?



Internet Engineering Task Force (IETF)                        Y. Sheffer
Request for Comments: 9115                                        Intuit
Category: Standards Track                                       D. Lopez
ISSN: 2070-1721                                        A. Pastor Perales
                                                         Telefonica I+D
                                                             T. Fossati
                                                                    ARM
                                                         September 2021


  An Automatic Certificate Management Environment (ACME) Profile for
                  Generating Delegated Certificates

Abstract

  This document defines a profile of the Automatic Certificate
  Management Environment (ACME) protocol by which the holder of an
  identifier (e.g., a domain name) can allow a third party to obtain an
  X.509 certificate such that the certificate subject is the delegated
  identifier while the certified public key corresponds to a private
  key controlled by the third party.  A primary use case is that of a
  Content Delivery Network (CDN), the third party, terminating TLS
  sessions on behalf of a content provider (the holder of a domain
  name).  The presented mechanism allows the holder of the identifier
  to retain control over the delegation and revoke it at any time.
  Importantly, this mechanism does not require any modification to the
  deployed TLS clients and servers.

Status of This Memo

  This is an Internet Standards Track document.

  This document is a product of the Internet Engineering Task Force
  (IETF).  It represents the consensus of the IETF community.  It has
  received public review and has been approved for publication by the
  Internet Engineering Steering Group (IESG).  Further information on
  Internet Standards is available in Section 2 of RFC 7841.

  Information about the current status of this document, any errata,
  and how to provide feedback on it may be obtained at
  https://www.rfc-editor.org/info/rfc9115.

Copyright Notice

  Copyright (c) 2021 IETF Trust and the persons identified as the
  document authors.  All rights reserved.

  This document is subject to BCP 78 and the IETF Trust's Legal
  Provisions Relating to IETF Documents
  (https://trustee.ietf.org/license-info) in effect on the date of
  publication of this document.  Please review these documents
  carefully, as they describe your rights and restrictions with respect
  to this document.  Code Components extracted from this document must
  include Simplified BSD License text as described in Section 4.e of
  the Trust Legal Provisions and are provided without warranty as
  described in the Simplified BSD License.

Table of Contents

  1.  Introduction
    1.1.  Terminology
    1.2.  Conventions Used in This Document
  2.  Protocol Flow
    2.1.  Preconditions
    2.2.  Overview
    2.3.  Delegated Identity Profile
      2.3.1.  Delegation Configuration
      2.3.2.  Order Object Transmitted from NDC to IdO and to ACME
              Server (STAR)
      2.3.3.  Order Object Transmitted from NDC to IdO and to ACME
              Server (Non-STAR)
      2.3.4.  Capability Discovery
      2.3.5.  Negotiating an Unauthenticated GET
      2.3.6.  Terminating the Delegation
    2.4.  Proxy Behavior
  3.  CA Behavior
  4.  CSR Template
    4.1.  Template Syntax
    4.2.  Example
  5.  Further Use Cases
    5.1.  CDN Interconnection (CDNI)
      5.1.1.  Multiple Parallel Delegates
      5.1.2.  Chained Delegation
    5.2.  Secure Telephone Identity Revisited (STIR)
  6.  IANA Considerations
    6.1.  New Fields in the "meta" Object within a Directory Object
    6.2.  New Fields in the Order Object
    6.3.  New Fields in the Account Object
    6.4.  New Error Types
    6.5.  CSR Template Extensions
  7.  Security Considerations
    7.1.  Trust Model
    7.2.  Delegation Security Goal
    7.3.  New ACME Channels
    7.4.  Restricting CDNs to the Delegation Mechanism
  8.  References
    8.1.  Normative References
    8.2.  Informative References
  Appendix A.  CSR Template: CDDL
  Appendix B.  CSR Template: JSON Schema
  Acknowledgements
  Authors' Addresses

1.  Introduction

  This document is related to [RFC8739], in that some important use
  cases require both documents to be implemented.  To avoid
  duplication, we give here a bare-bones description of the motivation
  for this solution.  For more details, please refer to the
  introductory sections of [RFC8739].

  An Identifier Owner (IdO) has agreements in place with one or more
  Name Delegation Consumer (NDC) to use and attest its identity.

  In the primary use case, the IdO is a content provider, and we
  consider a Content Delivery Network (CDN) provider contracted to
  serve the content over HTTPS.  The CDN terminates the HTTPS
  connection at one of its edge cache servers and needs to present its
  clients (browsers, mobile apps, set-top boxes) a certificate whose
  name matches the domain name of the URL that is requested, i.e., that
  of the IdO.  Understandably, some IdOs may balk at sharing their
  long-term private keys with another organization; equally, delegates
  would rather not have to handle other parties' long-term secrets.
  Other relevant use cases are discussed in Section 5.

  This document describes a profile of the ACME protocol [RFC8555] that
  allows the NDC to request from the IdO, acting as a profiled ACME
  server, a certificate for a delegated identity -- i.e., one belonging
  to the IdO.  The IdO then uses the ACME protocol (with the extensions
  described in [RFC8739]) to request issuance of a Short-Term,
  Automatically Renewed (STAR) certificate for the same delegated
  identity.  The generated short-term certificate is automatically
  renewed by the ACME Certification Authority (CA), is periodically
  fetched by the NDC, and is used to terminate HTTPS connections in
  lieu of the IdO.  The IdO can end the delegation at any time by
  simply instructing the CA to stop the automatic renewal and letting
  the certificate expire shortly thereafter.

  While the primary use case we address is a delegation of STAR
  certificates, the mechanism proposed here also accommodates long-
  lived certificates managed with the ACME protocol.  The most
  noticeable difference between long-lived and STAR certificates is the
  way the termination of the delegation is managed.  In the case of
  long-lived certificates, the IdO uses the "revokeCert" URL exposed by
  the CA and waits for the explicit revocation based on the Certificate
  Revocation List (CRL) and Online Certificate Status Protocol (OCSP)
  to propagate to the relying parties.

  In case the delegated identity is a domain name, this document also
  provides a way for the NDC to inform the IdO about the CNAME mappings
  that need to be installed in the IdO's DNS zone to enable the
  aliasing of the delegated name, thus allowing the complete name
  delegation workflow to be handled using a single interface.

  We note that other standardization efforts address the problem of
  certificate delegation for TLS connections, specifically
  [TLS-SUBCERTS] and [MGLT-LURK-TLS13].  The former extends the TLS
  certificate chain with a customer-owned signing certificate; the
  latter separates the server's private key into a dedicated, more-
  secure component.  Compared to these other approaches, the current
  document does not require changes to the TLS network stack of the
  client or the server, nor does it introduce additional latency to the
  TLS connection.

1.1.  Terminology

  IdO     Identifier Owner, the holder (current owner) of an identifier
          (e.g., a domain name) that needs to be delegated.  Depending
          on the context, the term IdO may also be used to designate
          the (profiled) ACME server deployed by the Identifier Owner
          or the ACME client used by the Identifier Owner to interact
          with the CA.

  NDC     Name Delegation Consumer, the entity to which the domain name
          is delegated for a limited time.  This is a CDN in the
          primary use case (in fact, readers may note the similarity of
          the two abbreviations).  Depending on the context, the term
          NDC may also be used to designate the (profiled) ACME client
          used by the Name Delegation Consumer.

  CDN     Content Delivery Network, a widely distributed network that
          serves the domain's web content to a wide audience at high
          performance.

  STAR    Short-Term, Automatically Renewed, as applied to X.509
          certificates.

  ACME    Automated Certificate Management Environment, a certificate
          management protocol [RFC8555].

  CA      Certification Authority, specifically one that implements the
          ACME protocol.  In this document, the term is synonymous with
          "ACME server deployed by the Certification Authority".

  CSR     Certificate Signing Request, specifically a PKCS#10 [RFC2986]
          Certificate Signing Request, as supported by ACME.

  FQDN    Fully Qualified Domain Name.

1.2.  Conventions Used in This Document

  The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
  "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
  "OPTIONAL" in this document are to be interpreted as described in
  BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
  capitals, as shown here.

2.  Protocol Flow

  This section presents the protocol flow.  For completeness, we
  include the ACME profile proposed in this document as well as the
  ACME STAR protocol described in [RFC8739].

2.1.  Preconditions

  The protocol assumes the following preconditions are met:

  *  The IdO exposes an ACME server interface to the NDC(s) comprising
     the account management interface.

  *  The NDC has registered an ACME account with the IdO.

  *  The NDC and IdO have agreed on a "CSR template" to use, including
     at a minimum: subject name (e.g., "abc.ido.example"), requested
     algorithms and key length, key usage, and extensions.  The NDC
     will use this template for every CSR created under the same
     delegation.

  *  The IdO has registered an ACME account with the Certification
     Authority (CA).

  Note that even if the IdO implements the ACME server role, it is not
  acting as a CA; in fact, from the point of view of the certificate
  issuance process, the IdO only works as a "policing" forwarder of the
  NDC's key pair and is responsible for completing the identity
  verification process towards the CA.

2.2.  Overview

  For clarity, the protocol overview presented here covers the main use
  case of this protocol, namely delegation of STAR certificates.
  Protocol behavior for non-STAR certificates is similar, and the
  detailed differences are listed in the following sections.

  The interaction between the NDC and the IdO is governed by the
  profiled ACME workflow detailed in Section 2.3.  The interaction
  between the IdO and the CA is ruled by ACME [RFC8555], ACME STAR
  [RFC8739], and any other ACME extension that applies (e.g.,
  [TOKEN-TNAUTHLIST] for Secure Telephone Identity Revisited (STIR)).

  The outline of the combined protocol for STAR certificates is as
  follows (Figure 1):

  *  NDC sends an Order1 for the delegated identifier to IdO.

  *  IdO creates an Order1 resource in state "ready" with a "finalize"
     URL.

  *  NDC immediately sends a "finalize" request (which includes the
     CSR) to the IdO.

  *  IdO verifies the CSR according to the agreed upon CSR template.

  *  If the CSR verification fails, Order1 is moved to an "invalid"
     state and everything stops.

  *  If the CSR verification is successful, IdO moves Order1 to state
     "processing" and sends a new Order2 (using its own account) for
     the delegated identifier to the CA.

  *  If the ACME STAR protocol fails, Order2 moves to "invalid", and
     the same state is reflected in Order1 (i.e., the NDC Order).

  *  If the ACME STAR run is successful (i.e., Order2 is "valid"), IdO
     copies the "star-certificate" URL from Order2 to Order1 and
     updates the Order1 state to "valid".

  The NDC can now download, install, and use the short-term certificate
  bearing the name delegated by the IdO.  The STAR certificate can be
  used until it expires, at which time the NDC is guaranteed to find a
  new certificate it can download, install, and use.  This continues
  with subsequent certificates until either Order1 expires or the IdO
  decides to cancel the automatic renewal process with the CA.

  Note that the interactive identifier authorization phase described in
  Section 7.5 of [RFC8555] is suppressed on the NDC-IdO side because
  the delegated identity contained in the CSR presented to the IdO is
  validated against the configured CSR template (Section 4.1).
  Therefore, the NDC sends the "finalize" request, including the CSR,
  to the IdO immediately after Order1 has been acknowledged.  The IdO
  SHALL buffer a (valid) CSR until the Validation phase completes
  successfully.

  Also note that the successful negotiation of the unauthenticated GET
  (Section 3.4 of [RFC8739]) is required in order to allow the NDC to
  access the "star-certificate" URL on the CA.

   .------.            .---------------.            .------.
  |  NDC   |          |       IdO       |          |  ACME  |
  +--------+          +--------+--------+          +--------+
  | Client |          | Server | Client |          | Server |
  '---+----'          '----+---+---+----'          '----+---'
      |                    |       |                    |
      |   Order1           |       |                    |
      |   Signature        |       |                    |
      o------------------->|       |                    |
      |                    |       |                    |
      | [ No identity    ] |       |                    |
      | [ validation via ] |       |                    |
      | [ authorizations ] |       |                    |
      |                    |       |                    |
      |   CSR              |       |                    |
      |   Signature        |       |                    |
      o------------------->|       |                    |
      |   Acknowledgement  |       |   Order2           |
      |<-------------------o       |   Signature        |
      |                    |       o------------------->|
      |                    |       |         Required   |
      |                    |       |   Authorizations   |
      |                    |       |<-------------------o
      |                    |       |   Responses        |
      |                    |       |   Signature        |
      |                    |       o------------------->|
      |                    |       |                    |
      |                    |       |<~~~~Validation~~~~>|
      |                    |       |                    |
      |                    |       |   CSR              |
      |                    |       |   Signature        |
      |                    |       o------------------->|
      |                    |       |   Acknowledgement  |
      |                    |       |<-------------------o
      |                    |       |                    |
      |<~~Await issuance~->|       |<~~Await issuance~~>|
      |                                                 |
      |     (unauthenticated) GET STAR certificate      |
      o------------------------------------------------>|
      |                 Certificate #1                  |
      |<------------------------------------------------o
      |     (unauthenticated) GET STAR certificate      |
      o------------------------------------------------>|
      |                 Certificate #2                  |
      |<------------------------------------------------o
      |                     [...]                       |
      |     (unauthenticated) GET STAR certificate      |
      o------------------------------------------------>|
      |                 Certificate #n                  |
      |<------------------------------------------------o

                Figure 1: End-to-End STAR Delegation Flow

2.3.  Delegated Identity Profile

  This section defines a profile of the ACME protocol to be used
  between the NDC and IdO.

2.3.1.  Delegation Configuration

  The IdO must be preconfigured to recognize one or more NDCs and
  present them with details about certificate delegations that apply to
  each one.

2.3.1.1.  Account Object Extensions

  An NDC identifies itself to the IdO as an ACME account.  The IdO can
  delegate multiple names to an NDC, and these configurations are
  described through "delegation" objects associated with the NDC's
  account object on the IdO.

  As shown in Figure 2, the ACME account resource on the IdO is
  extended with a new "delegations" attribute:

  delegations (required, string):  A URL from which a list of
     delegations configured for this account (Section 2.3.1.3) can be
     fetched via a POST-as-GET request.

  {
    "status": "valid",
    "contact": [
      "mailto:[email protected]"
    ],
    "termsOfServiceAgreed": true,
    "orders": "https://example.com/acme/orders/saHpfB",
    "delegations": "https://acme.ido.example/acme/delegations/adFqoz"
  }

            Figure 2: Example Account Object with Delegations

2.3.1.2.  Delegation Lists

  Each account object includes a "delegations" URL from which a list of
  delegation configurations created by the IdO can be fetched via a
  POST-as-GET request.  The result of the request MUST be a JSON object
  whose "delegations" field is an array of URLs, each identifying a
  delegation configuration made available to the NDC account
  (Section 2.3.1.3).  The server MAY return an incomplete list, along
  with a "Link" header field with a "next" link relation indicating
  where further entries can be acquired.

  HTTP/1.1 200 OK
  Content-Type: application/json
  Link: <https://acme.ido.example/acme/directory>;rel="index"
  Link: <https://acme.ido.example/acme/delegations/adFqoz?/
        cursor=2>;rel="next"

  {
    "delegations": [
      "https://acme.ido.example/acme/delegation/ogfr8EcolOT",
      "https://acme.ido.example/acme/delegation/wSi5Lbb61E4",
      /* more URLs not shown for example brevity */
      "https://acme.ido.example/acme/delegation/gm0wfLYHBen"
    ]
  }

  Note that in the figure above,
  https://acme.ido.example/acme/delegations/adFqoz?cursor=2 includes a
  line break for the sake of presentation.

2.3.1.3.  Delegation Objects

  This profile extends the ACME resource model with a new read-only
  "delegation" object that represents a delegation configuration that
  applies to a given NDC.

  A "delegation" object contains the CSR template (see Section 4) that
  applies to that delegation and, optionally, any related CNAME mapping
  for the delegated identifiers.  Its structure is as follows:

  csr-template (required, object):  CSR template, as defined in
     Section 4.

  cname-map (optional, object):  A map of FQDN pairs.  In each pair,
     the name is the delegated identifier; the value is the
     corresponding NDC name that is aliased in the IdO's zone file to
     redirect the resolvers to the delegated entity.  Both names and
     values MUST be FQDNs with a terminating '.'.  This field is only
     meaningful for identifiers of type "dns".

  An example "delegation" object in JSON format is shown in Figure 3.

  {
    "csr-template": {
      "keyTypes": [
        {
          "PublicKeyType": "id-ecPublicKey",
          "namedCurve": "secp256r1",
          "SignatureType": "ecdsa-with-SHA256"
        }
      ],
      "subject": {
        "country": "CA",
        "stateOrProvince": "**",
        "locality": "**"
      },
      "extensions": {
        "subjectAltName": {
          "DNS": [
            "abc.ido.example"
          ]
        },
        "keyUsage": [
          "digitalSignature"
        ],
        "extendedKeyUsage": [
          "serverAuth"
        ]
      }
    },
    "cname-map": {
      "abc.ido.example.": "abc.ndc.example."
    }
  }

            Figure 3: Example Delegation Configuration Object

  In order to indicate which specific delegation applies to the
  requested certificate, a new "delegation" attribute is added to the
  order object on the NDC-IdO side (see Figures 4 and 7).  The value of
  this attribute is the URL pointing to the delegation configuration
  object that is to be used for this certificate request.  If the
  "delegation" attribute in the order object contains a URL that does
  not correspond to a configuration available to the requesting ACME
  account, the IdO MUST return an error response with status code 403
  (Forbidden), providing a problem document [RFC7807] with type
  "urn:ietf:params:acme:error:unknownDelegation".

2.3.2.  Order Object Transmitted from NDC to IdO and to ACME Server
       (STAR)

  If the delegation is for a STAR certificate, the request object
  created by the NDC:

  *  MUST have a "delegation" attribute indicating the preconfigured
     delegation that applies to this Order;

  *  MUST have entries in the "identifiers" field for each delegated
     name present in the configuration;

  *  MUST NOT contain the "notBefore" and "notAfter" fields; and

  *  MUST contain an "auto-renewal" object and, inside it, the fields
     listed in Section 3.1.1 of [RFC8739].  In particular, the "allow-
     certificate-get" attribute MUST be present and set to true.

  POST /acme/new-order HTTP/1.1
  Host: acme.ido.example
  Content-Type: application/jose+json

  {
    "protected": base64url({
      "alg": "ES256",
      "kid": "https://acme.ido.example/acme/acct/evOfKhNU60wg",
      "nonce": "Alc00Ap6Rt7GMkEl3L1JX5",
      "url": "https://acme.ido.example/acme/new-order"
    }),
    "payload": base64url({
      "identifiers": [
        {
          "type": "dns",
          "value": "abc.ido.example"
        }
      ],
      "auto-renewal": {
        "end-date": "2021-04-20T00:00:00Z",
        "lifetime": 345600,          // 4 days
        "allow-certificate-get": true
      },
      "delegation":
        "https://acme.ido.example/acme/delegation/gm0wfLYHBen"
    }),
    "signature": "g454e3hdBlkT4AEw...nKePnUyZTjGtXZ6H"
  }

                    Figure 4: New STAR Order from NDC

  The order object that is created on the IdO:

  *  MUST start in the "ready" state;

  *  MUST contain an "authorizations" array with zero elements;

  *  MUST contain the indicated "delegation" configuration;

  *  MUST contain the indicated "auto-renewal" settings; and

  *  MUST NOT contain the "notBefore" and "notAfter" fields.

  {
    "status": "ready",
    "expires": "2021-05-01T00:00:00Z",

    "identifiers": [
     {
       "type": "dns",
       "value": "abc.ido.example"
     }
    ],

    "auto-renewal": {
      "end-date": "2021-04-20T00:00:00Z",
      "lifetime": 345600,
      "allow-certificate-get": true
    },

    "delegation":
      "https://acme.ido.example/acme/delegation/gm0wfLYHBen",

    "authorizations": [],

    "finalize": "https://acme.ido.example/acme/order/TO8rfgo/finalize"
  }

               Figure 5: STAR Order Resource Created on IdO

  The Order is then finalized by the NDC supplying the CSR containing
  the delegated identifiers.  The IdO checks the provided CSR against
  the template contained in the "delegation" object that applies to
  this request, as described in Section 4.1.  If the CSR fails
  validation for any of the identifiers, the IdO MUST return an error
  response with status code 403 (Forbidden) and an appropriate type,
  e.g., "rejectedIdentifier" or "badCSR".  The error response SHOULD
  contain subproblems (Section 6.7.1 of [RFC8555]) for each failed
  identifier.  If the CSR is successfully validated, the order object
  status moves to "processing" and the twin ACME protocol instance is
  initiated on the IdO-CA side.

  The request object created by the IdO:

  *  MUST copy the identifiers sent by the NDC;

  *  MUST strip the "delegation" attribute; and

  *  MUST carry a copy of the "auto-renewal" object sent by the NDC.

  When the identifiers' authorization has been successfully completed
  and the certificate has been issued by the CA, the IdO:

  *  MUST move its Order resource status to "valid" and

  *  MUST copy the "star-certificate" field from the STAR Order
     returned by the CA into its Order resource.  When dereferenced,
     the "star-certificate" URL includes (via the "Cert-Not-Before" and
     "Cert-Not-After" HTTP header fields) the renewal timers needed by
     the NDC to inform its certificate reload logic.

  {
    "status": "valid",
    "expires": "2021-05-01T00:00:00Z",

    "identifiers": [
     {
       "type": "dns",
       "value": "abc.ido.example"
     }
    ],

    "auto-renewal": {
      "end-date": "2021-04-20T00:00:00Z",
      "lifetime": 345600,
      "allow-certificate-get": true
    },

    "delegation":
      "https://acme.ido.example/acme/delegation/gm0wfLYHBen",

    "authorizations": [],

    "finalize": "https://acme.ido.example/acme/order/TO8rfgo/finalize",

    "star-certificate": "https://acme.ca.example/acme/order/yTr23sSDg9"
  }

               Figure 6: STAR Order Resource Updated on IdO

  This delegation protocol is predicated on the NDC being able to fetch
  certificates periodically using an unauthenticated HTTP GET, since,
  in general, the NDC does not possess an account on the CA; as a
  consequence, it cannot issue the standard POST-as-GET ACME request.
  Therefore, before forwarding the Order request to the CA, the IdO
  SHOULD ensure that the selected CA supports unauthenticated GET by
  inspecting the relevant settings in the CA's directory object, as per
  Section 3.4 of [RFC8739].  If the CA does not support unauthenticated
  GET of STAR certificates, the IdO MUST NOT forward the Order request.
  Instead, it MUST move the Order status to "invalid" and set the
  "allow-certificate-get" in the "auto-renewal" object to "false".  The
  same occurs in case the Order request is forwarded and the CA does
  not reflect the "allow-certificate-get" setting in its Order
  resource.  The combination of "invalid" status and denied "allow-
  certificate-get" in the Order resource at the IdO provides an
  unambiguous (asynchronous) signal to the NDC about the failure
  reason.

2.3.2.1.  CNAME Installation

  If one of the objects in the "identifiers" list is of type "dns", the
  IdO can add the CNAME records specified in the "delegation" object to
  its zone, for example:

     abc.ido.example. CNAME abc.ndc.example.

2.3.3.  Order Object Transmitted from NDC to IdO and to ACME Server
       (Non-STAR)

  If the delegation is for a non-STAR certificate, the request object
  created by the NDC:

  *  MUST have a "delegation" attribute indicating the preconfigured
     delegation that applies to this Order;

  *  MUST have entries in the "identifiers" field for each delegated
     name present in the configuration; and

  *  MUST have the "allow-certificate-get" attribute set to true.

  POST /acme/new-order HTTP/1.1
  Host: acme.ido.example
  Content-Type: application/jose+json

  {
    "protected": base64url({
      "alg": "ES256",
      "kid": "https://acme.ido.example/acme/acct/evOfKhNU60wg",
      "nonce": "IYBkoQfaCS80UcCn9qH8Gt",
      "url": "https://acme.ido.example/acme/new-order"
    }),
    "payload": base64url({
      "identifiers": [
        {
          "type": "dns",
          "value": "abc.ido.example"
        }
      ],
      "delegation":
        "https://acme.ido.example/acme/delegation/gm0wfLYHBen",
      "allow-certificate-get": true
    }),
    "signature": "j9JBUvMigi4zodud...acYkEKaa8gqWyZ6H"
  }

                  Figure 7: New Non-STAR Order from NDC

  The order object that is created on the IdO:

  *  MUST start in the "ready" state;

  *  MUST contain an "authorizations" array with zero elements;

  *  MUST contain the indicated "delegation" configuration; and

  *  MUST contain the indicated "allow-certificate-get" setting.

  {
    "status": "ready",
    "expires": "2021-05-01T00:00:00Z",

    "identifiers": [
     {
       "type": "dns",
       "value": "abc.ido.example"
     }
    ],

    "delegation":
      "https://acme.ido.example/acme/delegation/gm0wfLYHBen",

    "allow-certificate-get": true,

    "authorizations": [],

    "finalize": "https://acme.ido.example/acme/order/3ZDlhYy/finalize"
  }

             Figure 8: Non-STAR Order Resource Created on IdO

  The Order finalization by the NDC and the subsequent validation of
  the CSR by the IdO proceed in the same way as for the STAR case.  If
  the CSR is successfully validated, the order object status moves to
  "processing" and the twin ACME protocol instance is initiated on the
  IdO-CA side.

  The request object created by the IdO:

  *  MUST copy the identifiers sent by the NDC;

  *  MUST strip the "delegation" attribute; and

  *  MUST copy the "allow-certificate-get" attribute.

  When the identifiers' authorization has been successfully completed
  and the certificate has been issued by the CA, the IdO:

  *  MUST move its Order resource status to "valid" and

  *  MUST copy the "certificate" field from the Order returned by the
     CA into its Order resource, as well as "notBefore" and "notAfter"
     if these fields exist.

  {
    "status": "valid",
    "expires": "2021-05-01T00:00:00Z",

    "identifiers": [
     {
       "type": "dns",
       "value": "abc.ido.example"
     }
    ],

    "delegation":
      "https://acme.ido.example/acme/delegation/gm0wfLYHBen",

    "allow-certificate-get": true,

    "authorizations": [],

    "finalize": "https://acme.ido.example/acme/order/3ZDlhYy/finalize",

    "certificate": "https://acme.ca.example/acme/order/YtR23SsdG9"
  }

             Figure 9: Non-STAR Order Resource Updated on IdO

  At this point of the protocol flow, the same considerations as in
  Section 2.3.2.1 apply.

  Before forwarding the Order request to the CA, the IdO SHOULD ensure
  that the selected CA supports unauthenticated GET by inspecting the
  relevant settings in the CA's directory object, as per Section 2.3.5.
  If the CA does not support unauthenticated GET of certificate
  resources, the IdO MUST NOT forward the Order request.  Instead, it
  MUST move the Order status to "invalid" and set the "allow-
  certificate-get" attribute to "false".  The same occurs in case the
  Order request is forwarded and the CA does not reflect the "allow-
  certificate-get" setting in its Order resource.  The combination of
  "invalid" status and denied "allow-certificate-get" in the Order
  resource at the IdO provides an unambiguous (asynchronous) signal to
  the NDC about the failure reason.

2.3.4.  Capability Discovery

  In order to help a client discover support for this profile, the
  directory object of an ACME server (typically, one deployed by the
  IdO) contains the following attribute in the "meta" field:

  delegation-enabled (optional, boolean):  Boolean flag indicating
     support for the profile specified in this memo.  An ACME server
     that supports this delegation profile MUST include this key and
     MUST set it to true.

  The IdO MUST declare its support for delegation using "delegation-
  enabled" regardless of whether it supports delegation of STAR
  certificates, non-STAR certificates, or both.

  In order to help a client discover support for certificate fetching
  using unauthenticated HTTP GET, the directory object of an ACME
  server (typically, one deployed by the CA) contains the following
  attribute in the "meta" field:

  allow-certificate-get (optional, boolean):  See Section 2.3.5.

2.3.5.  Negotiating an Unauthenticated GET

  In order to enable the name delegation of non-STAR certificates, this
  document defines a mechanism that allows a server to advertise
  support for accessing certificate resources via unauthenticated GET
  (in addition to POST-as-GET) and a client to enable this service with
  per-Order granularity.

  It is worth pointing out that the protocol elements described in this
  section have the same names and semantics as those introduced in
  Section 3.4 of [RFC8739] for the STAR use case (except, of course,
  they apply to the certificate resource rather than the star-
  certificate resource).  However, they differ in terms of their
  position in the directory meta and order objects; rather than being
  wrapped in an "auto-renewal" subobject, they are located at the top
  level.

  A server states its availability to grant unauthenticated access to a
  client's Order certificate by setting the "allow-certificate-get"
  attribute to "true" in the "meta" field inside the directory object:

  allow-certificate-get (optional, boolean):  If this field is present
     and set to "true", the server allows GET (and HEAD) requests to
     certificate URLs.

  A client states its desire to access the issued certificate via
  unauthenticated GET by adding an "allow-certificate-get" attribute to
  the payload of its newOrder request and setting it to "true".

  allow-certificate-get (optional, boolean):  If this field is present
     and set to "true", the client requests the server to allow
     unauthenticated GET (and HEAD) to the certificate associated with
     this Order.

  If the server accepts the request, it MUST reflect the attribute
  setting in the resulting order object.

  Note that even when the use of unauthenticated GET has been agreed
  upon, the server MUST also allow POST-as-GET requests to the
  certificate resource.

2.3.6.  Terminating the Delegation

  Identity delegation is terminated differently depending on whether or
  not this is a STAR certificate.

2.3.6.1.  By Cancellation (STAR)

  The IdO can terminate the delegation of a STAR certificate by
  requesting its cancellation (see Section 3.1.2 of [RFC8739]).

  Cancellation of the ACME STAR certificate is a prerogative of the
  IdO.  The NDC does not own the relevant account key on the CA;
  therefore, it can't issue a cancellation request for the STAR
  certificate.  Potentially, since it holds the STAR certificate's
  private key, it could request the revocation of a single STAR
  certificate.  However, STAR explicitly disables the revokeCert
  interface.

  Shortly after the automatic renewal process is stopped by the IdO,
  the last issued STAR certificate expires and the delegation
  terminates.

2.3.6.2.  By Revocation (Non-STAR)

  The IdO can terminate the delegation of a non-STAR certificate by
  requesting it to be revoked using the "revokeCert" URL exposed by the
  CA.

  According to Section 7.6 of [RFC8555], the revocation endpoint can be
  used with either the account key pair or the certificate key pair.
  In other words, an NDC that learns the "revokeCert" URL of the CA
  (which is publicly available via the CA's directory object) would be
  able to revoke the certificate using the associated private key.
  However, given the trust relationship between the NDC and IdO
  expected by the delegation trust model (Section 7.1), as well as the
  lack of incentives for the NDC to prematurely terminate the
  delegation, this does not represent a significant security risk.

2.4.  Proxy Behavior

  There are cases where the ACME Delegation flow should be proxied,
  such as the use case described in Section 5.1.2.  This section
  describes the behavior of such proxies.

  An entity implementing the IdO server role -- an "ACME Delegation
  server" -- may behave, on a per-identity case, either as a proxy into
  another ACME Delegation server or as an IdO and obtain a certificate
  directly.  The determining factor is whether it can successfully be
  authorized by the next-hop ACME server for the identity associated
  with the certificate request.

  The identities supported by each server and the disposition for each
  of them are preconfigured.

  Following is the proxy's behavior for each of the messages exchanged
  in the ACME Delegation process:

  New-order request:
     *  The complete "identifiers" attribute MUST be copied as is.
     *  Similarly, the "auto-renewal" object MUST be copied as is.
  New-order response:
     *  The "status", "expires", "authorizations", "identifiers", and
        "auto-renewal" attributes/objects MUST be copied as is.
     *  The "finalize" URL is rewritten so that the "finalize" request
        will be made to the proxy.
     *  Similarly, the "Location" header MUST be rewritten to point to
        an order object on the proxy.
     *  Any "Link" relations MUST be rewritten to point to the proxy.
  Get Order response:
     *  The "status", "expires", "authorizations", "identifiers", and
        "auto-renewal" attributes/objects MUST be copied as is.
     *  Similarly, the "star-certificate" URL (or the "certificate" URL
        in case of non-STAR requests) MUST be copied as is.
     *  The "finalize" URL is rewritten so that the "finalize" request
        will be made to the proxy.
     *  The "Location" header MUST be rewritten to point to an order
        object on the proxy.
     *  Any "Link" relations MUST be rewritten to point to the proxy.
  "finalize" request:
     *  The CSR MUST be copied as is.
  "finalize" response:
     *  The "Location" header, "Link" relations, and the "finalize"
        URLs are rewritten as for Get Order.

  We note that all the above messages are authenticated; therefore,
  each proxy must be able to authenticate any subordinate server.

3.  CA Behavior

  Although most of this document, and in particular Section 2, is
  focused on the protocol between the NDC and IdO, the protocol does
  affect the ACME server running in the CA.  A CA that wishes to
  support certificate delegation MUST also support unauthenticated
  certificate fetching, which it declares using "allow-certificate-get"
  (Section 2.3.5, Paragraph 3).

4.  CSR Template

  The CSR template is used to express and constrain the shape of the
  CSR that the NDC uses to request the certificate.  The CSR is used
  for every certificate created under the same delegation.  Its
  validation by the IdO is a critical element in the security of the
  whole delegation mechanism.

  Instead of defining every possible CSR attribute, this document takes
  a minimalist approach by declaring only the minimum attribute set and
  deferring the registration of further, more-specific attributes to
  future documents.

4.1.  Template Syntax

  The template is a JSON document.  Each field (with the exception of
  "keyTypes", see below) denotes one of the following:

  *  A mandatory field where the template specifies the literal value
     of that field.  This is denoted by a literal string, such as
     "abc.ido.example".

  *  A mandatory field where the content of the field is defined by the
     client.  This is denoted by "**".

  *  An optional field where the client decides whether the field is
     included in the CSR and, if so, what its value is.  This is
     denoted by "*".

  The NDC MUST NOT include any fields in the CSR, including any
  extensions, unless they are specified in the template.

  The structure of the template object is defined by the Concise Data
  Definition Language (CDDL) [RFC8610] document in Appendix A.  An
  alternative, nonnormative JSON Schema syntax is given in Appendix B.
  While the CSR template must follow the syntax defined here, neither
  the IdO nor the NDC are expected to validate it at runtime.

  The "subject" field and its subfields are mapped into the "subject"
  field of the CSR, as per Section 4.1.2.6 of [RFC5280].  Other
  extension fields of the CSR template are mapped into the CSR
  according to the table in Section 6.5.

  The "subjectAltName" field is currently defined for the following
  identifiers: DNS names, email addresses, and URIs.  New identifier
  types may be added in the future by documents that extend this
  specification.  Each new identifier type SHALL have an associated
  identifier validation challenge that the CA can use to obtain proof
  of the requester's control over it.

  The "keyTypes" property is not copied into the CSR.  Instead, this
  property constrains the "SubjectPublicKeyInfo" field of the CSR,
  which MUST have the type/size defined by one of the array members of
  the "keyTypes" property.

  When the IdO receives the CSR, it MUST verify that the CSR is
  consistent with the template contained in the "delegation" object
  referenced in the Order.  The IdO MAY enforce additional constraints,
  e.g., by restricting field lengths.  In this regard, note that a
  "subjectAltName" of type "DNS" can be specified using the wildcard
  notation, meaning that the NDC can be required ("**") or offered the
  possibility ("*") to define the delegated domain name by itself.  If
  this is the case, the IdO MUST apply application-specific checks on
  top of the control rules already provided by the CSR template to
  ensure the requested domain name is legitimate according to its local
  policy.

4.2.  Example

  The CSR template in Figure 10 represents one possible CSR template
  governing the delegation exchanges provided in the rest of this
  document.

  {
    "keyTypes": [
      {
        "PublicKeyType": "rsaEncryption",
        "PublicKeyLength": 2048,
        "SignatureType": "sha256WithRSAEncryption"
      },
      {
        "PublicKeyType": "id-ecPublicKey",
        "namedCurve": "secp256r1",
        "SignatureType": "ecdsa-with-SHA256"
      }
    ],
    "subject": {
      "country": "CA",
      "stateOrProvince": "**",
      "locality": "**"
    },
    "extensions": {
      "subjectAltName": {
        "DNS": [
          "abc.ido.example"
        ]
      },
      "keyUsage": [
        "digitalSignature"
      ],
      "extendedKeyUsage": [
        "serverAuth",
        "clientAuth"
      ]
    }
  }

                     Figure 10: Example CSR Template

5.  Further Use Cases

  This nonnormative section describes additional use cases implementing
  the STAR certificate delegation in nontrivial ways.

5.1.  CDN Interconnection (CDNI)

  [HTTPS-DELEGATION] discusses several solutions addressing different
  delegation requirements for the CDN Interconnection (CDNI)
  environment.  This section discusses two of the stated requirements
  in the context of the STAR delegation workflow.

  This section uses specific CDNI terminology, e.g., Upstream CDN
  (uCDN) and Downstream (dCDN), as defined in [RFC7336].

5.1.1.  Multiple Parallel Delegates

  In some cases, the content owner (IdO) would like to delegate
  authority over a website to multiple NDCs (CDNs).  This could happen
  if the IdO has agreements in place with different regional CDNs for
  different geographical regions or if a "backup" CDN is used to handle
  overflow traffic by temporarily altering some of the CNAME mappings
  in place.  The STAR delegation flow enables this use case naturally,
  since each CDN can authenticate separately to the IdO (via its own
  separate account) specifying its CSR, and the IdO is free to allow or
  deny each certificate request according to its own policy.

5.1.2.  Chained Delegation

  In other cases, a content owner (IdO) delegates some domains to a
  large CDN (uCDN), which in turn delegates to a smaller regional CDN
  (dCDN).  The IdO has a contractual relationship with uCDN, and uCDN
  has a similar relationship with dCDN.  However, IdO may not even know
  about dCDN.

  If needed, the STAR protocol can be chained to support this use case:
  uCDN could forward requests from dCDN to IdO and forward responses
  back to dCDN.  Whether such proxying is allowed is governed by policy
  and contracts between the parties.

  A mechanism is necessary at the interface between uCDN and dCDN, by
  which the uCDN can advertise:

  *  the names that the dCDN is allowed to use and

  *  the policy for creating the key material (allowed algorithms,
     minimum key lengths, key usage, etc.) that the dCDN needs to
     satisfy.

  Note that such mechanism is provided by the CSR template.

5.1.2.1.  Two-Level Delegation in CDNI

  A User Agent (UA), e.g., a browser or set-top box, wants to fetch the
  video resource at the following URI: "https://video.cp.example/
  movie".  Redirection between the content provider (CP) and upstream
  and downstream CDNs is arranged as a CNAME-based aliasing chain, as
  illustrated in Figure 11.

                                                   .------------.
                           video.cp.example ?     | .-----.      |
                .---------------------------------->|     |      |
               |                  (a)             | | DNS |  CP  |
               |    .-------------------------------+     |      |
               |   |   CNAME video.ucdn.example   | '-----'      |
               |   |                               '------------'
               |   |
               |   |
   .-----------|---v--.                            .------------.
  |    .-----.-+-----. |   video.ucdn.example ?   | .-----.      |
  |    |     |       +----------------------------->|     |      |
  | UA | TLS |  DNS  | |          (b)             | | DNS | uCDN |
  |    |     |       |<-----------------------------+     |      |
  |    '--+--'-----+-' | CNAME video.dcdn.example | '-----'      |
   '------|----^---|--'                            '------------'
          |    |   |
          |    |   |
          |    |   |                               .------------.
          |    |   |      video.dcdn.example ?    | .-----.      |
          |    |    '------------------------------>|     |      |
          |    |                  (c)             | | DNS |      |
          |     '-----------------------------------+     |      |
          |                   A 192.0.2.1         | +-----+ dCDN |
          |                                       | |     |      |
           '--------------------------------------->| TLS |      |
                       SNI: video.cp.example      | |     |      |
                                                  | '-----'      |
                                                   '------------'

                        Figure 11: DNS Redirection

  Unlike HTTP-based redirection, where the original URL is supplanted
  by the one found in the "Location" header of the 302 response, DNS
  redirection is completely transparent to the User Agent.  As a
  result, the TLS connection to the dCDN edge is done with a Server
  Name Indication (SNI) equal to the "host" in the original URI -- in
  the example, "video.cp.example".  So, in order to successfully
  complete the handshake, the landing dCDN node has to be configured
  with a certificate whose "subjectAltName" field matches
  "video.cp.example", i.e., a content provider's name.

  Figure 12 illustrates the cascaded delegation flow that allows dCDN
  to obtain a STAR certificate that bears a name belonging to the
  content provider with a private key that is only known to the dCDN.

             .--------------------.
            |      .------.------. |
            |      | STAR | ACME |<-------------.
            |  CP  | dele | STAR | |             |
            |      | srv  | cli  +-----.         |
            |      '---+--'------' |    |        6
             '---------|------^---'     5        |
                       |      |         |     .--|-------.
                       |      |         |    | .-+----.   |
                       7      |          '---->| ACME |   |
                       |      |              | | STAR | C |
                       |      4              | +------| A |
                       |      |              | | HTTP |   |
                       |      |              | '----+-'   |
                       |   .-'                '--^--|----'
        .--------------v--|--.                   |  |
       |      .------.----+-. |                  |  10
       |      |      | STAR | |                  |  |
       | uCDN | CDNI | dele | |                  |  |
       |      |      | fwd  | |                  |  |
       |      '----+-'-+----' |                  |  |
        '-------^--|---|--^--'                   |  |
                |  |   |  |                      |  |
                |  2   8  |                      |  |
                1  |   |  3                      |  |
                |  |   |  |                      9  |
        .-------|--v---v--|---------.            |  |
       |      .-+----.----+-.------. |           |  |
       |      |      | STAR |      +------------'   |
       | dCDN | CDNI | dele | HTTP | |              |
       |      |      | cli  |      |<--------------'
       |      '------'------'------' |
        '---------------------------'

                 Figure 12: Two-Level Delegation in CDNI

  uCDN is configured to delegate to dCDN, and CP is configured to
  delegate to uCDN, both as defined in Section 2.3.1.

  1.   dCDN requests CDNI path metadata to uCDN.

  2.   uCDN replies with, among other CDNI metadata, the STAR
       delegation configuration, which includes the delegated content
       provider's name.

  3.   dCDN creates a key pair and the CSR with the delegated name.  It
       then places an order for the delegated name to uCDN.

  4.   uCDN forwards the received order to the content provider (CP).

  5.   CP creates an order for a STAR certificate and sends it to the
       CA.  The order also requests unauthenticated access to the
       certificate resource.

  6.   After all authorizations complete successfully, the STAR
       certificate is issued.

  7.   CP notifies uCDN that the STAR certificate is available at the
       order's "star-certificate" URL.

  8.   uCDN forwards the information to dCDN.  At this point, the ACME
       signaling is complete.

  9.   dCDN requests the STAR certificate using unauthenticated GET
       from the CA.

  10.  The CA returns the certificate.  Now dCDN is fully configured to
       handle HTTPS traffic in lieu of the content provider.

  Note that 9 and 10 repeat until the delegation expires or is
  terminated.

5.2.  Secure Telephone Identity Revisited (STIR)

  As a second use case, we consider the delegation of credentials in
  the STIR ecosystem [RFC9060].

  This section uses STIR terminology.  The term Personal Assertion
  Token (PASSporT) is defined in [RFC8225], and "TNAuthList" is defined
  in [RFC8226].

  In the STIR delegated mode, a service provider SP2 -- the NDC --
  needs to sign PASSporTs [RFC8225] for telephone numbers (e.g.,
  TN=+123) belonging to another service provider, SP1 -- the IdO.  In
  order to do that, SP2 needs a STIR certificate and a private key that
  includes TN=+123 in the TNAuthList [RFC8226] certificate extension.

  In detail (Figure 13):

  1.  SP1 and SP2 agree on the configuration of the delegation -- in
      particular, the CSR template that applies.

  2.  SP2 generates a private/public key pair and sends a CSR to SP1,
      requesting creation of a certificate with an SP1 name, an SP2
      public key, and a TNAuthList extension with the list of TNs that
      SP1 delegates to SP2.  (Note that the CSR sent by SP2 to SP1
      needs to be validated against the CSR template agreed upon in
      step 1.).

  3.  SP1 sends an order for the CSR to the CA.  The order also
      requests unauthenticated access to the certificate resource.

  4.  Subsequently, after the required TNAuthList authorizations are
      successfully completed, the CA moves the order to a "valid"
      state; at the same time, the star-certificate endpoint is
      populated.

  5.  The contents of the order are forwarded from SP1 to SP2 by means
      of the paired "delegation" order.

  6.  SP2 dereferences the "star-certificate" URL in the order to fetch
      the rolling STAR certificate bearing the delegated identifiers.

  7.  The STAR certificate is returned to SP2.

        .-------------------.
       |     .------.------. |
       |     | STAR | STAR |<--------------.
   .-->| SP1 | dele | dele | |              |
  |    |     | srv  | cli  +-----.          |
  |    |     '----+-'------' |    |         4
  |     '------^--|---------'     3         |
  |            |  |               |    .----|-----.
  |            |  5               |   | .---+--.   |
  |            |  |                '--->| ACME |   |
  |            |  |                   | | STAR | C |
  1            |  |                   | +------| A |
  |            |  |                .--->| HTTP |   |
  |            2  |               |   | '---+--'   |
  |            |  |               |    '----|-----'
  |     .------|--v---------.     6         |
  |    |     .-+----.------. |    |         7
  |    |     | STAR |      +-----'          |
   '-->| SP2 | dele | HTTP | |              |
       |     | cli  |      |<--------------'
       |     '----+-'-+----' |
        '-------------------'

                      Figure 13: Delegation in STIR

  As shown, the STAR delegation profile described in this document
  applies straightforwardly; the only extra requirement being the
  ability to instruct the NDC about the allowed TNAuthList values.
  This can be achieved by a simple extension to the CSR template.

6.  IANA Considerations

6.1.  New Fields in the "meta" Object within a Directory Object

  This document adds the following entries to the "ACME Directory
  Metadata Fields" registry:

           +=======================+============+===========+
           | Field Name            | Field Type | Reference |
           +=======================+============+===========+
           | delegation-enabled    | boolean    | RFC 9115  |
           +-----------------------+------------+-----------+
           | allow-certificate-get | boolean    | RFC 9115  |
           +-----------------------+------------+-----------+

                                Table 1

6.2.  New Fields in the Order Object

  This document adds the following entries to the "ACME Order Object
  Fields" registry:

    +=======================+============+==============+===========+
    | Field Name            | Field Type | Configurable | Reference |
    +=======================+============+==============+===========+
    | allow-certificate-get | boolean    | true         | RFC 9115  |
    +-----------------------+------------+--------------+-----------+
    | delegation            | string     | true         | RFC 9115  |
    +-----------------------+------------+--------------+-----------+

                                 Table 2

6.3.  New Fields in the Account Object

  This document adds the following entries to the "ACME Account Object
  Fields" registry:

           +=============+============+==========+===========+
           | Field Name  | Field Type | Requests | Reference |
           +=============+============+==========+===========+
           | delegations | string     | none     | RFC 9115  |
           +-------------+------------+----------+-----------+

                                 Table 3

  Note that the "delegations" field is only reported by ACME servers
  that have "delegation-enabled" set to true in their meta Object.

6.4.  New Error Types

  This document adds the following entries to the "ACME Error Types"
  registry:

   +===================+================================+===========+
   | Type              | Description                    | Reference |
   +===================+================================+===========+
   | unknownDelegation | An unknown configuration is    | RFC 9115  |
   |                   | listed in the "delegation"     |           |
   |                   | attribute of the order request |           |
   +-------------------+--------------------------------+-----------+

                                Table 4

6.5.  CSR Template Extensions

  IANA has established the "STAR Delegation CSR Template Extensions"
  registry, with "Specification Required" as its registration
  procedure.

  Each extension registered must specify:

  *  an extension name,

  *  an extension syntax, as a reference to a CDDL document that
     defines this extension, and

  *  the extension's mapping into an X.509 certificate extension.

  The initial contents of this registry are the extensions defined by
  the CDDL in Appendix A.

    +==================+===========+===============================+
    | Extension Name   | Extension | Mapping to X.509 Certificate  |
    |                  | Syntax    | Extension                     |
    +==================+===========+===============================+
    | keyUsage         | See       | [RFC5280], Section 4.2.1.3    |
    |                  | Appendix  |                               |
    |                  | A         |                               |
    +------------------+-----------+-------------------------------+
    | extendedKeyUsage | See       | [RFC5280], Section 4.2.1.12   |
    |                  | Appendix  |                               |
    |                  | A         |                               |
    +------------------+-----------+-------------------------------+
    | subjectAltName   | See       | [RFC5280], Section 4.2.1.6    |
    |                  | Appendix  | (note that only specific name |
    |                  | A         | formats are allowed: URI, DNS |
    |                  |           | name, email address)          |
    +------------------+-----------+-------------------------------+

                                Table 5

  When evaluating a request for an assignment in this registry, the
  designated expert should follow this guidance:

  *  The definition must include a full CDDL definition, which the
     expert will validate.

  *  The definition must include both positive and negative test cases.

  *  Additional requirements that are not captured by the CDDL
     definition are allowed but must be explicitly specified.

7.  Security Considerations

7.1.  Trust Model

  The ACME trust model needs to be extended to include the trust
  relationship between NDC and IdO.  Note that once this trust link is
  established, it potentially becomes recursive.  Therefore, there has
  to be a trust relationship between each of the nodes in the
  delegation chain; for example, in case of cascading CDNs, this is
  contractually defined.  Note that when using standard [RFC6125]
  identity verification, there are no mechanisms available to the IdO
  to restrict the use of the delegated name once the name has been
  handed over to the first NDC.  It is, therefore, expected that
  contractual measures are in place to get some assurance that
  redelegation is not being performed.

7.2.  Delegation Security Goal

  Delegation introduces a new security goal: only an NDC that has been
  authorized by the IdO, either directly or transitively, can obtain a
  certificate with an IdO identity.

  From a security point of view, the delegation process has five
  separate parts:

  1.  enabling a specific third party (the intended NDC) to submit
      requests for delegated certificates

  2.  making sure that any request for a delegated certificate matches
      the intended "shape" in terms of delegated identities as well as
      any other certificate metadata, e.g., key length, x.509
      extensions, etc.

  3.  serving the certificate back to the NDC

  4.  handling revocation of the delegation

  5.  handling revocation of the certificate itself

  The first part is covered by the NDC's ACME account that is
  administered by the IdO, whose security relies on the correct
  handling of the associated key pair.  When a compromise of the
  private key is detected, the delegate MUST use the account
  deactivation procedures defined in Section 7.3.6 of [RFC8555].

  The second part is covered by the act of checking an NDC's
  certificate request against the intended CSR template.  The steps of
  shaping the CSR template correctly, selecting the right CSR template
  to check against the presented CSR, and making sure that the
  presented CSR matches the selected CSR template are all security
  relevant.

  The third part builds on the trust relationship between NDC and IdO
  that is responsible for correctly forwarding the certificate URL from
  the Order returned by the CA.

  The fourth part is associated with the ability of the IdO to
  unilaterally remove the "delegation" object associated with the
  revoked identity, therefore, disabling any further NDC requests for
  such identity.  Note that, in more extreme circumstances, the IdO
  might decide to disable the NDC account, thus entirely blocking any
  further interaction.

  The fifth is covered by two different mechanisms, depending on the
  nature of the certificate.  For STAR, the IdO shall use the
  cancellation interface defined in Section 2.3 of [RFC8739].  For non-
  STAR, the certificate revocation interface defined in Section 7.6 of
  [RFC8555]) is used.

  The ACME account associated with the delegation plays a crucial role
  in the overall security of the presented protocol.  This, in turn,
  means that (in delegation scenarios) the security requirements and
  verification associated with an ACME account may be more stringent
  than in base ACME deployments, since the out-of-band configuration of
  delegations that an account is authorized to use (combined with
  account authentication) takes the place of the normal ACME
  authorization challenge procedures.  Therefore, the IdO MUST ensure
  that each account is associated with the exact policies (via their
  matching "delegation" objects) that define which domain names can be
  delegated to the account and how.  The IdO is expected to use out-of-
  band means to preregister each NDC to the corresponding account.

7.3.  New ACME Channels

  Using the model established in Section 10.1 of [RFC8555], we can
  decompose the interactions of the basic delegation workflow, as shown
  in Figure 14.

  .-----. ACME Channel .--------.
  | NDC +------------->| IdO    |
  '--+--'              | server |
     |                 '--o-----'
     |                    |
     |                    |         ACME Channel
     |                    |  .------------>-------------.
     |                    |  |                          |
     |                 .--o--+--.                    .--+---.
     |                 | IdO    |                    |  CA  |
     |                 | client |                    '--+-+-'
     |                 '-----+--'                       | |
     |                       '-----------<--------------' |
     |                            Validation Channel      |
     '-------------------->-------------------------------'
               (subset of) ACME Channel [1]

  [1] Unauthenticated certificate fetch and non-STAR certificate
      revocation.

                 Figure 14: Delegation Channels Topology

  The considerations regarding the security of the ACME Channel and
  Validation Channel discussed in [RFC8555] apply verbatim to the IdO-
  CA leg.  The same can be said for the ACME Channel on the NDC-IdO
  leg.  A slightly different set of considerations apply to the ACME
  Channel between the NDC and CA, which consists of a subset of the
  ACME interface comprising two API endpoints: the unauthenticated
  certificate retrieval and, potentially, non-STAR revocation via
  certificate private key.  No specific security considerations apply
  to the former, but the privacy considerations in Section 6.3 of
  [RFC8739] do.  With regard to the latter, it should be noted that
  there is currently no means for an IdO to disable authorizing
  revocation based on certificate private keys.  So, in theory, an NDC
  could use the revocation API directly with the CA, therefore,
  bypassing the IdO.  The NDC SHOULD NOT directly use the revocation
  interface exposed by the CA unless failing to do so would compromise
  the overall security, for example, if the certificate private key is
  compromised and the IdO is not currently reachable.

  All other security considerations from [RFC8555] and [RFC8739] apply
  as is to the delegation topology.

7.4.  Restricting CDNs to the Delegation Mechanism

  When a website is delegated to a CDN, the CDN can in principle modify
  the website at will, e.g., create and remove pages.  This means that
  a malicious or breached CDN can pass the ACME (as well as common non-
  ACME) HTTPS-based validation challenges and generate a certificate
  for the site.  This is true regardless of whether or not the CNAME
  mechanisms defined in the current document is used.

  In some cases, this is the desired behavior; the domain holder trusts
  the CDN to have full control of the cryptographic credentials for the
  site.  However, this document assumes a scenario where the domain
  holder only wants to delegate restricted control and wishes to retain
  the capability to cancel the CDN's credentials at a short notice.

  The following is a possible mitigation when the IdO wishes to ensure
  that a rogue CDN cannot issue unauthorized certificates:

  *  The domain holder makes sure that the CDN cannot modify the DNS
     records for the domain.  The domain holder should ensure it is the
     only entity authorized to modify the DNS zone.  Typically, it
     establishes a CNAME resource record from a subdomain into a CDN-
     managed domain.

  *  The domain holder uses a Certification Authority Authorization
     (CAA) record [RFC8659] to restrict certificate issuance for the
     domain to specific CAs that comply with ACME and are known to
     implement [RFC8657].

  *  The domain holder uses the ACME-specific CAA mechanism [RFC8657]
     to restrict issuance to a specific CA account that is controlled
     by it and MUST require "dns-01" as the sole validation method.

  We note that the above solution may need to be tweaked depending on
  the exact capabilities and authorization flows supported by the
  selected CA.  In addition, this mitigation may be bypassed if a
  malicious or misconfigured CA does not comply with CAA restrictions.

8.  References

8.1.  Normative References

  [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119,
             DOI 10.17487/RFC2119, March 1997,
             <https://www.rfc-editor.org/info/rfc2119>.

  [RFC2986]  Nystrom, M. and B. Kaliski, "PKCS #10: Certification
             Request Syntax Specification Version 1.7", RFC 2986,
             DOI 10.17487/RFC2986, November 2000,
             <https://www.rfc-editor.org/info/rfc2986>.

  [RFC5280]  Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
             Housley, R., and W. Polk, "Internet X.509 Public Key
             Infrastructure Certificate and Certificate Revocation List
             (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
             <https://www.rfc-editor.org/info/rfc5280>.

  [RFC7807]  Nottingham, M. and E. Wilde, "Problem Details for HTTP
             APIs", RFC 7807, DOI 10.17487/RFC7807, March 2016,
             <https://www.rfc-editor.org/info/rfc7807>.

  [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
             2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
             May 2017, <https://www.rfc-editor.org/info/rfc8174>.

  [RFC8555]  Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.
             Kasten, "Automatic Certificate Management Environment
             (ACME)", RFC 8555, DOI 10.17487/RFC8555, March 2019,
             <https://www.rfc-editor.org/info/rfc8555>.

  [RFC8610]  Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
             Definition Language (CDDL): A Notational Convention to
             Express Concise Binary Object Representation (CBOR) and
             JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
             June 2019, <https://www.rfc-editor.org/info/rfc8610>.

  [RFC8739]  Sheffer, Y., Lopez, D., Gonzalez de Dios, O., Pastor
             Perales, A., and T. Fossati, "Support for Short-Term,
             Automatically Renewed (STAR) Certificates in the Automated
             Certificate Management Environment (ACME)", RFC 8739,
             DOI 10.17487/RFC8739, March 2020,
             <https://www.rfc-editor.org/info/rfc8739>.

8.2.  Informative References

  [HTTPS-DELEGATION]
             Fieau, F., Stephan, E., and S. Mishra, "CDNI extensions
             for HTTPS delegation", Work in Progress, Internet-Draft,
             draft-ietf-cdni-interfaces-https-delegation-06, 10
             September 2021, <https://datatracker.ietf.org/doc/html/
             draft-ietf-cdni-interfaces-https-delegation-06>.

  [json-schema-07]
             Wright, A., Andrews, H., and B. Hutton, "JSON Schema
             Validation: A Vocabulary for Structural Validation of
             JSON", Work in Progress, Internet-Draft, draft-handrews-
             json-schema-validation-02, 17 September 2019,
             <https://datatracker.ietf.org/doc/html/draft-handrews-
             json-schema-validation-02>.

  [MGLT-LURK-TLS13]
             Migault, D., "LURK Extension version 1 for (D)TLS 1.3
             Authentication", Work in Progress, Internet-Draft, draft-
             mglt-lurk-tls13-05, 26 July 2021,
             <https://datatracker.ietf.org/doc/html/draft-mglt-lurk-
             tls13-05>.

  [RFC6125]  Saint-Andre, P. and J. Hodges, "Representation and
             Verification of Domain-Based Application Service Identity
             within Internet Public Key Infrastructure Using X.509
             (PKIX) Certificates in the Context of Transport Layer
             Security (TLS)", RFC 6125, DOI 10.17487/RFC6125, March
             2011, <https://www.rfc-editor.org/info/rfc6125>.

  [RFC7336]  Peterson, L., Davie, B., and R. van Brandenburg, Ed.,
             "Framework for Content Distribution Network
             Interconnection (CDNI)", RFC 7336, DOI 10.17487/RFC7336,
             August 2014, <https://www.rfc-editor.org/info/rfc7336>.

  [RFC8225]  Wendt, C. and J. Peterson, "PASSporT: Personal Assertion
             Token", RFC 8225, DOI 10.17487/RFC8225, February 2018,
             <https://www.rfc-editor.org/info/rfc8225>.

  [RFC8226]  Peterson, J. and S. Turner, "Secure Telephone Identity
             Credentials: Certificates", RFC 8226,
             DOI 10.17487/RFC8226, February 2018,
             <https://www.rfc-editor.org/info/rfc8226>.

  [RFC8657]  Landau, H., "Certification Authority Authorization (CAA)
             Record Extensions for Account URI and Automatic
             Certificate Management Environment (ACME) Method Binding",
             RFC 8657, DOI 10.17487/RFC8657, November 2019,
             <https://www.rfc-editor.org/info/rfc8657>.

  [RFC8659]  Hallam-Baker, P., Stradling, R., and J. Hoffman-Andrews,
             "DNS Certification Authority Authorization (CAA) Resource
             Record", RFC 8659, DOI 10.17487/RFC8659, November 2019,
             <https://www.rfc-editor.org/info/rfc8659>.

  [RFC9060]  Peterson, J., "Secure Telephone Identity Revisited (STIR)
             Certificate Delegation", RFC 9060, DOI 10.17487/RFC9060,
             September 2021, <https://www.rfc-editor.org/info/rfc9060>.

  [TLS-SUBCERTS]
             Barnes, R., Iyengar, S., Sullivan, N., and E. Rescorla,
             "Delegated Credentials for TLS", Work in Progress,
             Internet-Draft, draft-ietf-tls-subcerts-10, 24 January
             2021, <https://datatracker.ietf.org/doc/html/draft-ietf-
             tls-subcerts-10>.

  [TOKEN-TNAUTHLIST]
             Wendt, C., Hancock, D., Barnes, M., and J. Peterson,
             "TNAuthList profile of ACME Authority Token", Work in
             Progress, Internet-Draft, draft-ietf-acme-authority-token-
             tnauthlist-08, 27 March 2021,
             <https://datatracker.ietf.org/doc/html/draft-ietf-acme-
             authority-token-tnauthlist-08>.

Appendix A.  CSR Template: CDDL

  Following is the normative definition of the CSR template using CDDL
  [RFC8610].  The CSR template MUST be a valid JSON document that is
  compliant with the syntax defined here.

  There are additional constraints not expressed in CDDL that MUST be
  validated by the recipient, including:

  *  the value of each "subjectAltName" entry is compatible with its
     type and

  *  the parameters in each "keyTypes" entry form an acceptable
     combination.

  csr-template-schema = {
    keyTypes: [ + $keyType ]
    ? subject: non-empty<distinguishedName>
    extensions: extensions
  }

  non-empty<M> = (M) .and ({ + any => any })

  mandatory-wildcard = "**"
  optional-wildcard = "*"
  wildcard = mandatory-wildcard / optional-wildcard

  ; regtext matches all text strings but "*" and "**"
  regtext = text .regexp "([^\*].*)|([\*][^\*].*)|([\*][\*].+)"

  regtext-or-wildcard = regtext / wildcard

  distinguishedName = {
    ? country: regtext-or-wildcard
    ? stateOrProvince: regtext-or-wildcard
    ? locality: regtext-or-wildcard
    ? organization: regtext-or-wildcard
    ? organizationalUnit: regtext-or-wildcard
    ? emailAddress: regtext-or-wildcard
    ? commonName: regtext-or-wildcard
  }

  $keyType /= rsaKeyType
  $keyType /= ecdsaKeyType

  rsaKeyType = {
    PublicKeyType: "rsaEncryption" ; OID: 1.2.840.113549.1.1.1
    PublicKeyLength: rsaKeySize
    SignatureType: $rsaSignatureType
  }

  rsaKeySize = uint

  ; RSASSA-PKCS1-v1_5 with SHA-256
  $rsaSignatureType /= "sha256WithRSAEncryption"
  ; RSASSA-PCKS1-v1_5 with SHA-384
  $rsaSignatureType /= "sha384WithRSAEncryption"
  ; RSASSA-PCKS1-v1_5 with SHA-512
  $rsaSignatureType /= "sha512WithRSAEncryption"
  ; RSASSA-PSS with SHA-256, MGF-1 with SHA-256, and a 32 byte salt
  $rsaSignatureType /= "sha256WithRSAandMGF1"
  ; RSASSA-PSS with SHA-384, MGF-1 with SHA-384, and a 48 byte salt
  $rsaSignatureType /= "sha384WithRSAandMGF1"
  ; RSASSA-PSS with SHA-512, MGF-1 with SHA-512, and a 64 byte salt
  $rsaSignatureType /= "sha512WithRSAandMGF1"

  ecdsaKeyType = {
    PublicKeyType: "id-ecPublicKey" ; OID: 1.2.840.10045.2.1
    namedCurve: $ecdsaCurve
    SignatureType: $ecdsaSignatureType
  }

  $ecdsaCurve /= "secp256r1" ; OID: 1.2.840.10045.3.1.7
  $ecdsaCurve /= "secp384r1" ; OID: 1.3.132.0.34
  $ecdsaCurve /= "secp521r1" ; OID: 1.3.132.0.3

  $ecdsaSignatureType /= "ecdsa-with-SHA256" ; paired with secp256r1
  $ecdsaSignatureType /= "ecdsa-with-SHA384" ; paired with secp384r1
  $ecdsaSignatureType /= "ecdsa-with-SHA512" ; paired with secp521r1

  subjectaltname = {
    ? DNS: [ + regtext-or-wildcard ]
    ? Email: [ + regtext ]
    ? URI: [ + regtext ]
    * $$subjectaltname-extension
  }

  extensions = {
    ? keyUsage: [ + keyUsageType ]
    ? extendedKeyUsage: [ + extendedKeyUsageType ]
    subjectAltName: non-empty<subjectaltname>
  }

  keyUsageType /= "digitalSignature"
  keyUsageType /= "nonRepudiation"
  keyUsageType /= "keyEncipherment"
  keyUsageType /= "dataEncipherment"
  keyUsageType /= "keyAgreement"
  keyUsageType /= "keyCertSign"
  keyUsageType /= "cRLSign"
  keyUsageType /= "encipherOnly"
  keyUsageType /= "decipherOnly"

  extendedKeyUsageType /= "serverAuth"
  extendedKeyUsageType /= "clientAuth"
  extendedKeyUsageType /= "codeSigning"
  extendedKeyUsageType /= "emailProtection"
  extendedKeyUsageType /= "timeStamping"
  extendedKeyUsageType /= "OCSPSigning"
  extendedKeyUsageType /= oid

  oid = text .regexp "([0-2])((\.0)|(\.[1-9][0-9]*))*"

Appendix B.  CSR Template: JSON Schema

  This appendix includes an alternative, nonnormative JSON Schema
  definition of the CSR template.  The syntax used is that of draft 7
  of JSON Schema, which is documented in [json-schema-07].  Note that
  later versions of this (now-expired) draft describe later versions of
  the JSON Schema syntax.  At the time of writing, a stable reference
  for this syntax is not yet available, and we have chosen to use the
  draft version, which is currently best supported by tool
  implementations.

  The same considerations about additional constraints checking
  discussed in Appendix A apply here as well.

  {
    "title": "JSON Schema for the STAR Delegation CSR template",
    "$schema": "http://json-schema.org/draft-07/schema#",
    "$id": "http://ietf.org/acme/drafts/star-delegation/csr-template",
    "$defs": {
      "distinguished-name": {
        "$id": "#distinguished-name",
        "type": "object",
        "minProperties": 1,
        "properties": {
          "country": {
            "type": "string"
          },
          "stateOrProvince": {
            "type": "string"
          },
          "locality": {
            "type": "string"
          },
          "organization": {
            "type": "string"
          },
          "organizationalUnit": {
            "type": "string"
          },
          "emailAddress": {
            "type": "string"
          },
          "commonName": {
            "type": "string"
          }
        },
        "additionalProperties": false
      },
      "rsaKeyType": {
        "$id": "#rsaKeyType",
        "type": "object",
        "properties": {
          "PublicKeyType": {
            "type": "string",
            "const": "rsaEncryption"
          },
          "PublicKeyLength": {
            "type": "integer"
          },
          "SignatureType": {
            "type": "string",
            "enum": [
              "sha256WithRSAEncryption",
              "sha384WithRSAEncryption",
              "sha512WithRSAEncryption",
              "sha256WithRSAandMGF1",
              "sha384WithRSAandMGF1",
              "sha512WithRSAandMGF1"
            ]
          }
        },
        "required": [
          "PublicKeyType",
          "PublicKeyLength",
          "SignatureType"
        ],
        "additionalProperties": false
      },
      "ecdsaKeyType": {
        "$id": "#ecdsaKeyType",
        "type": "object",
        "properties": {
          "PublicKeyType": {
            "type": "string",
            "const": "id-ecPublicKey"
          },
          "namedCurve": {
            "type": "string",
            "enum": [
              "secp256r1",
              "secp384r1",
              "secp521r1"
            ]
          },
          "SignatureType": {
            "type": "string",
            "enum": [
              "ecdsa-with-SHA256",
              "ecdsa-with-SHA384",
              "ecdsa-with-SHA512"
            ]
          }
        },
        "required": [
          "PublicKeyType",
          "namedCurve",
          "SignatureType"
        ],
        "additionalProperties": false
      }
    },
    "type": "object",
    "properties": {
      "keyTypes": {
        "type": "array",
        "minItems": 1,
        "items": {
          "anyOf": [
            {
              "$ref": "#rsaKeyType"
            },
            {
              "$ref": "#ecdsaKeyType"
            }
          ]
        }
      },
      "subject": {
        "$ref": "#distinguished-name"
      },
      "extensions": {
        "type": "object",
        "properties": {
          "keyUsage": {
            "type": "array",
            "minItems": 1,
            "items": {
              "type": "string",
              "enum": [
                "digitalSignature",
                "nonRepudiation",
                "keyEncipherment",
                "dataEncipherment",
                "keyAgreement",
                "keyCertSign",
                "cRLSign",
                "encipherOnly",
                "decipherOnly"
              ]
            }
          },
          "extendedKeyUsage": {
            "type": "array",
            "minItems": 1,
            "items": {
              "anyOf": [
                {
                  "type": "string",
                  "enum": [
                    "serverAuth",
                    "clientAuth",
                    "codeSigning",
                    "emailProtection",
                    "timeStamping",
                    "OCSPSigning"
                  ]
                },
                {
                  "type": "string",
                  "pattern": "^([0-2])((\\.0)|(\\.[1-9][0-9]*))*$",
                  "description": "Used for OID values"
                }
              ]
            }
          },
          "subjectAltName": {
            "type": "object",
            "minProperties": 1,
            "properties": {
              "DNS": {
                "type": "array",
                "minItems": 1,
                "items": {
                  "anyOf": [
                    {
                      "type": "string",
                      "enum": [
                        "*",
                        "**"
                      ]
                    },
                    {
                      "type": "string",
                      "format": "hostname"
                    }
                  ]
                }
              },
              "Email": {
                "type": "array",
                "minItems": 1,
                "items": {
                  "type": "string",
                  "format": "email"
                }
              },
              "URI": {
                "type": "array",
                "minItems": 1,
                "items": {
                  "type": "string",
                  "format": "uri"
                }
              }
            },
            "additionalProperties": false
          }
        },
        "required": [
          "subjectAltName"
        ],
        "additionalProperties": false
      }
    },
    "required": [
      "extensions",
      "keyTypes"
    ],
    "additionalProperties": false
  }

Acknowledgements

  We would like to thank the following people who contributed
  significantly to this document with their review comments and design
  proposals: Richard Barnes, Carsten Bormann, Roman Danyliw, Lars
  Eggert, Frederic Fieau, Russ Housley, Ben Kaduk, Eric Kline, Sanjay
  Mishra, Francesca Palombini, Jon Peterson, Ryan Sleevi, Emile
  Stephan, and Eric Vyncke.

  This work is partially supported by the European Commission under
  Horizon 2020 grant agreement no. 688421 Measurement and Architecture
  for a Middleboxed Internet (MAMI).  This support does not imply
  endorsement.

Authors' Addresses

  Yaron Sheffer
  Intuit

  Email: [email protected]


  Diego Lopez
  Telefonica I+D

  Email: [email protected]


  Antonio Agustin Pastor Perales
  Telefonica I+D

  Email: [email protected]


  Thomas Fossati
  ARM

  Email: [email protected]