Network Working Group                                  G. Scott, Editor
Request for Comments: 2360           Defense Information Systems Agency
BCP: 22                                                       June 1998
Category: Best Current Practice


                 Guide for Internet Standards Writers

Status of this Memo

  This document specifies an Internet Best Current Practices for the
  Internet Community, and requests discussion and suggestions for
  improvements.  Distribution of this memo is unlimited.

Copyright Notice

  Copyright (C) The Internet Society (1998).  All Rights Reserved.

Abstract

  This document is a guide for Internet standard writers.  It defines
  those characteristics that make standards coherent, unambiguous, and
  easy to interpret.  In addition, it singles out usage believed to
  have led to unclear specifications, resulting in non-interoperable
  interpretations in the past.  These guidelines are to be used with
  RFC 2223, "Instructions to RFC Authors".

Table of Contents

  1     Introduction   . . . . . . . . . . . . . . . . . . . . . . . 2
  2     General Guidelines . . . . . . . . . . . . . . . . . . . . . 2
  2.1   Discussion of Security . . . . . . . . . . . . . . . . . . . 3
  2.2   Protocol Description   . . . . . . . . . . . . . . . . . . . 4
  2.3   Target Audience  . . . . . . . . . . . . . . . . . . . . . . 5
  2.4   Level of Detail  . . . . . . . . . . . . . . . . . . . . . . 5
  2.5   Change Logs  . . . . . . . . . . . . . . . . . . . . . . . . 6
  2.6   Protocol Versions  . . . . . . . . . . . . . . . . . . . . . 6
  2.7   Decision History   . . . . . . . . . . . . . . . . . . . . . 6
  2.8   Response to Out of Specification Behavior  . . . . . . . . . 6
  2.9   The Liberal/Conservative Rule  . . . . . . . . . . . . . . . 7
  2.10  Handling of Protocol Options   . . . . . . . . . . . . . . . 8
  2.11  Indicating Requirement Levels  . . . . . . . . . . . . . . . 9
  2.12  Notational Conventions . . . . . . . . . . . . . . . . . . . 9
  2.13  IANA Considerations  . . . . . . . . . . . . . . . . . . .  10
  2.14  Network Management Considerations  . . . . . . . . . . . .  10
  2.15  Scalability Considerations . . . . . . . . . . . . . . . .  10
  2.16  Network Stability  . . . . . . . . . . . . . . . . . . . .  11
  2.17  Internationalization . . . . . . . . . . . . . . . . . . .  11



Scott                    Best Current Practice                  [Page 1]

RFC 2360          Guide for Internet Standards Writers         June 1998


  2.18  Glossary   . . . . . . . . . . . . . . . . . . . . . . . .  11
  3     Specific Guidelines  . . . . . . . . . . . . . . . . . . .  12
  3.1   Packet Diagrams  . . . . . . . . . . . . . . . . . . . . .  12
  3.2   Summary Tables   . . . . . . . . . . . . . . . . . . . . .  13
  3.3   State Machine Descriptions . . . . . . . . . . . . . . . .  13
  4     Document Checklist . . . . . . . . . . . . . . . . . . . .  15
  5     Security Considerations  . . . . . . . . . . . . . . . . .  16
  6     References . . . . . . . . . . . . . . . . . . . . . . . .  16
  7     Acknowledgments  . . . . . . . . . . . . . . . . . . . . .  18
  8     Editor's Address . . . . . . . . . . . . . . . . . . . . .  18
  9     Appendix . . . . . . . . . . . . . . . . . . . . . . . . .  19
  10    Full Copyright Statement . . . . . . . . . . . . . . . . .  20

1  Introduction

  This document is a guide for Internet standard writers.  It offers
  guidelines on how to write a standards-track document with clarity,
  precision, and completeness.  These guidelines are based on both
  prior successful and unsuccessful IETF specification experiences.
  These guidelines are to be used with RFC 2223, "Instructions to RFC
  Authors", or its update.  Note that some guidelines may not apply in
  certain situations.

  The goal is to increase the possibility that multiple implementations
  of a protocol will interoperate.  Writing specifications to these
  guidelines will not guarantee interoperability.  However, a
  recognized barrier to the creation of interoperable protocol
  implementations is unclear specifications.

  Many will benefit from having well-written protocol specifications.
  Implementers will have a better chance to conform to the protocol
  specification.  Protocol testers can use the specification to derive
  unambiguous testable statements.  Purchasers and users of the
  protocol will have a better understanding of its capabilities.

  For further information on the process for standardizing protocols
  and procedures please refer to BCP 9/RFC 2026, "The Internet
  Standards Process -- Revision 3".  In addition, some considerations
  for protocol design are given in RFC 1958, "Architectural Principles
  of the Internet".

2  General Guidelines

  It is important that multiple readers and implementers of a standard
  have the same understanding of a document.  To this end, information
  should be orderly and detailed.  The following are general guidelines
  intended to help in the production of such a document.  The IESG may
  require that all or some of the following sections appear in a



Scott                    Best Current Practice                  [Page 2]

RFC 2360          Guide for Internet Standards Writers         June 1998


  standards track document.

2.1  Discussion of Security

  If the Internet is to achieve its full potential in commercial,
  governmental, and personal affairs, it must assure users that their
  information transfers are free from tampering or compromise.  Well-
  written security sections in standards-track documents can help
  promote the confidence level required.  Above all, new protocols and
  practices must not worsen overall Internet security.

  A significant threat to the Internet comes from those individuals who
  are motivated and capable of exploiting circumstances, events, or
  vulnerabilities of the system to cause harm.  In addition, deliberate
  or inadvertent user behavior may expose the system to attack or
  exploitation.  The harm could range from disrupting or denying
  network service, to damaging user systems.  Additionally, information
  disclosure could provide the means to attack another system, or
  reveal patterns of behavior that could be used to harm an individual,
  organization, or network.  This is a particular concern with
  standards that define a portion of the Management Information Base
  (MIB).

  Standards authors must accept that the protocol they specify will be
  subject to attack.  They are responsible for determining what attacks
  are possible, and for detailing the nature of the attacks in the
  document.  Otherwise, they must convincingly argue that attack is not
  realistic in a specific environment, and restrict the use of the
  protocol to that environment.

  After the document has exhaustively identified the security risks the
  protocol is exposed to, the authors must formulate and detail a
  defense against those attacks.  They must discuss the applicable
  countermeasures employed, or the risk the user is accepting by using
  the protocol.  The countermeasures may be provided by a protocol
  mechanism or by reliance on external mechanisms.  Authors should be
  knowledgeable of existing security mechanisms, and reuse them if
  practical.  When a cryptographic algorithm is used, the protocol
  should be written to permit its substitution with another algorithm
  in the future.  Finally, the authors should discuss implementation
  hints or guidelines, e.g., how to deal with untrustworthy data or
  peer systems.

  Security measures will have an impact within the environment that
  they are used.  Perhaps users will now be constrained on what they
  can do in the Internet, or will experience degradation in the speed
  of service.  The effects the security measures have on the protocol's
  use and performance should be discussed.



Scott                    Best Current Practice                  [Page 3]

RFC 2360          Guide for Internet Standards Writers         June 1998


  The discussion of security can be concentrated in the Security
  Considerations section of the document, or throughout the document
  where it is relevant to particular parts of the specification.  An
  advantage of the second approach is that it ensures security is an
  integral part of the protocol's development, rather than something
  that is a follow-on or secondary effort.  If security is discussed
  throughout the document, the Security Considerations section must
  summarize and refer to the appropriate specification sections.  This
  will insure that the protocol's security measures are emphasized to
  implementer and user both.

  Within the Security Considerations section, a discussion of the path
  not taken may be appropriate.  There may be several security
  mechanisms that were not selected for a variety of reasons: cost or
  difficulty of implementation, or ineffectiveness for a given network
  environment.  By listing the mechanisms they did not use and the
  reasons, editors can demonstrate that the protocol's WG gave security
  the necessary thought.  In addition, this gives the protocol's users
  the information they need to consider whether one of the non-selected
  mechanisms would be better suited to their particular requirements.

  A document giving further guidance on security topics is in
  development.  Authors should obtain a copy of the completed RFC to
  help them prepare the security portion of the standard.

  Finally, it is no longer acceptable that Security Considerations
  sections consist solely of statements to the effect that security was
  not considered in preparing the standard.

  Some examples of Security Considerations sections are found in STD
  33/RFC 1350, STD 51/RFC 1662, and STD 53/RFC 1939.  RFC 2316, "Report
  of the IAB Security Architecture Workshop", provides additional
  information in this topic area.

2.2  Protocol Description

  Standards track documents must include a description of the protocol.
  This description must address the protocol's purpose, intended
  functions, services it provides, and, the arena, circumstances, or
  any special considerations of the protocol's use.

  The authors of a protocol specification will have a great deal of
  knowledge as to the reason for the protocol.  However, the reader is
  more likely to have general networking knowledge and experience,
  rather than expertise in a particular protocol.  An explanation of
  it's purpose and use will give the reader a reference point for





Scott                    Best Current Practice                  [Page 4]

RFC 2360          Guide for Internet Standards Writers         June 1998


  understanding the protocol, and where it fits in the Internet.  The
  STD 54/RFC 2328 was recommended to the STDGUIDE working group as
  providing a good example of this in its "Protocol Overview" section.

  The protocol's general description must also provide information on
  the relationship between the different parties to the protocol. This
  can be done by showing typical packet sequences.

  This also applies to the algorithms used by a protocol.  A detailed
  description of the algorithms or citation of readily available
  references that give such a description is necessary.

2.3  Target Audience

  RFCs have been written with many different purposes, ranging from the
  technical to the administrative.  Those written as standards should
  clearly identify the intended audience, for example, designers,
  implementers, testers, help desk personnel, educators, end users, or
  others.  If there are multiple audiences being addressed in the
  document, the section for each audience needs to be identified.  The
  goal is to help the reader discover and focus on what they have
  turned to the document for, and avoid what they may find confusing,
  diverting, or extraneous.

2.4  Level of Detail

  The author should consider what level of descriptive detail best
  conveys the protocol's intent.  Concise text has several advantages.
  It makes the document easier to read.  Such text reduces the chance
  for conflict between different portions of the specification.  The
  reader can readily identify the required protocol mechanisms in the
  standard.  In addition, it makes it easier to identify the
  requirements for protocol implementation.  A disadvantage of concise
  descriptions is that a reader may not fully comprehend the reasoning
  behind the protocol, and thus make assumptions that will lead to
  implementation errors.

  Longer descriptions may be necessary to explain purpose, background,
  rationale, implementation experience, or to provide tutorial
  information.  This helps the reader understand the protocol.  Yet,
  several dangers exist with lengthy text.  Finding the protocol
  requirements in the text is difficult or confusing.  The same
  mechanism may have multiple descriptions, which leads to
  misinterpretation or conflict.  Finally, it is more difficult to
  comprehend, a consideration as English is not the native language of
  the many worldwide readers of IETF standards.





Scott                    Best Current Practice                  [Page 5]

RFC 2360          Guide for Internet Standards Writers         June 1998


  One approach is to divide the standard into sections: one describing
  the protocol concisely, while another section consists of explanatory
  text.  The STD 3/RFC 1122/RFC 1123 and STD 54/RFC 2328 provides
  examples of this method.

2.5  Change Logs

  As a document moves along the standards track, from Proposed to Draft
  or Draft to Full, or cycles in level, it will undergo changes due to
  better understanding of the protocol or implementation experience. To
  help implementers track the changes being made a log showing what has
  changed from the previous version of the specification is required
  (see Appendix).

2.6  Protocol Versions

  Often the standard is specifying a new version of an existing
  protocol.  In such a case, the authors should detail the differences
  between the previous version and the new version.  This should
  include the rationale for the changes, for example, implementation
  experience, changes in technology, responding to user demand, etc.

2.7  Decision History

  In standards development, reaching consensus requires making
  difficult choices.  These choices are made through working group
  discussions or from implementation experience.  By including the
  basis for a contentious decision, the author can prevent future
  revisiting of these disagreements when the original parties have
  moved on.  In addition, the knowledge of the "why" is as useful to an
  implementer as the description of "how".  For example, the
  alternative not taken may have been simpler to implement, so
  including the reasons behind the choice may prevent future
  implementers from taking nonstandard shortcuts.

2.8  Response to Out of Specification Behavior

  A detail description of the actions taken in case of behavior that is
  deviant from or exceeds the specification is useful.  This is an area
  where implementers often differ in opinion as to the appropriate
  response.  By specifying a common response, the standard author can
  reduce the risk that different implementations will come in to
  conflict.

  The standard should describe responses to behavior explicitly
  forbidden or out of the boundaries defined by the specification.  Two
  possible approaches to such cases are discarding, or invoking error-
  handling mechanisms.  If discarding is chosen, detailing the



Scott                    Best Current Practice                  [Page 6]

RFC 2360          Guide for Internet Standards Writers         June 1998


  disposition may be necessary.  For instance, treat dropped frames as
  if they were never received, or reset an existing connection or
  adjacency state.

  The specification should describe actions taken when a critical
  resource or a performance-scaling limit is exceeded.  This is
  necessary for cases where a risk of network degradation or
  operational failure exists.  In such cases, a consistent behavior
  between implementations is necessary.

2.9  The Liberal/Conservative Rule

  A rule, first stated in STD 5/RFC 791, recognized as having benefits
  in implementation robustness and interoperability is:

                   "Be liberal in what you accept, and
                     conservative in what you send".

  Or establish restrictions on what a protocol transmits, but be able
  to deal with every conceivable error received.  Caution is urged in
  applying this approach in standards track protocols.  It has in the
  past lead to conflicts between vendors when interoperability fails.
  The sender accuses the receiver of failing to be liberal enough, and
  the receiver accuses the sender of not being conservative enough.
  Therefore, the author is obligated to provide extensive detail on
  send and receive behavior.

  To avoid any confusion between the two, recommend that standard
  authors specify send and receive behavior separately.  The
  description of reception will require the most detailing.  For
  implementations are expected to continue operating regardless of
  error received.  Therefore, the actions taken to achieve that result,
  need to be laid out in the protocol specification.  Standard authors
  should concern themselves on achieving a level of cooperation that
  limits network disruption, not just how to survive on the network.
  The appearance of undefined information or conditions must not cause
  a network or host failure.  This requires specification on how to
  attempt acceptance of most of the packets.  Two approaches are
  available, either using as much of the packet's content as possible,
  or invoking error procedures.  The author should specify a dividing
  line on when to take which approach.

  A case for consideration is that of a routing protocol, where
  acceptance of flawed information can cause network failure.  For
  protocols such as this, the specification should identify packets
  that could have different interpretations and mandate that they be
  rejected completely or the nature of the attempt to recover some
  information from them.  For example, routing updates that contain



Scott                    Best Current Practice                  [Page 7]

RFC 2360          Guide for Internet Standards Writers         June 1998


  more data than the tuple count shows.  The protocol authors should
  consider whether some trailing data can be accepted as additional
  routes, or to reject the entire packet as suspect because it is non-
  conformant.

2.10  Handling of Protocol Options

  Specifications with many optional features increase the complexity of
  the implementation and the chance of non-interoperable
  implementations.  The danger is that different implementations may
  specify some combination of options that are unable to interoperate
  with each other.

  As the document moves along the standard track, implementation
  experience shall determine the need for each option.  Implementation
  shall show whether the option should be a mandatory part of the
  protocol or remain an option.  If an option is not implemented as the
  document advances, it must be removed from the protocol before it
  reaches draft standard status.

  Therefore, options shall only be present in a protocol to address a
  real requirement.  For example, options can support future
  extensibility of the protocol, a particular market, e.g., the
  financial industry, or a specific network environment, e.g., a
  network constrained by limited bandwidth.  They shall not be included
  as a means to "buy-off" a minority opinion.  Omission of the optional
  item shall have no interoperability consequences for the
  implementation that does so.

  One possible approach is to document protocol options in a separate
  specification.  This keeps the main protocol specification clean and
  makes it clear that the options are not required to implement the
  protocol.  Regardless of whether they appear within the specification
  or in a separate document, the text shall discuss the full
  implications of either using the option or not, and the case for
  choosing either course.  As part of this, the author needs to
  consider and describe how the options are used alongside other
  protocols.  The text must also specify the default conditions of all
  options.  For security checking options the default condition is on
  or enabled.

  There are occasions when mutually exclusive options appear within the
  protocol.  That is, the implementation of an optional feature
  precludes the implementation of the other optional feature.  For
  clarity, the author needs to state when to implement one or the
  other, what the effect of choosing one over the other is, and what





Scott                    Best Current Practice                  [Page 8]

RFC 2360          Guide for Internet Standards Writers         June 1998


  problems the implementer or user may face.  The choice of one or the
  other options shall have no interoperability consequences between
  multiple implementations.

2.11  Indicating Requirement Levels

  The BCP 14/RFC 2119, "Key words for use in RFCs to Indicate
  Requirement Level", defines several words that are necessary for
  writing a standards track document.  Editors of standards track
  documents must not deviate from the definitions provided as they are
  intended to identify interoperability requirements or limit
  potentially harmful behavior.  The capitalization of these words is
  the accepted norm, and can help in identifying an unintentional or
  unreasonable requirement.  These words have been used in several RFCs
  the first instances being STD 3/RFC 1122/RFC 1123.

2.12  Notational Conventions

  Formal syntax notations can be used to define complicated protocol
  concepts or data types, and to specify values of these data types.
  This permits the protocol to be written without concern on how the
  implementation is constructed, or how the data type is represented
  during transfer.  The specification is simplified because it can be
  presented as "axioms" that will be proven by implementation.

  The formal specification of the syntax used should be referenced in
  the text of the standard.  Any extensions, subsets, alterations, or
  exceptions to that formal syntax should be defined within the
  standard.

  The STD 11/RFC 822 provides an example of this.  In RFC 822 (Section
  2 and Appendix D) the Backus-Naur Form (BNF) meta-language was
  extended to make its representation smaller and easier to understand.
  Another example is STD 16/RFC 1155 (Section 3.2) where a subset of
  the Abstract Syntax Notation One (ASN.1) is defined.

  The author of a standards track protocol needs to consider several
  things before they use a formal syntax notation.  Is the formal
  specification language being used parseable by an existing machine?
  If no parser exists, is there enough information provided in the
  specification to permit the building of a parser?  If not, it is
  likely the reader will not have enough information to decide what the
  notation means.  In addition, the author should remember machine
  parseable syntax is often unreadable by humans, and can make the
  specification excessive in length.  Therefore, syntax notations
  cannot take the place of a clearly written protocol description.





Scott                    Best Current Practice                  [Page 9]

RFC 2360          Guide for Internet Standards Writers         June 1998


2.13  IANA Considerations

  The common use of the Internet standard track protocols by the
  Internet community requires that unique values be assigned to
  parameter fields.  An IETF WG does not have the authority to assign
  these values for the protocol it developed.  The Internet Assigned
  Numbers Authority (IANA) is the central authority for the assignment
  of unique parameter values for Internet protocols.  The authors of a
  developing protocol need to coordinate with the IANA the rules and
  procedures to manage the number space.  This coordination needs to be
  completed prior to submitting the Internet Draft to the standards
  track.

  A document is in preparation that discusses issues related to
  identifier assignment policy and guidelines on specific text to task
  IANA with its administration.  Standard authors should obtain a copy
  of it when it is finalized as an RFC.

  For further information on parameter assignment and current
  assignments, authors can reference STD 2, RFC 1700, "Assigned
  Numbers" (http://www.iana.org).

2.14  Network Management Considerations

  When relevant, each standard needs to discuss how to manage the
  protocol being specified.  This management process should be
  compatible with the current IETF Standard management protocol.  In
  addition, a MIB must be defined within the standard or in a companion
  document.  The MIB must be compatible with current Structure of
  Management Information (SMI) and parseable using a tool such as
  SMICng.  Where management or a MIB is not necessary this section of
  the standard should explain the reason it is not relevant to the
  protocol.

2.15  Scalability Considerations

  The standard should establish the limitations on the scale of use,
  e.g., tens of millions of sessions, gigabits per second, etc., and
  establish limits on the resources used, e.g., round trip time,
  computing resources, etc.  This is important because it establishes
  the ability of the network to accommodate the number of users and the
  complexity of their relations.  The STD 53/RFC 1939 has an example of
  such a section.  If this is not applicable to the protocol, an
  explanation of why not should be included.







Scott                    Best Current Practice                 [Page 10]

RFC 2360          Guide for Internet Standards Writers         June 1998


2.16  Network Stability

  A standard should discuss the relationship between network topology
  and convergence behavior.  As part of this, any topology that would
  be troublesome for the protocol should be identified.  Additionally,
  the specification should address any possible destabilizing events,
  and means by which the protocol resists or recovers from them.  The
  purpose is to insure that the network will stabilize, in a timely
  fashion, after a change, and that a combination of errors or events
  will not plunge the network into chaos.  The STD 34/RFC 1058, as an
  example, has sections which discuss how that protocol handles the
  affects of changing topology.

  The obvious case this would apply to is a routing protocol.  However,
  an application protocol could also have dynamic behavior that would
  affect the network.  For example, a messaging protocol could suddenly
  dump a large number of messages onto the network.  Therefore, editors
  of an application protocol will have to consider possible impacts to
  network stability and convergence behavior.

2.17 Internationalization

  At one time the Internet had a geographic boundary and was English
  only.  The Internet now extends internationally.  Therefore, data is
  interchanged in a variety of languages and character sets.  In order
  to meet the requirements of an international Internet, a standard
  must conform to the policies stated in BCP 18/RFC 2277, "IETF Policy
  on Character Sets and Languages".

2.18  Glossary

  Every standards track RFC should have a glossary, as words can have
  many meanings.  By defining any new words introduced, the author can
  avoid confusing or misleading the implementers.  The definition
  should appear on the word's first appearance within the text of the
  protocol specification, and in a separate glossary section.

  It is likely that definition of the protocol will rely on many words
  frequently used in IETF documents.  All authors must be knowledgeable
  of the common accepted definitions of these frequently used words.
  FYI 18/RFC 1983, "Internet Users' Glossary", provides definitions
  that are specific to the Internet.  Any deviation from these
  definitions by authors is strongly discouraged.  If circumstances
  require deviation, an author should state that he is altering the
  commonly accepted definition, and provide rationale as to the
  necessity of doing so.  The altered definition must be included in
  the Glossary section.




Scott                    Best Current Practice                 [Page 11]

RFC 2360          Guide for Internet Standards Writers         June 1998


  If the author uses the word as commonly defined, she does not have to
  include the definition in the glossary.  As a minimum, FYI 18/RFC
  1983 should be referenced as a source.

3  Specific Guidelines

  The following are guidelines on how to present specific technical
  information in standards.

3.1  Packet Diagrams

  Most link, network, and transport layer protocols have packet
  descriptions.  Packet diagrams included in the standard are very
  helpful to the reader.  The preferred form for packet diagrams is a
  sequence of long words in network byte order, with each word
  horizontal on the page and bit numbering at the top:

   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  |Version| Prio. |                   Flow Label                  |
  +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  In cases where a packet is strongly byte-aligned rather than word-
  aligned (e.g., when byte-boundary variable-length fields are used),
  display packet diagrams in a byte-wide format.  The author can use
  different height boxes for short and long words, and broken boxes for
  variable-length fields:

                          0 1 2 3 4 5 6 7
                         +-+-+-+-+-+-+-+-+
                         |    Length N   |
                         +-+-+-+-+-+-+-+-+
                         |               |
                         +    Address    +
                                ...
                         +   (N bytes)   +
                         |               |
                         +-+-+-+-+-+-+-+-+
                         |               |
                         +  2-byte field +
                         |               |
                         +-+-+-+-+-+-+-+-+








Scott                    Best Current Practice                 [Page 12]

RFC 2360          Guide for Internet Standards Writers         June 1998


3.2  Summary Tables

  The specifications of some protocols are particularly lengthy,
  sometimes covering a hundred pages or more.  In such cases, the
  inclusion of a summary table can reduce the risk of conformance
  failure by an implementation through oversight.  A summary table
  itemizes what in a protocol is mandatory, optional, or prohibited.
  Summary tables do not guarantee conformance, but serve to assist an
  implementer in checking that they have addressed all protocol
  features.

  The summary table will consist of, as a minimum, four (4) columns:
  Protocol Feature, Section Reference, Status, and
  References/Footnotes.  The author may add columns if they further
  explain or clarify the protocol.

  In the Protocol Feature column, list the protocol's characteristics,
  for example, a command word.  We recommend grouping series of related
  transactions under descriptive headers, for example, RECEPTION.

  Section reference directs the implementer to the section, paragraph,
  or page that describes the protocol feature in detail.

  Status indicates whether the feature is mandatory, optional, or
  prohibited.  The author can use either a separate column for each
  possibility, or a single column with appropriate codes.  These codes
  need to be defined at the start of the summary table to avoid
  confusion.  Possible status codes:

      M    - must or mandatory
      MN   - must not
      O    - optional
      S    - should
      SN   - should not
      X    - prohibited

  In the References/Footnotes column authors can point to other RFCs
  that are necessary to consider in implementing this protocol feature,
  or any footnotes necessary to explain the implementation further.

  The STD 3/RFC 1122/RFC 1123 provides examples of summary tables.

3.3  State Machine Descriptions

  A convenient method of presenting a protocol's behavior is as a
  state-machine model.  That is, a protocol can be described by a
  series of states resulting from a command, operation, or transaction.
  State-machine models define the variables and constants that



Scott                    Best Current Practice                 [Page 13]

RFC 2360          Guide for Internet Standards Writers         June 1998


  establish a state, the events that cause state transitions and the
  actions that result from those transitions.  Through these models, an
  understanding of the protocol's dynamic operation as sequence of
  state transitions that occur for any given event is possible.  State
  transitions can be detailed by diagrams, tables, or time lines.

  Note that state-machine models are never to take the place of
  detailed text description of the specification.  They are adjuncts to
  the text.  The protocol specification shall always take precedence in
  the case of a conflict.

  When using a state transition diagram, show each possible protocol
  state as a box connected by state transition arcs.  The author should
  label each arc with the event that causes the transition, and, in
  parentheses, any actions taken during the transition.  The STD 5/RFC
  1112 provides an example of such a diagram.  As ASCII text is the
  preferred storage format for RFCs, only simple diagrams are possible.
  Tables can summarize more complex or extensive state transitions.

  In a state transition table, the different events are listed
  vertically and the different states are listed horizontally.  The
  form, action/new state, represents state transitions and actions.
  Commas separate multiple actions, and succeeding lines are used as
  required.  The authors should present multiple actions in the order
  they must be executed, if relevant.  Letters that follow the state
  indicate an explanatory footnote.  The dash ('-') indicates an
  illegal transition.  The STD 51/RFC 1661 provides an example of such
  a state transition table.  The initial columns and rows of that table
  follow as an example:

          | State
          |    0         1         2         3         4         5
    Events| Initial   Starting  Closed    Stopped   Closing   Stopping
    ------+-----------------------------------------------------------
     Up   |    2     irc,scr/6     -         -         -         -
     Down |    -         -         0       tls/1       0         1
     Open |  tls/1       1     irc,scr/6     3r        5r        5r
     Close|    0       tlf/0       2         2         4         4
          |
      TO+ |    -         -         -         -       str/4     str/5
      TO- |    -         -         -         -       tlf/2     tlf/3

  The STD 18/RFC 904 also presents state transitions in table format.
  However, it lists transitions in the form n/a, where n is the next
  state and a represents the action.  The method in RFC 1661 is
  preferred as new state logically follows action.  In addition, RFC
  904's Appendix C models transitions as the Cartesian product of two
  state machines.  This is a more complex representation that may be



Scott                    Best Current Practice                 [Page 14]

RFC 2360          Guide for Internet Standards Writers         June 1998


  difficult to comprehend for those readers that are unfamiliar with
  the format.  We recommend that authors present tables as defined in
  the previous paragraph.

  A final method of representing state changes is by a time line.  The
  two sides of the time line represent the machines involved in the
  exchange.  The author lists the states the machines enter as time
  progresses (downward) along the outside of time line.  Within the
  time line, show the actions that cause the state transitions.  An
  example:

           client                                     server

              |                                          |
              |                                          |   LISTEN
  SYN_SENT    |-----------------------                   |
              |                       \ syn j            |
              |                        ----------------->|   SYN_RCVD
              |                                          |
              |                        ------------------|
              |        syn k, ack j+1 /                  |
  ESTABLISHED |<----------------------                   |
              |                                          |

4  Document Checklist

  The following is a checklist based on the above guidelines that can
  be applied to a document:

  o Does it identify the security risks?  Are countermeasures for each
    potential attack provided?  Are the effects of the security
    measures on the operating environment detailed?
  o Does it explain the purpose of the protocol or procedure?  Are the
    intended functions and services addressed?  Does it describe how it
    relates to existing protocols?
  o Does it consider scaling and stability issues?
  o Have procedures for assigning numbers been coordinated with IANA?
  o Does it discuss how to manage the protocol being specified?  Is a
    MIB defined?
  o Is a target audience defined?
  o Does it reference or explain the algorithms used in the protocol?
  o Does it give packet diagrams in recommended form, if applicable?
  o Is there a change log?
  o Does it describe differences from previous versions, if
    applicable?
  o Does it separate explanatory portions of the document from
    requirements?
  o Does it give examples of protocol operation?



Scott                    Best Current Practice                 [Page 15]

RFC 2360          Guide for Internet Standards Writers         June 1998


  o Does it specify behavior in the face of incorrect operation by
    other implementations?
  o Does it delineate which packets should be accepted for processing
    and which should be ignored?
  o If multiple descriptions of a requirement are given, does it
    identify one as binding?
  o How many optional features does it specify?  Does it separate them
    into option classes?
  o Have all combinations of options or option classes been examined
    for incompatibility?
  o Does it explain the rationale and use of options?
  o Have all mandatory and optional requirements be identified and
    documented by the accepted key words that define Internet
    requirement levels?
  o Does it conform to the current internationalization policies of
    the IETF?
  o Are the recommended meanings for common Internet terms used?
  o If not, are new or altered definitions for terms given in a
    glossary?

5  Security Considerations

  This document does not define a protocol or procedure that could be
  subject to an attack.  It establishes guidelines for the information
  that should be included in RFCs that are to be submitted to the
  standards track.  In the area of security, IETF standards authors are
  called on to define clearly the threats faced by the protocol and the
  way the protocol does or does not provide security assurances to the
  user.

6  References

  [RFC 791]   Postel, J., "Internet Protocol (IP)", STD 5, RFC 791
              September 1981.

  [RFC 904]   Mills, D., "Exterior Gateway Protocol formal
              specification", RFC 904, April 1984.

  [RFC 1058]  Hedrick, C., "Routing Information Protocol", STD 34,
              RFC 1058, June 1988.

  [RFC 1112]  Deering, S., "Host extensions for IP multicasting",
              STD 5, RFC 1112, August 1989.

  [RFC 1122]  Braden, R., "Requirements for Internet Hosts --
              Communication Layers", STD 3, RFC 1122, October 1989.





Scott                    Best Current Practice                 [Page 16]

RFC 2360          Guide for Internet Standards Writers         June 1998


  [RFC 1123]  Braden, R., "Requirements for Internet hosts --
              Application and Support", STD 3, RFC 1123, October 1989.

  [RFC 1311]  Postel, J., "Introduction to the STD Notes", RFC 1311,
              March 1992.

  [RFC 1350]  Sollins, K., "The TFTP Protocol (Revision 2)", STD 33,
              RFC 1350, July 1992.

  [RFC 1661]  Simpson, W., "The Point-to-Point Protocol (PPP)", STD 51,
              RFC 1661, July 1994.

  [RFC 1662]  Simpson, W., "PPP in HLDC-like Framing", STD 51, RFC 1662,
              July 1994.

  [RFC 1700]  Reynolds, J., and J. Postel, "Assigned Numbers", STD 2,
              RFC 1700, October 1994.  (http://www.iana.org)

  [RFC 1939]  Meyers, J., and M. Rose, "Post Office Protocol - Version
              3", STD 53, RFC 1939, May 1996.

  [RFC 1958]  Carpenter, B., "Architectural Principles of the Internet",
              RFC 1958, June 1996.

  [RFC 1983]  Malkin, G., "Internet Users' Glossary", FYI 18, RFC 1983,
              August 1996.

  [RFC 2026]  Bradner, S., "The Internet Standards Process -- Revision 3",
              RFC 2026, October 1996.

  [RFC 2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Level", BCP 14, RFC 2119, March 1997.

  [RFC 2328]  Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.

  [RFC 2223]  Postel, J. and J. Reynolds, "Instructions to RFC Authors",
              RFC 2223, October 1997.

  [RFC 2277]  Alvestrand, H., "IETF Policy on Character Sets and
              Language", RFC 2277, January 1998.

  [RFC 2316]  Bellovin, S., "Report of the IAB Security Architecture
              Workshop", RFC 2316, April 1998.








Scott                    Best Current Practice                 [Page 17]

RFC 2360          Guide for Internet Standards Writers         June 1998


7  Acknowledgments

  Peter Desnoyers and Art Mellor began the work on this document.
  Others that contributed were:

    Bernard Aboba
    Harald T. Alvestrand
    Fred Baker
    Scott Bradner
    Brian Carpenter
    Robert Elz
    Dirk Fieldhouse
    Dale Francisco
    Gary Malkin
    Neal McBurnett
    Thomas Narten
    Craig Partridge
    Vern Paxson
    Mike O'Dell
    Henning Schulzrinne
    Kurt Starsinic
    James Watt

8  Editor's Address

  Gregor D. Scott
  Director, Defense Information Systems Agency
  ATTN: JIEO-JEBBC
  Ft. Monmouth, NJ  07703-5613
  USA

  Phone:    (732) 427-6856
  Fax:      (732) 532-0853
  EMail:    [email protected]

















Scott                    Best Current Practice                 [Page 18]

RFC 2360          Guide for Internet Standards Writers         June 1998


9  Appendix

CHANGES FROM DRAFT -06

  The following changes were made following IESG review:

  References to RFC 1543 were changed to RFC 2223 that obsoleted it.

  In section 2.1, "export control" was dropped as a valid reason for
  not selecting a security mechanism.  In addition, ambiguous or
  conflicting sentences were removed.

  In section 2.1 reference made to RFC 2315 as an additional source of
  information.

  Section 2.5 was changed to highlight the Change Log's purpose as
  assistance to implementers.

  The IANA Considerations section (2.13) was rewritten to highlight
  that the IANA guidelines document is work in progress but should be
  used when it becomes available.

  Section 3.4 Character Sets was deleted and replaced by section 2.17
  Internationalization.

  Spelling and grammar corrections were made.

CHANGES FROM DRAFT -05

  A sentence pointing to a pending document that further addresses IANA
  considerations was added to section 2.13.  The current draft of that
  document is draft-iesg-iana-considerations-02.txt.  A clause stating
  that the IANA established the assignment policies was removed since it
  appeared to conflict with the intent of the referenced ID.
  Placeholders for the BCP and RFC number have been added to the text
  and reference section.

  A new section (2.5) requiring change logs as documents progress along
  the standards track was added.

  References to RFC 2044 were changed to RFC 2279 that obsoleted it.

  Spelling and grammar corrections were made.

CHANGES FROM DRAFT -04

  A paragraph pointing to a pending document that further addresses
  security was updated.



Scott                    Best Current Practice                 [Page 19]

RFC 2360          Guide for Internet Standards Writers         June 1998


10  Full Copyright Statement

  Copyright (C) The Internet Society (1998).  All Rights Reserved.

  This document and translations of it may be copied and furnished to
  others, and derivative works that comment on or otherwise explain it
  or assist in its implementation may be prepared, copied, published
  and distributed, in whole or in part, without restriction of any
  kind, provided that the above copyright notice and this paragraph are
  included on all such copies and derivative works.  However, this
  document itself may not be modified in any way, such as by removing
  the copyright notice or references to the Internet Society or other
  Internet organizations, except as needed for the purpose of
  developing Internet standards in which case the procedures for
  copyrights defined in the Internet Standards process must be
  followed, or as required to translate it into languages other than
  English.

  The limited permissions granted above are perpetual and will not be
  revoked by the Internet Society or its successors or assigns.

  This document and the information contained herein is provided on an
  "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
  TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
  BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
  HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
  MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
























Scott                    Best Current Practice                 [Page 20]