unlimited.

Table of Contents

  1. Introduction...........................................    1
  1.1 Motivation............................................    1
  2. Protocol Overview......................................    2
  3. Operation of the Protocol..............................    3
  4. Network Considerations.................................    4
  5. Implementation Model...................................    4
  6. Constructing NTP Data Fields...........................    4
  7. Discussion.............................................    4
  8. Prototype Experience...................................    5
  9. References.............................................    5
  10. Acknowledgements......................................    6
  Appendix A. NTP Remote Operations Service Specification...    6
  11. Security Considerations...............................    9
  12. Authors' Addresses....................................    9

1.  Introduction

  This document describes the Remote Operations and Abstract Syntax for
  the operation of the Network Time Protocol (NTP) over an ISO OSI
  stack.

  NTP itself is documented in great detail in RFC 1119.

1.1  Motivation

  The motivation behind the implementation of a Remote Operations



Crowcroft & Onions                                              [Page 1]

RFC 1165                      NTP over OSI                     June 1990


  Service implementation of NTP is fourfold.

     1.  The inclusion of a useful service to an OSI
         environment.

     2.  The feasibility of automatically checking a ROS/ASN.1
         specification, and automatically generating code to
         implement the protocol.

     3.  The feasibility of running NTP on connection oriented
         network services (CONS or X.25), and consequentially,
         the ability to use connection success or failure to
         optimise reachability discovery.

     4.  The generalisation of the last point: the use of ROS
         makes NTP independent of the underlying communications
         architecture.

  The need for time synchronisation is clear, and RFC 1119 indicates a
  few of the necessary uses of this service.  However, it is becoming
  clear that OSI applications are very much in need of this service
  too.  Not just in the local context but across the wide area.  For
  example much of the strong authentication outlined in X.511 is based
  on encrypted packets with time stamps to indicate how long the packet
  is valid for.  If two hosts have clocks that are not closely
  synchronised, the host with the faster clock will be more prone to
  cryptographic attacks from the slower, and the slower host will
  possibly find it is unauthentable.

  A similar problem occurs with the X.500 directory and the service
  control limiting the time allowed for the search.

  Authentication between NTP peers and between clients and servers is
  not addressed here, as the choice of mechanism is still the subject
  of some debate.

2.  Protocol Overview

  The NTP application functions exactly as in RFC 1119.  The use of
  remote operations and the underlying Application support means that
  for NTP daemons to peer with one another, they send an A-
  ASSOCIATE.REQUEST, and receive an A-ASSOCIATE.INDICATION.

  On successful association, they subsequently periodically invoke the
  appropriate Remote Operation with the appropriate parameters at the
  appropriate frequency.

  On failure, they mark the peer as unreachable.



Crowcroft & Onions                                              [Page 2]

RFC 1165                      NTP over OSI                     June 1990


  The states that an ntp daemon records for each peer are enhanced from
  RFC 1119 to include:

     Connected: this indicates the host is connected with its peer and
     synchronisation data is being exchanged.

     Connecting: this state indicates that a connection is in progress.
     Hosts at large distances may take several seconds to connect, and
     such blocking can perturb the exchange of data with other hosts.
     Therefore, the connection is made asynchronously.

     Accepting: this state indicates that a connection is being
     accepted from another host, but the necessary negotiation of
     transport session etc has not been fulfilled yet.  This is another
     asynchronous part.

     Disconnected: this state is reached if the remote host cannot be
     contacted.

3.  Operation of the Protocol

  The use of a connection oriented service means that the operation of
  the NTP algorithm is slightly different.  This stems firstly from
  some necessary adjustments made to the protocol and secondly from
  some optimisations that are possible through the use of connections.

  Firstly, the reachability of the host can be directly determined.
  The NTP protocol maintains a shift register to determine if it is
  likely that a peer is still responding and exchanging data.  This
  works by recording over the last eight transfers how many responses
  have been received.  If there have been no responses to the last
  eight packets, then the host is deemed unreachable.

  Naturally, with a connection to the remote host, the reachability is
  immediately determinable.  Either a connection is established or the
  connection is broken or not yet made.  For this reason it is not
  necessary to rely on the shift register to determine reachability.

  Secondly, there are a large number of optimisations that can be made
  by use of the connection oriented mode.  The NTP packet format can be
  broken into several categories.

     a) Synchronisation data

     b) Authentication data

     c) Protocol data




Crowcroft & Onions                                              [Page 3]

RFC 1165                      NTP over OSI                     June 1990


  Of these classes of data, only the first (a) is necessary to maintain
  the synchronisation between hosts.  Information such as protocol
  version and the precision of the local clock are not likely to vary
  over the lifetime of the connection.  Likewise the authentication if
  in use need only be done at connection establishment and is not
  necessarily required for every packet.

  For these reason, the NTP protocol can be simplified slightly to
  remove this information.  This can be seen in the specification for
  the Packet in Appendix A.

4.  Network Considerations

  Although on first inspection it might be thought that a high speed
  network is necessary for accurate synchronisation, this is not the
  case.  What is more important is the dispersion of the packet
  traversal times.  It is normally the case that a low speed network
  with little variance in packet transit times will give better results
  than a high speed network with large differences in individual packet
  transit times.  This would lead us to think that connection oriented
  networks with resource allocation done at connection time might lead
  to higher accuracies than connectionless networks which can suffer
  large swings in packet transit time under high loading.  (This is
  heresy!)

5.  Implementation Model

  Ideally, the implementor will provide interoperability between the
  existing UDP based NTP service, and a ROS based service.

  To this end, the internal records that hold NTP state information,
  can be kept the same as existing implementations, and for
  optimisation reasons, the internal representations of NTP packets can
  be the same.  Translation between these and appropriate ROS/ASN
  concrete encodings can be provided by automatic translators such as
  Rosy [ISODE].

6.  Constructing NTP Data Fields

  The way in which the data fields in the Packet described in Appendix
  A is unchanged from RFC 1119.  This simplifies implementations based
  on existing ones, and encourages interworking.

7.  Discussion

  From the limited testing of this model so far done, the results would
  seem to indicate that the ROS based model running over an X.25
  service is of similar reliability as the UDP model.  Until further



Crowcroft & Onions                                              [Page 4]

RFC 1165                      NTP over OSI                     June 1990


  experimentation can be performed, specific data can not be given.

  However, in the UK where the most common method of time
  synchronisation is the system administrators watch and typing in the
  time to the nearest minute, this method is clearly far superior.

  Connection management is transparent to NTP since it is implemented
  beneath the Remote Operations Service.  However, an NTP
  implementation must have access to the status of connections, and
  uses this not only for reachability information but also to find the
  information gleaned at connect time and no longer exchanged in NTP
  operations.

8.  Prototype Experience

  There are a number of UK sites running NTP over ROS over X.25 with an
  earlier ROS specification, with at least one site peering both over
  ROS with UK sites on X.25, and over UDP with US Internet sites.

  Initial experience is promising.  The table below shows the
  reachabilities, delays, offsets and dispersions for the central UK
  site peering with 2 JANET sites (IP addresses not meaningful, but
  shown as 126.0.0.1), and three US sites.

     Address            Strat Poll Reach    Delay   Offset    Disp
     =============================================================
     +126.0.0.1            3   64  377     718.0      0.0      3.0
     +umd1.umd.edu         1 1024  177     535.0     13.0     13.0
     *128.4.0.5            1   64  167     545.0     10.0    524.0

9.  References

  1.  Mills, D., "Network Time Protocol (Version 2) Specification and
      Implementation", RFC-1119, UDEL, September 1989.

  2.  Mills, D., "Algorithms for Synchronizing Network Clocks", RFC-
      956, M/A-COM Linkabit, September 1985.

  3.  Postel, J. "User Datagram Protocol", RFC-768, USC Information
      Sciences Institute, August 1980.

  4.  ISO TC97, "Specification of Abstract Syntax Notation One
      (ASN.1)", Draft International Standard ISO/DIS 8824, 6 June 1985.

  5.  CCITT, "Remote Operations: Model, Notation and Service
      Definition", CCITT X.ros0 or ISO/DP 9072/1, Geneva, October 1986.

  6.  Mills, D., "Internet Time Synchronization: The Network Time



Crowcroft & Onions                                              [Page 5]

RFC 1165                      NTP over OSI                     June 1990


      Protocol (NTP)", RFC 1129, UDEL, October 1989.

  7.  Mills, D., "Measured Performance of the Network Time Protocol in
      the Internet System", RFC 1128, October 1989.

  8.  Rose M., et al, "The ISO Development Environment: User's Manual".

10.  Acknowledgements

      The Authors would like to thank Dave Mills for his valuable
      comments on an earlier version of this document.

Appendix A.  ROS "Header" Format

      -- NTP definitions for ROS specification
      --
      -- Julian Onions, Nottingham University, UK.
      --
      -- Mon Jun  5 10:07:07 1989
      --

      NTP DEFINITIONS ::=

      BEGIN

      update OPERATION
       ARGUMENT Packet
       ::= 0

      query OPERATION
       ARGUMENT NULL
       RESULT ClockInfoList
       ::= 1

      -- Data Structures

      BindArgument ::=
       fullbind SEQUENCE {
               psap[0] IA5String OPTIONAL,
               version[1] BITSTRING {
                       version-0(0),
                       version-1(1),
                       version-2(2)
               } DEFAULT version-2,
               authentication[2] Authentication OPTIONAL,
               mode[3] BindMode
       }




Crowcroft & Onions                                              [Page 6]

RFC 1165                      NTP over OSI                     June 1990


      Authentication ::= ANY

      BindMode ::= ENUMERATED {
               normal(0),      -- standard NTP
               query(1)        -- queries only
       }

      BindResult ::=
       SEQUENCE {
               version[1] INTEGER DEFAULT 2,
               authentication[2] Authentication OPTIONAL,
               mode[3] BindMode
       }

      BindError ::=
       SEQUENCE {
               reason[0] INTEGER {
                       refused(0),
                       validation(1),
                       version(2),     -- version not supported
                       badarg(3),      -- bad bind argument
                       congested(4)    -- catch all!
               },
               supplementary[1] IA5String OPTIONAL
       }


                                       -- basic exchange packet

      Packet ::= SEQUENCE {
       leap                    Leap,
       mode                    Mode,
       stratum[1]              INTEGER,
       pollInterval[2]         INTEGER,
       precision[3]            INTEGER,
       synchDistance           SmallFixed,
       synchDispersion         SmallFixed,
       referenceClockIdentifier ClockIdentifier,
       referenceTimestamp      TimeStamp,
       originateTimestamp      TimeStamp,
       receiveTimestamp        TimeStamp,
       transmitTimestamp       TimeStamp
      }

      ClockInfoList ::= SET OF ClockInfo

      ClockInfo ::= SEQUENCE {
       remoteAddress           Address,



Crowcroft & Onions                                              [Page 7]

RFC 1165                      NTP over OSI                     June 1990


       localAddress            Address,
       flags[0]                BIT STRING {
                       configured(0),
                       authentable(1),
                       sane(2),
                       candidate(3),
                       sync(4),
                       broadcast(5),
                       referenceClock(6),
                       selected(7),
                       inactive(8)
       },
       packetsSent[1]          INTEGER,
       packetsReceived[2]      INTEGER,
       packetsDropped[3]       INTEGER,
       timer[4]                INTEGER,
       leap                    Leap,
       stratum[5]              INTEGER,
       ppoll[6]                INTEGER,
       hpoll[7]                INTEGER,
       precision[8]            INTEGER,
       reachability[9]         INTEGER,
       estdisp[10]             INTEGER,
       estdelay[11]            INTEGER,
       estoffset[12]           INTEGER,
       reference[13]           ClockIdentifier OPTIONAL,
       reftime                 TimeStamp,
       filters                 SEQUENCE OF Filter
      }

      Leap ::= [APPLICATION 0] ENUMERATED {
               nowarning(0),
               plussecond(1),
               minussecond(2),
               alarm(3)
       }

      SmallFixed ::= [APPLICATION 1] IMPLICIT SEQUENCE {
               integer INTEGER,
               fraction INTEGER
       }

      ClockIdentifier ::= CHOICE {
                       referenceClock[0] PrintableString,
                       inetaddr[1] OCTET STRING,
                       psapaddr[2] OCTET STRING
       }




Crowcroft & Onions                                              [Page 8]

RFC 1165                      NTP over OSI                     June 1990


      TimeStamp ::= [APPLICATION 2] IMPLICIT SEQUENCE {
               integer INTEGER,
               fraction INTEGER
       }

      KeyId ::= [APPLICATION 4] INTEGER

      Mode ::= [APPLICATION 4] ENUMERATED {
               unspecified (0),
               symmetricActive (1),
               symmetricPassive (2),
               client (3),
               server (4),
               broadcast (5),
               reservered (6),
               private (7)
       }

      Filter ::= SEQUENCE {
               offset INTEGER,
               delay INTEGER
       }

      Address ::= OCTET STRING -- for now
      END

11. Security Considerations

  Security issues are not discussed in this memo.

12. Authors' Addresses

  Jon Crowcroft
  Computer Science Department
  University College London
  Gower Street
  London WC1E 6BT UK

  EMail:  [email protected]


  Julian P. Onions
  Computer Science Department
  Nottingham University
  University Park
  Nottingham, NG7 2RD UK

  EMail:  [email protected]



Crowcroft & Onions                                              [Page 9]

RFC 1165                      NTP over OSI                     June 1990





















































Crowcroft & Onions                                             [Page 10]