1$0$3.141592654$13$2$.5$2$.5$1000$2$2$1.4$4$2$2.5$.1$3.5$.25$4$2$2$.75$4$1.5$1.4$83$100$10$4$4$1.5$2$.5$100$4$1000000$4$2$1000$6.283185307$.5$12.56637061$2$2$2$2$2$2$3.14159$100$100$.09$.14$.22$.312$12$.081$13$.072$14$.064$15$.057$16$.051$17$.045$18$.040$19$.036$20$.32$21$.0285$22$.0253$23$.0226$24$.0201$25$.0179$26$.0159$27$.0142$28$.0126$29$.0113$30$.01$31$.0089$32$.008$33$.0071$34$.0063$35$.0056$36$.005$37$.0045$38$.004$39$.0035$40$.0031$12$40$40$4$4$4$18$2$40$4$4$4$18$2$10$10$100$100$492$.05$2$492$30$.95$150$.97$149.9$.98$118$148$.1264$2$.1593$3$.2009$4$.2533$5$.3195$6$.4028$7$.5080$8$.6405$9$.8077$10$1.018$11$1.284$12$1.619$13$2.042$14$2.575$15$3.247$16$4.094$17$5.163$18$6.51$19$8.21$20$10.35$21$13.05$22$16.46$23$20.76$24$26.17$25$33$26$41.62$27$52.48$28$66.17$29$83.44$30$105.2$31$132.7$32$167.3$33$211$34$266$35$335$36$423$37$533$38$672.6$39$848.1$40$1069$3$1.6$4$4.4$1.8$1.4$5.68$12.8$5.1$4$.94$11$6.7$3.4$1000$1000$.1264$.1593$2$.2009$3$.2533$4$.3195$5$.4028$6$.5080$7$.6405$8$.8077$9$1.018$10$1.284$11$1.619$12$2.042$13$2.575$14$3.247$15$4.094$16$5.163$17$6.51$18$8.21$19$10.35$20$13.05$21$16.46$22$20.76$23$26.17$24$33$25$41.62$26$52.48$27$66.17$28$83.44$29$105.2$30$132.7$31$167.3$32$211$33$266$34$335$35$423$36$533$37$672.6$38$848.1$39$1069$40$1000$1000$3$5.5$5$24$8.7$3$8$11.7$9$18$*8�)          *** ELECTRICAL ENGENEERING & DESIGN ***$4                 J. Schrabal, April 1979$44File cleaned up of typos and put somewhat of a structure$4in it: 8/25/82 by S. Kluger$44�.To select one of the programs just type it's number$4and hit 'RETURN' key. Enter all alphabetic answers in UPPER CASE!$44Select from the following routines (0 to quit) :$4     1. Ohm's law (DC)$4     2. Zener stabilized DC supply$4     3. DC power supply design$4     4. Low pass 2-pole Butterworth filter$4     5. Series resonant frequency circuit$4     6. Passive band-pass filter$4     7. Small coil design & inductance calculations$4     8. Long wire antenna$4     9. Dipole or half wave antenna$4    10. Time constant calculation$4    11. Resistance of wire$4    12. Crystal (rec./tr.) frequency calculations$44What routine do you wish to select$4;�"'�.�. 7�6��.7�68�Please answer with number fom 0 to 12$46A�[� \96�6�6        L6�6o6�6�6'q6),6+�6-_65f4          *** OHM's LAW (DC) ***$44 ENTER values for 2 (two) known$4 ENTER 0 (zero) for unknown values to be calculated$44Potential in volts $4;�"'Current flow in amperes $4;�"'�.�. 7�6vResistance in ohms$4;�"'�.�. �. 7�6��.�. �. 76�Power in watts $4;�"'�.�. �. 7B6��.�. �. 7\6��.�. �. 7v6ɀ��6����6�������6݀����.�6݀�����6݀��.���4Potential = $�# volts$4Current flow = $�# amperes$4Resistance = $�# ohms$4Power = $�# watts$44MORE CALCULATIONS? (YES/NO)$4;�1'�YES7�66�6A4      *** ZENER STABILIZED CIRCUIT DESIGN ***$44Voltage rating of zener diode$4;�"'Wattage rating of zener diode$4;�"'Maximum DC voltage of power supply$4;�      "'��  �.����.For an open circuit, or for load up to $�.# miliamperes$4Use $�#ohms $�# watt resistor$44Will the load (device) you use have larger than $�#watts consumption?$4(YES/NO)$4;�
1'�
NO7%6       What is the maximum wattage of the device you use:$4;� "'� �        �.   �.
� Use $� #ohms $�� # watts resistor$4WARNING: Zener diode will probably burn out if the load$4         should be removed and circuit left open.$44More calculations? (YES/NO)$4;�1'�YES7        I6�6   L6A          *** POWER SUPPLY DESIGN ***$44What is LINE AC voltage supplied by utility$4;�"'What is transformer's primary rating (or tap)$4;�  "'What is RMS voltage of secondary winding$4;� "'� � ��   �� . ���. What is the needed (desired) DC voltage$4;�"'� . �7
t6�� 7
6What is the voltage rating of REGULATORS$4                  used with the power supply$4;�"'�.�.�7
�6j�.�.�7 6�Presuming that you use full wave, will the rectifying bridge$4consist of four (4) or two (2) diodes (as in centertap sec)$4;�"'�.�. 7 �6 �4Answer whether 2 or 4 diodes will be used$446 �.7 �.�.7 ��.�� �.���What is the load to be used in amperes? (if unknown type 0)$4;�"'�.7 Z6?��.�.���.4Line = $�# volts AC (max).Transformer primary (tap) = $�       # volts AC$4Secondary = $� # volts RMS. Peak sec.voltage = $�#4For desired $�# volts DC use rectifying bridge of $�#4diodes rated at $�# volts (minimum) and $.�#amps (min.)$4Filter capacitor should be rated $�# microfarads (minimum)$4and $�#volts DC (min).Permissible ripple = $�# volts$44NOTE:Use ohm-law to calculate bleeder-resistor.$4More calculation for another secondary (YES/NO)$4;�1'�YES7u6  �More calculation for another transformer (or tap)$4;�1'�YES7�6        �6�6AYour secondary winding has overly high rating for this$4power requirement$446        �Your secondary winding has low voltage rating for this$4power requirement$446      �Power supply DC voltage must be more than 2.5 volts higher$4     than voltage of REGULATOR.$446
4Your supply voltage is overly high and will cause the regulator$4to overheat. Reduce your voltage to $�.# volts$4One way to do this is to insert series of diodes with rating$4which will be printed below, each such diode reducing the$4supply DC voltage by .7 volts (two diodes reduce 1.4 v)$4Then add this voltage to regulators when answering Q.$446
4How many TAB-type regulators will be used$4;�"'         K-type regulators$4;�"'Any other load (in ampers)$4;�"'���.�6 Z         *** LOW PASS FILTER ***$4This program is based on OPERATIONAL AMPLIFIERS DESIGNS$4& APPLICATIONS by Graeme & Tobey, McGraw, 1971.$44Cut off frequency (in Hertz)$4;�"'Desired pass-band gain (H)$4;�"'Peaking factor: 0(zero) for standard 2-pole Butterworth$4(alpha)         value for non-standard filter$4;�"'�.7.�.. ��.!7=6dValue of C2 in mF (microFarads)$4Note: 0.02 mF = 0.000 000 02 F     $4;� "'��."��� .#4          .---------.                C1 = $.$.�� �.%#4          X         :                C2 = $� #4          X R2      = C2             R1 = $��#4          X         :                R2 = $�#4    R1    :    R3   : - o            R3 = $��.#4--XXXXXX--:--XXXXXX-:---o  o$4          :             o    o$4 E-in     :             o      o---------------$4          = C1        + o    o$4          :          ---o  o$4          :          :  o           E-out$4          :          :$4----------:----------:--------------------------$4Another gain/alpha ratio? (YES/NO)$4;�1'�YES7!6�Another filter configuration (YES/NO)$4;�1'�YES7a6_6d6ABecause operational amplifiers are non-ideal, pass-$4band gain should be chosen to be less than 10 when peaking$4factor Alpha = 0-1$4Gain of 100 with peaking factor=1 is acceptable for $4for peaking gain 80 dB in 2-pole Batterworth config-$4uration.$446�4          *** SERIES RESONANT FREQUENCY CIRCUITS ***$44Inductance in MH (Milli-Henrys)$4;�"'Capacitance in NF (Nano-Farads)$4;� "'4Series L/C resonant frequency is $.&.'�� .(# KHz (Kilo Hertz)$4Note: this frequency is not affected by resistance in the circuit$44More calculations? (YES/NO)$4;�1'�YES7�6�6A4      *** PASSIVE BANDPASS FILTER DESIGN ***$44   This program is based on ELECTRICAL ENGINEERING &$4CIRCUITS DESIGN by Skilling, Willey, 1961.$4   It will calculate ideal component values for the$4T-section and PI-Section filters, given F1, F2,and R$44What is F1, low cut-off frequency (in Hertz)$4;�"'What is F2, high cut-off frequency (in Hertz)$4;�"'��7C6dWhat is R, image impedance in mid-frequency (in ohms)$4;�"'�.7�6��.7�6��.7�6�� ���.)����If you want T-section type 'T'$4;�1'�T7�6�42Ca=$� ��.*#5  Cb=$.��#5  R=$�#4La/2=$��.+#5  Lb=$�� �#44    2Ca     La/2                La/2     2Ca$4o----!!----mmmmmmm---:-----:---mmmmmmm---!!-.....$4                     :     :                    :$4                     :     m                    X$4                  Cb =     m  Lb             R  X$4                     :     m                    X$4                     :     :                    :$4o--------------------:-----:----------------....:$44If you want PI-section type 'P'$4;�1'�P7&6�4La=$��#5  2Lb=$.,�� �#5  R=$�#4Ca=$� ��#5  Cb/2=$.��.-#44                 La       Ca$4o-------:----:-mmmmmmm----!!-----:----:..........:$4        :    :                   :    :          :$4        m    :                   :    m          X$4    2Lb m    = Cb/2        Cb/2  =    m 2Lb    R X$4        m    :                   :    m          X$4        :    :                   :    :          :$4o-------:----:-------------------:----:..........:$44Another passive filter calculation (YES/NO)$4;�
1'�
YES7a6�6d6AHigh cut-off frequency must be higher than low-$4cut-off frequency$46�This value must be larger than 0 (zero)$46�Answer 'P' or 'T' only$46�        *** SMALL COIL DESIGN ***$44Program limitations:$4        Inductance = 100 microhenries MAXIMUM$4        Wire size  =  12 size MAXIMUM$4                      40 gage MINIMUM$4        (resistors used as form must be of composite type)$44PROGRAMS:$4     1. INDUCTANCE$4     2. INDUCTIVE REACTANCE$44 WHICH ONE OF THE TWO PROGRAMS ABOVE YOU WANT COMPUTED$4;�"'�.7!�6"q�..7!�6 ��.7!�6 �WHAT IS THE DESIRED INDUCTIVE REACTANCE IN OHMS$4;�"'AT WHAT FREQUENCY IN MHZ$4;�"'��./.0�INDUCTANCE = $�# MICROHENRIES$4�.17"<6"�Program limitation is 100 microhenries MAXIMUM$46 �What is the desired coil inductance in microhenries$4;�"'�.27"�6"<Coil forms:$4   A = 1/4 WATT RESISTOR$4   B = 1/2 WATT RESISTOR$4   C = 1 WATT RESISTOR$4   D = 2 WATT RESISTOR$4   E = OTHER FORM$4 SELECT COIL FORM FROM ABOVE (A,B,C,D,E)$4;�1'�A7#�� .3�B7#�� .4�C7#�� .5�D7#�� .6�E7#�6#�6#�6#�What is the diameter of the coil in inches$4;� "'What gage enameled wire will be used:$4                (gage 12 to 40)$4;�"'�.77$_�.8�.97$n�.:�.;7$}�.<�.=7$��.>�.?7$��.@�.A7$��.B�.C7$��.D�.E7$Ȁ.F�.G7$׀.H�.I7$�.J�.K7$��.L�.M7%�.N�.O7%�.P�.Q7%"�.R�.S7%1�.T�.U7%@�.V�.W7%O�.X�.Y7%^�.Z�.[7%m�.\�.]7%|�.^�._7%��.`�.a7%��.b�.c7%��.d�.e7%��.f�.g7%ǀ.h�.i7%ր.j�.k7%�.l�.m7%�.n�.o7&�.p�.q�.r 7&6#��.s��.t��.u��.v� � � .w�I.x� � �.y��.z��.{��.|� � � .}�I.~� � ��7&���6&�����.B.�4Wire size = $�# gage$4Coil diameter = $� # inches$4Number of turns = $�#4Coil length = $��.�B.�# inches$4More calculations? (YES/NO)$4;�1'�YES7'n6 �6'q6A4          *** LONG WIRE ANTENNA ***$44    When an antenna is more than half wavelength long$4it is called 'long wire' or 'harmonic' antenna.$44What frequency in MHz (Mega Hertz)$4;�"'How many half-waves long$4;�"'�.��.��Length = $�# Feet$4Note: If this antenna is fed in exact center at $�.�# ft.$4no unbalance will occur on any harmonic frequency.$44More calculations? (YES/NO)$4;�1'�YES7))6(6A4      *** DIPOLE OR HALF WAVE ANTENNA ***$44Frequency in MHz (Mega Hertz)$4;�"'�.��4Actual half-wave lenght is $�# feet$4�.�7)Ȁ�.��.�7)ڀ�.��.�7)��.�Lenght corrected to free space factor and to capacitance$4of insulators is $�# feet$44� .���.��<----------$�# ft-------->$4         <-$� #ft->$4o----------o-------o----------o$4            o     o     ^$4             o   o      E = $�# ft$4              o=o  <- 600 ohms line 3.75 in spaced #16 wire$4              o o                   5 in spaced #14 wire$4              o o                   6 in spaced #12 wire$44More calculations (YES/NO)$4;�1'�YES7+�6)[6A4          *** TIME CONSTANT CALCULATIONS ***$44NOTE: If you wish to substitute Farads by MICROfarads then you$4    must use resistance in MEGohms in order to get result$4    in seconds.$4What is the resistance in ohms$4;�"'What is the capacitance in farads$4;� "'Time constant = $�� #seconds$4More calculations? (YES/NO)$4;�1'�YES7-\6,6-_6A4          *** RESISTANCE OF WIRE ***$44What is the desired resistance in ohms$4;�"'What A.W.G.(B&S) size wire NO. is available?$4                     (if unknown, enter '0')$4;� "'� .7.+62)� .7.:�!.�� .�7.I�!.�� .�7.X�!.�� .�7.g�!.�� .�7.v�!.�� .�7.��!.�� .�7.��!.�� .�7.��!.�� .�7.��!.�� .�7.��!.�� .�7.Ѐ!.�� .�7.߀!.�� .�7.�!.�� .�7.��!.�� .�7/ �!.�� .�7/�!.�� .�7/*�!.�� .�7/9�!.�� .�7/H�!.�� .�7/W�!.�� .�7/f�!.�� .�7/u�!.�� .�7/��!.�� .�7/��!.�� .�7/��!.�� .�7/��!.�� .�7/��!.�� .�7/π!.�� .�7/ހ!.�� .�7/�!.�� .�7/��!.�� .�70 �!.�� .�70�!.�� .�70)�!.�� .�708�!.�� .�70G�!.�� .�70V�!.�� .�70e�!.�� .�70t�!.�� .�70��!.�Of what MATERIAL is the wire$4;�"1'�#�".�S�$�!�#COP70ˀ!�!.�#ALU70߀!�!.��#BRA70�!�!.��#CAD71�!�!.��#CHR71�!�!.��#GOL71/�!�!.��#IRO71C�!�!.��#LEA71W�!�!.��#NIC71k�!�!.��#BRO71�!�!.��#SIL71��!�!.��#STE71��!�!.��#TIN71��!�!.��#ZIN71π!�!.��!�$�#COP 71�60��.��!For $�#ohms use $�# feet of No.$� #�"$ wire$465-What is distance in feet$4;� "'�%�.�� �%.�72f�.�%.�72u�.��%.�72��.��%.�72��.��%.�72��.��%.�72��.��%.�72��.��%.�72π.��%.�72ހ.��%.�72�.�%.72��.�%.73 �.�%.73�.�%.73)�.�%.     738�.
�%. 73G�. �%. 73V�.�%.73e�.�%.73t�.�%.73��.�%.73��.�%.73��.�%.73��.�%.73��.�%.73΀.�%.73݀. �%.!73�."�%.#73��.$�%.%74
�.&�%.'74�.(�%.)74(�.*�%.+747�.,�%.-74F�..�%./74U�.0�%.174d�.2�%.374s�.4�%.574��.6�%.774��.8�%.974��.:�%.;74��.<The smallest copper wire for $�# ohms at distance of $� # feet$4   that can be safely used is No.$�# A.W.G.(B&S)$4More calculations? (YES/NO)$4;�1'�YES75c6-�65f6A4 ***RECEIVING & TRANSMITTING CRYSTAL CALCULATIONS***  $44What is the receiving frequency? (in MHz)$4;�"'What is the transmitting frequency? (in MHz)$4;�"'67�What is 1st IF freq.(in MHz) of rec.$4;�"'What is RECEIVING crystal divider$4;�&"'What is TRANSMITTING crystal multiplier$4;�'"'4For receiving on $�# MHz (with $�# MHz IF) & $�&# divider$4 ORDER $���&.=#KHz receiving crystal$4For transmitting on $�# MHz (tranmit multiplier=$�'#)$4ORDER $��'.># KHz transmitting crystal$44More crystal freq. calculations? (YES/NO)$4;�1'�YES77�65�67�6AWhat make and model transceiver?$4 STANDARD 146A - MOTOROLA 80D - VOICECOMMANDER$4;�(1'�(�(.?S�(STA78768z�(MOT78W�.@�&.A�'.B66��(VOI78w�.C�&.D�'.E66�66�.F�&.G�'.H66�MANDER$4;�(1'�(�(.?S�(STA78768z�(MOT78W�.@�&.A�'.B66��(VOI