Network Working Group                                            D. Katz
Request for Comments:  1103                                 Merit/NSFNET
                                                              June 1989

             A Proposed Standard for the Transmission of
                   IP Datagrams over FDDI Networks


Status of this Memo

  This RFC specifies a method of encapsulating the Internet Protocol
  (IP) [1] datagrams and Address Resolution Protocol (ARP) [2] requests
  and replies on Fiber Distributed Data Interface (FDDI) Networks.
  This RFC specifies a proposed protocol standard for the Internet
  community.  Comments are welcome.  Distribution of this memo is
  unlimited.

Acknowledgment

  This memo draws heavily in both concept and text from RFC 1042 [3],
  written by Jon Postel and Joyce K. Reynolds of USC/Information
  Sciences Institute.

Conventions

  The following language conventions are used in the items of
  specification in this document:

     "Must" or "Mandatory"--the item is an absolute requirement of the
     specification.

     "Should" or "Recommended"--the item should generally be followed
     for all but exceptional circumstances.

     "May" or "Optional"--the item is truly optional and may be
     followed or ignored according to the needs of the implementor.

Introduction

  The goal of this specification is to allow compatible and
  interoperable implementations for transmitting IP datagrams and ARP
  requests and replies.

  The Fiber Distributed Data Interface (FDDI) specifications define a
  family of standards for Local Area Networks (LANs) that provides the
  Physical Layer and Media Access Control Sublayer of the Data Link
  Layer as defined by the ISO Open System Interconnection Reference
  Model (ISO/OSI).  Documents are in various stages of progression



Katz                                                            [Page 1]

RFC 1103            IP Datagrams over FDDI Networks            June 1989


  toward International Standardization for Media Access Control (MAC)
  [4], Physical Layer Protocol (PHY) [5], Physical Layer Medium
  Dependent (PMD) [6], and Station Management (SMT) [7].  The family of
  FDDI standards corresponds to the IEEE 802 MAC layer standards [8, 9,
  10].

  The remainder of the Data Link Service is provided by the IEEE 802.2
  Logical Link Control (LLC) service [11].  The resulting stack of
  services appears as follows:

          +-------------+
          |   IP/ARP    |
          +-------------+
          |  802.2 LLC  |
          +-------------+
          |  FDDI MAC   |
          +-------------+
          |  FDDI PHY   |
          +-------------+
          |  FDDI PMD   |
          +-------------+

  This memo describes the use of IP and ARP in this environment.  At
  this time, it is not necessary that the use of IP and ARP be
  consistent between FDDI and IEEE 802 networks, but it is the intent
  of this memo not to preclude Data Link Layer interoperability at such
  time as the standards define it.

Packet Format

  IP datagrams and ARP requests and replies sent on FDDI networks must
  be encapsulated within the 802.2 LLC and Sub-Network Access Protocol
  (SNAP) data link layers and the FDDI MAC and physical layers.  The
  SNAP must be used with an Organization Code indicating that the SNAP
  header contains the EtherType code (as listed in Assigned Numbers
  [12]).

  802.2 LLC Type 1 communication (which must be implemented by all
  conforming 802.2 stations) is used exclusively.  All frames must be
  transmitted in standard 802.2 LLC Type 1 Unnumbered Information
  format, with the DSAP and the SSAP fields of the 802.2 header set to
  the assigned global SAP value for SNAP [11].  The 24-bit Organization
  Code in the SNAP must be zero, and the remaining 16 bits are the
  EtherType from Assigned Numbers [12] (IP = 2048, ARP = 2054).







Katz                                                            [Page 2]

RFC 1103            IP Datagrams over FDDI Networks            June 1989


    ...--------+--------+--------+
               MAC Header        |                           FDDI MAC
    ...--------+--------+--------+

    +--------+--------+--------+
    | DSAP=K1| SSAP=K1| Control|                            802.2 LLC
    +--------+--------+--------+

    +--------+--------+---------+--------+--------+
    |Protocol Id or Org Code =K2|    EtherType    |        802.2 SNAP
    +--------+--------+---------+--------+--------+

    The total length of the LLC Header and the SNAP header is 8
    octets.

    The K1 value is 170 (decimal).

    The K2 value is 0 (zero).

    The control value is 3 (Unnumbered Information).

Address Resolution

  The mapping of 32-bit Internet addresses to 16-bit or 48-bit FDDI
  addresses must be done via the dynamic discovery procedure of the
  Address Resolution Protocol (ARP) [2].

  Internet addresses are assigned arbitrarily on Internet networks.
  Each host's implementation must know its own Internet address and
  respond to Address Resolution requests appropriately.  It must also
  use ARP to translate Internet addresses to FDDI addresses when
  needed.

  The ARP protocol has several fields that parameterize its use in any
  specific context [2].  These fields are:

        hrd   16 - bits     The Hardware Type Code
        pro   16 - bits     The Protocol Type Code
        hln    8 - bits     Octets in each hardware address
        pln    8 - bits     Octets in each protocol address
        op    16 - bits     Operation Code

  The hardware type code assigned for IEEE 802 networks is 6 [12].
  FDDI networks, although not IEEE 802 networks per se, are
  semantically equivalent and use the same type code.

  The protocol type code for IP is 2048 [12].




Katz                                                            [Page 3]

RFC 1103            IP Datagrams over FDDI Networks            June 1989


  The hardware address length is 2 for 16-bit FDDI addresses, or 6 for
  48-bit FDDI addresses.

  The protocol address length (for IP) is 4.

  The operation code is 1 for request and 2 for reply.

Broadcast Address

  The broadcast Internet address (the address on that network with a
  host part of all binary ones) must be mapped to the broadcast FDDI
  address (of all binary ones) (see [13]).

Trailer Formats

  Some versions of Unix 4.x bsd use a different encapsulation method in
  order to get better network performance with the VAX virtual memory
  architecture.  Consenting systems on the same FDDI network may use
  this format between themselves.  Details of the trailer encapsulation
  method may be found in [14].  However, all hosts must be able to
  communicate using the standard (non-trailer) method.

Byte Order

  As described in Appendix B of the Internet Protocol specification
  [1], the IP datagram is transmitted over FDDI networks as a series of
  8-bit bytes.  This byte transmission order has been called "big-
  endian" [15].

MAC Layer Details

  Packet Size

     The FDDI MAC specification [4] defines a maximum frame size of
     9000 symbols (4500 octets) for all frame fields, including four
     symbols (two octets) of preamble.  This gives the following MAC
     layer overhead:














Katz                                                            [Page 4]

RFC 1103            IP Datagrams over FDDI Networks            June 1989


               Field                    Size in Octets

               Preamble                     2
               Start Delimiter              1
               Frame Control                1
               Destination Address          6 (2)
               Source Address               6 (2)
               FCS                          4
               End Delimiter/Frame Status   2

               Total                        22 (14)
               Remaining for Data           4478 (4486)

     Subtracting the 8 byte LLC/SNAP header, this gives a maximum
     packet size (MTU) of 4470 (4478) octets.  For compatibility
     purposes, the maximum packet size used with IP datagrams or ARP
     requests and replies must be consistent on a particular network.

     The overhead calculations (above) assume a standard Frame Status
     field consisting of three symbols.  Additional Implementor Defined
     frame status information, although permitted by the FDDI MAC
     specification, must not be used with IP datagrams because it
     affects the maximum packet size.

     Gateway implementations must be prepared to accept full-length
     packets and fragment them when necessary.

     Host implementations should be prepared to accept full-length
     packets; however, hosts must not send datagrams longer than 576
     octets unless they have explicit knowledge that the destination is
     prepared to accept them.  A host may communicate its size
     preference in TCP-based applications via the TCP Maximum Segment
     Size option [16].

     Datagrams on FDDI networks may be longer than the general Internet
     default maximum packet size of 576 octets.  Hosts connected to an
     FDDI network should keep this in mind when sending datagrams to
     hosts that are not on the same local network.  It may be
     appropriate to send smaller datagrams to avoid unnecessary
     fragmentation at intermediate gateways.  Please see [16] for
     further information.

     There is no minimum packet size restriction on FDDI networks.

Other MAC Layer Issues

  The FDDI MAC specification does not require that 16-bit and 48-bit
  address stations be able to interwork fully.  It does, however,



Katz                                                            [Page 5]

RFC 1103            IP Datagrams over FDDI Networks            June 1989


  require that 16-bit stations have full 48-bit functionality, and that
  both types of stations be able to receive frames sent to either size
  broadcast address.  For use with IP and ARP, all communicating
  stations on a LAN must use a consistent address size.
  Implementations must discard any IP or ARP packets received with an
  unimplemented or inactive address size.  16-bit and 48-bit
  implementations may coexist on the same FDDI network; however, if
  they wish to interwork they must be considered separate IP networks
  and linked with an IP router capable of supporting 16-and 48-bit
  addresses simultaneously.

  Group (multicast) addresses are defined by the FDDI MAC specification
  but are not necessarily supported by existing hardware.  Therefore,
  this feature must not be used by IP and ARP.

  The FDDI MAC specification defines two classes of frames,
  Asynchronous and Synchronous.  Asynchronous frames are further
  controlled by a priority mechanism and two classes of token,
  Restricted and Unrestricted.  Only the use of Unrestricted tokens and
  Asynchronous frames are required by the standard for FDDI
  interoperability.  The priority mechanism is currently implemented
  locally by the transmitting station and the Priority field in
  Asynchronous frames is ignored by other stations.  This field will
  likely be interpreted by Transparent Bridges once they are defined.
  There is no default value for priority called out in the MAC
  standard.

  Therefore, all IP and ARP frames must be transmitted as Asynchronous
  frames using Unrestricted tokens, and the Priority value is a matter
  of local convention.  Implementations should make the priority a
  tunable parameter for future use.  It is recommended that
  implementations provide for the reception of IP and ARP packets in
  Synchronous frames.

  After packet transmission, FDDI provides Frame Copied (C) and Address
  Recognized (A) indicators.  There are four possible combinations of
  the indicators with the following semantics:

           (C)      (A)
           Reset    Reset   The frame was not received by any station.
           Reset    Set     The addressed station is congested.
           Set      Reset   Reserved.
           Set      Set     The addressed station received the frame.

  Implementations may use these indicators to provide some amount of
  error detection and correction:

     If the Frame Copied bit is reset but the Address Recognized bit is



Katz                                                            [Page 6]

RFC 1103            IP Datagrams over FDDI Networks            June 1989


     set, receiver congestion has occurred.  It is recommended, though
     not mandatory, that hosts retransmit the offending packet a small
     number of times (4) or until congestion no longer occurs.

     If the both the Address Recognized indicator and the Frame Copied
     indicator are reset, an implementation has three options: (1)
     ignore the error and throw the packet away, (2) return an ICMP
     destination unreachable message to the source, or (3) delete the
     ARP entry which was used to send this packet and send a new ARP
     request to the destination address.  The latter option is the
     preferred approach since it will allow graceful recovery from
     first hop bridge and router failures and changed hardware
     addresses.

     As of this writing there is a proposal within ANSI to set the
     Frame Copied indicator and reset the Address Recognized indicator
     when a frame is forwarded by a Transparent Bridge.  For future
     compatibility, implementations should interpret this combination
     of indicators as if the frame were successfully delivered to the
     destination (i.e., do nothing).

IEEE 802.2 Details

  While not necessary for supporting IP and ARP, all implementations
  must support IEEE 802.2 standard Class I service in order to be
  compliant with 802.2.  This requires supporting Unnumbered
  Information (UI) Commands, eXchange IDentification (XID) Commands and
  Responses, and TEST link (TEST) Commands and Responses.

  When an XID or TEST command is received, a response must be returned
  with Destination and Source addresses, and DSAP and SSAP, swapped.

  When responding to an XID or a TEST command, the value of the Final
  bit in the response must be copied from the value of the Poll bit in
  the command.

  The XID command or response has an LLC control field value of 175
  (decimal) if the Poll/Final bit is off or 191 (decimal) if the
  Poll/Final bit is on.

  The TEST command or response has an LLC control field value of 227
  (decimal) if the Poll/Final bit is off or 243 (decimal) if the
  Poll/Final bit is on.

  Command frames are identified by having the high order bit of the
  SSAP address reset to zero.  Response frames have the high order bit
  of the SSAP address set to one.




Katz                                                            [Page 7]

RFC 1103            IP Datagrams over FDDI Networks            June 1989


  XID response frames must include an 802.2 XID Information field of
  129.1.0 indicating Class I (connectionless) service.

  TEST response frames must echo the information field received in the
  corresponding TEST command frame.

Appendix on Numbers

  The IEEE specifies numbers in bit transmission order, or bit-wise
  little-endian order.  The Internet protocols are documented in byte-
  wise big-endian order.  This may cause some confusion about the
  proper values to use for numbers.  Here are the conversions for some
  numbers of interest.

      Number        IEEE    IEEE        Internet    Internet
                    HEX     Binary      Binary      Decimal

      UI Op Code    C0      11000000    00000011    3
      SAP for SNAP  55      01010101    10101010    170
      XID           F5      11110101    10101111    175
      XID           FD      11111101    10111111    191
      TEST          C7      11000111    11100011    227
      TEST          CF      11001111    11110011    243
      Info          818000                          129.1.0

References

 [1]  Postel, J., "Internet Protocol", RFC-791, USC/Information
      Sciences Institute, September 1981.

 [2]  Plummer, D., "An Ethernet Address Resolution Protocol - or -
      Converting Network Protocol Addresses to 48.bit Ethernet Address
      for Transmission on Ethernet Hardware", RFC-826, MIT, November
      1982.

 [3]  Postel J., and J. Reynolds, "A Standard for the Transmission of
      IP Datagrams over IEEE 802 Networks", RFC1042, USC/Information
      Sciences Institute, February, 1988.

 [4]  ISO, "Fiber Distributed Data Interface (FDDI) - Media Access
      Control", ISO 9314-2, 1988.  See also ANSI X3.139-1987.

 [5]  ISO, "Fiber Distributed Data Interface (FDDI) - Token Ring
      Physical Layer Protocol", ISO 9314-1, 1988.  See also ANSI
      X3.148-1988.

 [6]  ISO, "Fiber Distributed Data Interface (FDDI) - Physical Layer
      Medium Dependent", ISO DIS 9314-3, 1988.  See also ANSI X3.166-



Katz                                                            [Page 8]

RFC 1103            IP Datagrams over FDDI Networks            June 1989


      198x.

 [7]  ANSI, "FDDI Station Management", ANSI X3T9.5/84-49 Rev 4.0, 1988.

 [8]  IEEE, "IEEE Standards for Local Area Networks: Carrier Sense
      Multiple Access with Collision Detection (CSMA/CD) Access Method
      and Physical Layer Specifications", IEEE, New York, New York,
      1985.

 [9]  IEEE, "IEEE Standards for Local Area Networks: Token-Passing Bus
      Access Method and Physical Layer Specification", IEEE, New York,
      New York, 1985.

 [10] IEEE, "IEEE Standards for Local Area Networks: Token Ring Access
      Method and Physical Layer Specifications", IEEE, New York, New
      York, 1985.

 [11] IEEE, "IEEE Standards for Local Area Networks: Logical Link
      Control", IEEE, New York, New York, 1985.

 [12] Reynolds, J.K., and J. Postel, "Assigned Numbers", RFC-1010,
      USC/Information Sciences Institute, May 1987.

 [13] Braden, R., and J. Postel, "Requirements for Internet Gateways",
      RFC-1009, USC/Information Sciences Institute, June 1987.

 [14] Leffler, S., and M. Karels, "Trailer Encapsulations", RFC-893,
      University of California at Berkeley, April 1984.

 [15] Cohen, D., "On Holy Wars and a Plea for Peace", Computer, IEEE,
      October 1981.

 [16] Postel, J., "The TCP Maximum Segment Size Option and Related
      Topics", RFC-879, USC/Information Sciences Institute, November
      1983.

Author's Address

  Dave Katz Merit/NSFNET 1075 Beal Ann Arbor, MI 48109-2112

  Phone: 1-800-66-MERIT

  Email: [email protected]








Katz                                                            [Page 9]