/*      $NetBSD: prop_rb.c,v 1.6 2006/10/16 03:21:07 thorpej Exp $      */

/*-
* Copyright (c) 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Matt Thomas <[email protected]>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*        This product includes software developed by the NetBSD
*        Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
*    contributors may be used to endorse or promote products derived
*    from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

#include <prop/proplib.h>

#include "prop_object_impl.h"
#include "prop_rb_impl.h"

#undef KASSERT
#ifdef RBDEBUG
#define KASSERT(x)      _PROP_ASSERT(x)
#else
#define KASSERT(x)      /* nothing */
#endif

#undef bool
#define bool            boolean_t
#undef true
#define true            TRUE
#undef false
#define false           FALSE

#ifndef __predict_false
#define __predict_false(x)      (x)
#endif

static void rb_tree_reparent_nodes(struct rb_tree *, struct rb_node *,
                                  unsigned int);
static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
       unsigned int);
#ifdef RBDEBUG
static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
       const struct rb_node *, unsigned int);
static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
       const struct rb_node *, bool);
#endif

#ifdef RBDEBUG
#define RBT_COUNT_INCR(rbt)     (rbt)->rbt_count++
#define RBT_COUNT_DECR(rbt)     (rbt)->rbt_count--
#else
#define RBT_COUNT_INCR(rbt)     /* nothing */
#define RBT_COUNT_DECR(rbt)     /* nothing */
#endif

#define RBUNCONST(a)    ((void *)(unsigned long)(const void *)(a))

/*
* Rather than testing for the NULL everywhere, all terminal leaves are
* pointed to this node (and that includes itself).  Note that by setting
* it to be const, that on some architectures trying to write to it will
* cause a fault.
*/
static const struct rb_node sentinel_node = {
       .rb_nodes = { RBUNCONST(&sentinel_node),
                     RBUNCONST(&sentinel_node),
                     NULL },
       .rb_u = { .u_s = { .s_sentinel = 1 } },
};

void
_prop_rb_tree_init(struct rb_tree *rbt, const struct rb_tree_ops *ops)
{
       RB_TAILQ_INIT(&rbt->rbt_nodes);
#ifdef RBDEBUG
       rbt->rbt_count = 0;
#endif
       rbt->rbt_ops = ops;
       *((const struct rb_node **)&rbt->rbt_root) = &sentinel_node;
}

/*
* Swap the location and colors of 'self' and its child @ which.  The child
* can not be a sentinel node.
*/
/*ARGSUSED*/
static void
rb_tree_reparent_nodes(struct rb_tree *rbt _PROP_ARG_UNUSED,
   struct rb_node *old_father, unsigned int which)
{
       const unsigned int other = which ^ RB_NODE_OTHER;
       struct rb_node * const grandpa = old_father->rb_parent;
       struct rb_node * const old_child = old_father->rb_nodes[which];
       struct rb_node * const new_father = old_child;
       struct rb_node * const new_child = old_father;
       unsigned int properties;

       KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT);

       KASSERT(!RB_SENTINEL_P(old_child));
       KASSERT(old_child->rb_parent == old_father);

       KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
       KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
       KASSERT(RB_ROOT_P(old_father) || rb_tree_check_node(rbt, grandpa, NULL, false));

       /*
        * Exchange descendant linkages.
        */
       grandpa->rb_nodes[old_father->rb_position] = new_father;
       new_child->rb_nodes[which] = old_child->rb_nodes[other];
       new_father->rb_nodes[other] = new_child;

       /*
        * Update ancestor linkages
        */
       new_father->rb_parent = grandpa;
       new_child->rb_parent = new_father;

       /*
        * Exchange properties between new_father and new_child.  The only
        * change is that new_child's position is now on the other side.
        */
       properties = old_child->rb_properties;
       new_father->rb_properties = old_father->rb_properties;
       new_child->rb_properties = properties;
       new_child->rb_position = other;

       /*
        * Make sure to reparent the new child to ourself.
        */
       if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
               new_child->rb_nodes[which]->rb_parent = new_child;
               new_child->rb_nodes[which]->rb_position = which;
       }

       KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
       KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
       KASSERT(RB_ROOT_P(new_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
}

void
_prop_rb_tree_insert_node(struct rb_tree *rbt, struct rb_node *self)
{
       struct rb_node *parent, *tmp;
       rb_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes;
       unsigned int position;

       self->rb_properties = 0;
       tmp = rbt->rbt_root;
       /*
        * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
        * just like rb_node->rb_nodes[RB_NODE_LEFT], we can use this fact to
        * avoid a lot of tests for root and know that even at root,
        * updating rb_node->rb_parent->rb_nodes[rb_node->rb_position] will
        * rbt->rbt_root.
        */
       /* LINTED: see above */
       parent = (struct rb_node *)&rbt->rbt_root;
       position = RB_NODE_LEFT;

       /*
        * Find out where to place this new leaf.
        */
       while (!RB_SENTINEL_P(tmp)) {
               const int diff = (*compare_nodes)(tmp, self);
               parent = tmp;
               KASSERT(diff != 0);
               if (diff < 0) {
                       position = RB_NODE_LEFT;
               } else {
                       position = RB_NODE_RIGHT;
               }
               tmp = parent->rb_nodes[position];
       }

#ifdef RBDEBUG
       {
               struct rb_node *prev = NULL, *next = NULL;

               if (position == RB_NODE_RIGHT)
                       prev = parent;
               else if (tmp != rbt->rbt_root)
                       next = parent;

               /*
                * Verify our sequential position
                */
               KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
               KASSERT(next == NULL || !RB_SENTINEL_P(next));
               if (prev != NULL && next == NULL)
                       next = TAILQ_NEXT(prev, rb_link);
               if (prev == NULL && next != NULL)
                       prev = TAILQ_PREV(next, rb_node_qh, rb_link);
               KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
               KASSERT(next == NULL || !RB_SENTINEL_P(next));
               KASSERT(prev == NULL
                       || (*compare_nodes)(prev, self) > 0);
               KASSERT(next == NULL
                       || (*compare_nodes)(self, next) > 0);
       }
#endif

       /*
        * Initialize the node and insert as a leaf into the tree.
        */
       self->rb_parent = parent;
       self->rb_position = position;
       /* LINTED: rbt_root hack */
       if (__predict_false(parent == (struct rb_node *) &rbt->rbt_root)) {
               RB_MARK_ROOT(self);
       } else {
               KASSERT(position == RB_NODE_LEFT || position == RB_NODE_RIGHT);
               KASSERT(!RB_ROOT_P(self));      /* Already done */
       }
       KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
       self->rb_left = parent->rb_nodes[position];
       self->rb_right = parent->rb_nodes[position];
       parent->rb_nodes[position] = self;
       KASSERT(self->rb_left == &sentinel_node &&
           self->rb_right == &sentinel_node);

       /*
        * Insert the new node into a sorted list for easy sequential access
        */
       RBT_COUNT_INCR(rbt);
#ifdef RBDEBUG
       if (RB_ROOT_P(self)) {
               RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
       } else if (position == RB_NODE_LEFT) {
               KASSERT((*compare_nodes)(self, self->rb_parent) > 0);
               RB_TAILQ_INSERT_BEFORE(self->rb_parent, self, rb_link);
       } else {
               KASSERT((*compare_nodes)(self->rb_parent, self) > 0);
               RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, self->rb_parent,
                   self, rb_link);
       }
#endif

#if 0
       /*
        * Validate the tree before we rebalance
        */
       _prop_rb_tree_check(rbt, false);
#endif

       /*
        * Rebalance tree after insertion
        */
       rb_tree_insert_rebalance(rbt, self);

#if 0
       /*
        * Validate the tree after we rebalanced
        */
       _prop_rb_tree_check(rbt, true);
#endif
}

static void
rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
{
       RB_MARK_RED(self);

       while (!RB_ROOT_P(self) && RB_RED_P(self->rb_parent)) {
               const unsigned int which =
                    (self->rb_parent == self->rb_parent->rb_parent->rb_left
                       ? RB_NODE_LEFT
                       : RB_NODE_RIGHT);
               const unsigned int other = which ^ RB_NODE_OTHER;
               struct rb_node * father = self->rb_parent;
               struct rb_node * grandpa = father->rb_parent;
               struct rb_node * const uncle = grandpa->rb_nodes[other];

               KASSERT(!RB_SENTINEL_P(self));
               /*
                * We are red and our parent is red, therefore we must have a
                * grandfather and he must be black.
                */
               KASSERT(RB_RED_P(self)
                       && RB_RED_P(father)
                       && RB_BLACK_P(grandpa));

               if (RB_RED_P(uncle)) {
                       /*
                        * Case 1: our uncle is red
                        *   Simply invert the colors of our parent and
                        *   uncle and make our grandparent red.  And
                        *   then solve the problem up at his level.
                        */
                       RB_MARK_BLACK(uncle);
                       RB_MARK_BLACK(father);
                       RB_MARK_RED(grandpa);
                       self = grandpa;
                       continue;
               }
               /*
                * Case 2&3: our uncle is black.
                */
               if (self == father->rb_nodes[other]) {
                       /*
                        * Case 2: we are on the same side as our uncle
                        *   Swap ourselves with our parent so this case
                        *   becomes case 3.  Basically our parent becomes our
                        *   child.
                        */
                       rb_tree_reparent_nodes(rbt, father, other);
                       KASSERT(father->rb_parent == self);
                       KASSERT(self->rb_nodes[which] == father);
                       KASSERT(self->rb_parent == grandpa);
                       self = father;
                       father = self->rb_parent;
               }
               KASSERT(RB_RED_P(self) && RB_RED_P(father));
               KASSERT(grandpa->rb_nodes[which] == father);
               /*
                * Case 3: we are opposite a child of a black uncle.
                *   Swap our parent and grandparent.  Since our grandfather
                *   is black, our father will become black and our new sibling
                *   (former grandparent) will become red.
                */
               rb_tree_reparent_nodes(rbt, grandpa, which);
               KASSERT(self->rb_parent == father);
               KASSERT(self->rb_parent->rb_nodes[self->rb_position ^ RB_NODE_OTHER] == grandpa);
               KASSERT(RB_RED_P(self));
               KASSERT(RB_BLACK_P(father));
               KASSERT(RB_RED_P(grandpa));
               break;
       }

       /*
        * Final step: Set the root to black.
        */
       RB_MARK_BLACK(rbt->rbt_root);
}

struct rb_node *
_prop_rb_tree_find(struct rb_tree *rbt, const void *key)
{
       struct rb_node *parent = rbt->rbt_root;
       rb_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;

       while (!RB_SENTINEL_P(parent)) {
               const int diff = (*compare_key)(parent, key);
               if (diff == 0)
                       return parent;
               parent = parent->rb_nodes[diff > 0];
       }

       return NULL;
}

static void
rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, int rebalance)
{
       const unsigned int which = self->rb_position;
       struct rb_node *father = self->rb_parent;

       KASSERT(rebalance || (RB_ROOT_P(self) || RB_RED_P(self)));
       KASSERT(!rebalance || RB_BLACK_P(self));
       KASSERT(RB_CHILDLESS_P(self));
       KASSERT(rb_tree_check_node(rbt, self, NULL, false));

       father->rb_nodes[which] = self->rb_left;

       /*
        * Remove ourselves from the node list and decrement the count.
        */
       RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
       RBT_COUNT_DECR(rbt);

       if (rebalance)
               rb_tree_removal_rebalance(rbt, father, which);
       KASSERT(RB_ROOT_P(self) || rb_tree_check_node(rbt, father, NULL, true));
}

static void
rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
       struct rb_node *standin)
{
       unsigned int standin_which = standin->rb_position;
       unsigned int standin_other = standin_which ^ RB_NODE_OTHER;
       struct rb_node *standin_child;
       struct rb_node *standin_father;
       bool rebalance = RB_BLACK_P(standin);

       if (standin->rb_parent == self) {
               /*
                * As a child of self, any childen would be opposite of
                * our parent (self).
                */
               KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
               standin_child = standin->rb_nodes[standin_which];
       } else {
               /*
                * Since we aren't a child of self, any childen would be
                * on the same side as our parent (self).
                */
               KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
               standin_child = standin->rb_nodes[standin_other];
       }

       /*
        * the node we are removing must have two children.
        */
       KASSERT(RB_TWOCHILDREN_P(self));
       /*
        * If standin has a child, it must be red.
        */
       KASSERT(RB_SENTINEL_P(standin_child) || RB_RED_P(standin_child));

       /*
        * Verify things are sane.
        */
       KASSERT(rb_tree_check_node(rbt, self, NULL, false));
       KASSERT(rb_tree_check_node(rbt, standin, NULL, false));

       if (!RB_SENTINEL_P(standin_child)) {
               /*
                * We know we have a red child so if we swap them we can
                * void flipping standin's child to black afterwards.
                */
               KASSERT(rb_tree_check_node(rbt, standin_child, NULL, true));
               rb_tree_reparent_nodes(rbt, standin,
                   standin_child->rb_position);
               KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
               KASSERT(rb_tree_check_node(rbt, standin_child, NULL, true));
               /*
                * Since we are removing a red leaf, no need to rebalance.
                */
               rebalance = false;
               /*
                * We know that standin can not be a child of self, so
                * update before of that.
                */
               KASSERT(standin->rb_parent != self);
               standin_which = standin->rb_position;
               standin_other = standin_which ^ RB_NODE_OTHER;
       }
       KASSERT(RB_CHILDLESS_P(standin));

       /*
        * If we are about to delete the standin's father, then when we call
        * rebalance, we need to use ourselves as our father.  Otherwise
        * remember our original father.  Also, if we are our standin's father
        * we only need to reparent the standin's brother.
        */
       if (standin->rb_parent == self) {
               /*
                * |   R   -->   S   |
                * | Q   S --> Q   * |
                * |       -->       |
                */
               standin_father = standin;
               KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
               KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
               KASSERT(self->rb_nodes[standin_which] == standin);
               /*
                * Make our brother our son.
                */
               standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
               standin->rb_nodes[standin_other]->rb_parent = standin;
               KASSERT(standin->rb_nodes[standin_other]->rb_position == standin_other);
       } else {
               /*
                * |  P      -->  P    |
                * |      S  -->    Q  |
                * |    Q    -->       |
                */
               standin_father = standin->rb_parent;
               standin_father->rb_nodes[standin_which] =
                   standin->rb_nodes[standin_which];
               standin->rb_left = self->rb_left;
               standin->rb_right = self->rb_right;
               standin->rb_left->rb_parent = standin;
               standin->rb_right->rb_parent = standin;
       }

       /*
        * Now copy the result of self to standin and then replace
        * self with standin in the tree.
        */
       standin->rb_parent = self->rb_parent;
       standin->rb_properties = self->rb_properties;
       standin->rb_parent->rb_nodes[standin->rb_position] = standin;

       /*
        * Remove ourselves from the node list and decrement the count.
        */
       RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
       RBT_COUNT_DECR(rbt);

       KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
       KASSERT(rb_tree_check_node(rbt, standin_father, NULL, false));

       if (!rebalance)
               return;

       rb_tree_removal_rebalance(rbt, standin_father, standin_which);
       KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
}

/*
* We could do this by doing
*      rb_tree_node_swap(rbt, self, which);
*      rb_tree_prune_node(rbt, self, false);
*
* But it's more efficient to just evalate and recolor the child.
*/
/*ARGSUSED*/
static void
rb_tree_prune_blackred_branch(struct rb_tree *rbt _PROP_ARG_UNUSED,
   struct rb_node *self, unsigned int which)
{
       struct rb_node *parent = self->rb_parent;
       struct rb_node *child = self->rb_nodes[which];

       KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT);
       KASSERT(RB_BLACK_P(self) && RB_RED_P(child));
       KASSERT(!RB_TWOCHILDREN_P(child));
       KASSERT(RB_CHILDLESS_P(child));
       KASSERT(rb_tree_check_node(rbt, self, NULL, false));
       KASSERT(rb_tree_check_node(rbt, child, NULL, false));

       /*
        * Remove ourselves from the tree and give our former child our
        * properties (position, color, root).
        */
       parent->rb_nodes[self->rb_position] = child;
       child->rb_parent = parent;
       child->rb_properties = self->rb_properties;

       /*
        * Remove ourselves from the node list and decrement the count.
        */
       RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
       RBT_COUNT_DECR(rbt);

       KASSERT(RB_ROOT_P(self) || rb_tree_check_node(rbt, parent, NULL, true));
       KASSERT(rb_tree_check_node(rbt, child, NULL, true));
}
/*
*
*/
void
_prop_rb_tree_remove_node(struct rb_tree *rbt, struct rb_node *self)
{
       struct rb_node *standin;
       unsigned int which;
       /*
        * In the following diagrams, we (the node to be removed) are S.  Red
        * nodes are lowercase.  T could be either red or black.
        *
        * Remember the major axiom of the red-black tree: the number of
        * black nodes from the root to each leaf is constant across all
        * leaves, only the number of red nodes varies.
        *
        * Thus removing a red leaf doesn't require any other changes to a
        * red-black tree.  So if we must remove a node, attempt to rearrange
        * the tree so we can remove a red node.
        *
        * The simpliest case is a childless red node or a childless root node:
        *
        * |    T  -->    T  |    or    |  R  -->  *  |
        * |  s    -->  *    |
        */
       if (RB_CHILDLESS_P(self)) {
               if (RB_RED_P(self) || RB_ROOT_P(self)) {
                       rb_tree_prune_node(rbt, self, false);
                       return;
               }
               rb_tree_prune_node(rbt, self, true);
               return;
       }
       KASSERT(!RB_CHILDLESS_P(self));
       if (!RB_TWOCHILDREN_P(self)) {
               /*
                * The next simpliest case is the node we are deleting is
                * black and has one red child.
                *
                * |      T  -->      T  -->      T  |
                * |    S    -->  R      -->  R      |
                * |  r      -->    s    -->    *    |
                */
               which = RB_LEFT_SENTINEL_P(self) ? RB_NODE_RIGHT : RB_NODE_LEFT;
               KASSERT(RB_BLACK_P(self));
               KASSERT(RB_RED_P(self->rb_nodes[which]));
               KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
               rb_tree_prune_blackred_branch(rbt, self, which);
               return;
       }
       KASSERT(RB_TWOCHILDREN_P(self));

       /*
        * We invert these because we prefer to remove from the inside of
        * the tree.
        */
       which = self->rb_position ^ RB_NODE_OTHER;

       /*
        * Let's find the node closes to us opposite of our parent
        * Now swap it with ourself, "prune" it, and rebalance, if needed.
        */
       standin = _prop_rb_tree_iterate(rbt, self, which);
       rb_tree_swap_prune_and_rebalance(rbt, self, standin);
}

static void
rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
       unsigned int which)
{
       KASSERT(!RB_SENTINEL_P(parent));
       KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
       KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT);

       while (RB_BLACK_P(parent->rb_nodes[which])) {
               unsigned int other = which ^ RB_NODE_OTHER;
               struct rb_node *brother = parent->rb_nodes[other];

               KASSERT(!RB_SENTINEL_P(brother));
               /*
                * For cases 1, 2a, and 2b, our brother's children must
                * be black and our father must be black
                */
               if (RB_BLACK_P(parent)
                   && RB_BLACK_P(brother->rb_left)
                   && RB_BLACK_P(brother->rb_right)) {
                       /*
                        * Case 1: Our brother is red, swap its position
                        * (and colors) with our parent.  This is now case 2b.
                        *
                        *    B         ->        D
                        *  x     d     ->    b     E
                        *      C   E   ->  x   C
                        */
                       if (RB_RED_P(brother)) {
                               KASSERT(RB_BLACK_P(parent));
                               rb_tree_reparent_nodes(rbt, parent, other);
                               brother = parent->rb_nodes[other];
                               KASSERT(!RB_SENTINEL_P(brother));
                               KASSERT(RB_BLACK_P(brother));
                               KASSERT(RB_RED_P(parent));
                               KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
                               KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
                       } else {
                               /*
                                * Both our parent and brother are black.
                                * Change our brother to red, advance up rank
                                * and go through the loop again.
                                *
                                *    B         ->    B
                                *  A     D     ->  A     d
                                *      C   E   ->      C   E
                                */
                               RB_MARK_RED(brother);
                               KASSERT(RB_BLACK_P(brother->rb_left));
                               KASSERT(RB_BLACK_P(brother->rb_right));
                               if (RB_ROOT_P(parent))
                                       return;
                               KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
                               KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
                               which = parent->rb_position;
                               parent = parent->rb_parent;
                       }
               } else if (RB_RED_P(parent)
                   && RB_BLACK_P(brother)
                   && RB_BLACK_P(brother->rb_left)
                   && RB_BLACK_P(brother->rb_right)) {
                       KASSERT(RB_BLACK_P(brother));
                       KASSERT(RB_BLACK_P(brother->rb_left));
                       KASSERT(RB_BLACK_P(brother->rb_right));
                       RB_MARK_BLACK(parent);
                       RB_MARK_RED(brother);
                       KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
                       break;          /* We're done! */
               } else {
                       KASSERT(RB_BLACK_P(brother));
                       KASSERT(!RB_CHILDLESS_P(brother));
                       /*
                        * Case 3: our brother is black, our left nephew is
                        * red, and our right nephew is black.  Swap our
                        * brother with our left nephew.   This result in a
                        * tree that matches case 4.
                        *
                        *     B         ->       D
                        * A       D     ->   B     E
                        *       c   e   -> A   C
                        */
                       if (RB_BLACK_P(brother->rb_nodes[other])) {
                               KASSERT(RB_RED_P(brother->rb_nodes[which]));
                               rb_tree_reparent_nodes(rbt, brother, which);
                               KASSERT(brother->rb_parent == parent->rb_nodes[other]);
                               brother = parent->rb_nodes[other];
                               KASSERT(RB_RED_P(brother->rb_nodes[other]));
                       }
                       /*
                        * Case 4: our brother is black and our right nephew
                        * is red.  Swap our parent and brother locations and
                        * change our right nephew to black.  (these can be
                        * done in either order so we change the color first).
                        * The result is a valid red-black tree and is a
                        * terminal case.
                        *
                        *     B         ->       D
                        * A       D     ->   B     E
                        *       c   e   -> A   C
                        */
                       RB_MARK_BLACK(brother->rb_nodes[other]);
                       rb_tree_reparent_nodes(rbt, parent, other);
                       break;          /* We're done! */
               }
       }
       KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
}

struct rb_node *
_prop_rb_tree_iterate(struct rb_tree *rbt, struct rb_node *self,
       unsigned int direction)
{
       const unsigned int other = direction ^ RB_NODE_OTHER;
       KASSERT(direction == RB_NODE_LEFT || direction == RB_NODE_RIGHT);

       if (self == NULL) {
               self = rbt->rbt_root;
               if (RB_SENTINEL_P(self))
                       return NULL;
               while (!RB_SENTINEL_P(self->rb_nodes[other]))
                       self = self->rb_nodes[other];
               return self;
       }
       KASSERT(!RB_SENTINEL_P(self));
       /*
        * We can't go any further in this direction.  We proceed up in the
        * opposite direction until our parent is in direction we want to go.
        */
       if (RB_SENTINEL_P(self->rb_nodes[direction])) {
               while (!RB_ROOT_P(self)) {
                       if (other == self->rb_position)
                               return self->rb_parent;
                       self = self->rb_parent;
               }
               return NULL;
       }

       /*
        * Advance down one in current direction and go down as far as possible
        * in the opposite direction.
        */
       self = self->rb_nodes[direction];
       KASSERT(!RB_SENTINEL_P(self));
       while (!RB_SENTINEL_P(self->rb_nodes[other]))
               self = self->rb_nodes[other];
       return self;
}

#ifdef RBDEBUG
static const struct rb_node *
rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
       unsigned int direction)
{
       const unsigned int other = direction ^ RB_NODE_OTHER;
       KASSERT(direction == RB_NODE_LEFT || direction == RB_NODE_RIGHT);

       if (self == NULL) {
               self = rbt->rbt_root;
               if (RB_SENTINEL_P(self))
                       return NULL;
               while (!RB_SENTINEL_P(self->rb_nodes[other]))
                       self = self->rb_nodes[other];
               return self;
       }
       KASSERT(!RB_SENTINEL_P(self));
       /*
        * We can't go any further in this direction.  We proceed up in the
        * opposite direction until our parent is in direction we want to go.
        */
       if (RB_SENTINEL_P(self->rb_nodes[direction])) {
               while (!RB_ROOT_P(self)) {
                       if (other == self->rb_position)
                               return self->rb_parent;
                       self = self->rb_parent;
               }
               return NULL;
       }

       /*
        * Advance down one in current direction and go down as far as possible
        * in the opposite direction.
        */
       self = self->rb_nodes[direction];
       KASSERT(!RB_SENTINEL_P(self));
       while (!RB_SENTINEL_P(self->rb_nodes[other]))
               self = self->rb_nodes[other];
       return self;
}

static bool
rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
       const struct rb_node *prev, bool red_check)
{
       KASSERT(!self->rb_sentinel);
       KASSERT(self->rb_left);
       KASSERT(self->rb_right);
       KASSERT(prev == NULL ||
               (*rbt->rbt_ops->rbto_compare_nodes)(prev, self) > 0);

       /*
        * Verify our relationship to our parent.
        */
       if (RB_ROOT_P(self)) {
               KASSERT(self == rbt->rbt_root);
               KASSERT(self->rb_position == RB_NODE_LEFT);
               KASSERT(self->rb_parent->rb_nodes[RB_NODE_LEFT] == self);
               KASSERT(self->rb_parent == (const struct rb_node *) &rbt->rbt_root);
       } else {
               KASSERT(self != rbt->rbt_root);
               KASSERT(!RB_PARENT_SENTINEL_P(self));
               if (self->rb_position == RB_NODE_LEFT) {
                       KASSERT((*rbt->rbt_ops->rbto_compare_nodes)(self, self->rb_parent) > 0);
                       KASSERT(self->rb_parent->rb_nodes[RB_NODE_LEFT] == self);
               } else {
                       KASSERT((*rbt->rbt_ops->rbto_compare_nodes)(self, self->rb_parent) < 0);
                       KASSERT(self->rb_parent->rb_nodes[RB_NODE_RIGHT] == self);
               }
       }

       /*
        * Verify our position in the linked list against the tree itself.
        */
       {
               const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_NODE_LEFT);
               const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT);
               KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
               if (next0 != TAILQ_NEXT(self, rb_link))
                       next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT);
               KASSERT(next0 == TAILQ_NEXT(self, rb_link));
       }

       /*
        * The root must be black.
        * There can never be two adjacent red nodes.
        */
       if (red_check) {
               KASSERT(!RB_ROOT_P(self) || RB_BLACK_P(self));
               if (RB_RED_P(self)) {
                       const struct rb_node *brother;
                       KASSERT(!RB_ROOT_P(self));
                       brother = self->rb_parent->rb_nodes[self->rb_position ^ RB_NODE_OTHER];
                       KASSERT(RB_BLACK_P(self->rb_parent));
                       /*
                        * I'm red and have no children, then I must either
                        * have no brother or my brother also be red and
                        * also have no children.  (black count == 0)
                        */
                       KASSERT(!RB_CHILDLESS_P(self)
                               || RB_SENTINEL_P(brother)
                               || RB_RED_P(brother)
                               || RB_CHILDLESS_P(brother));
                       /*
                        * If I'm not childless, I must have two children
                        * and they must be both be black.
                        */
                       KASSERT(RB_CHILDLESS_P(self)
                               || (RB_TWOCHILDREN_P(self)
                                   && RB_BLACK_P(self->rb_left)
                                   && RB_BLACK_P(self->rb_right)));
                       /*
                        * If I'm not childless, thus I have black children,
                        * then my brother must either be black or have two
                        * black children.
                        */
                       KASSERT(RB_CHILDLESS_P(self)
                               || RB_BLACK_P(brother)
                               || (RB_TWOCHILDREN_P(brother)
                                   && RB_BLACK_P(brother->rb_left)
                                   && RB_BLACK_P(brother->rb_right)));
               } else {
                       /*
                        * If I'm black and have one child, that child must
                        * be red and childless.
                        */
                       KASSERT(RB_CHILDLESS_P(self)
                               || RB_TWOCHILDREN_P(self)
                               || (!RB_LEFT_SENTINEL_P(self)
                                   && RB_RIGHT_SENTINEL_P(self)
                                   && RB_RED_P(self->rb_left)
                                   && RB_CHILDLESS_P(self->rb_left))
                               || (!RB_RIGHT_SENTINEL_P(self)
                                   && RB_LEFT_SENTINEL_P(self)
                                   && RB_RED_P(self->rb_right)
                                   && RB_CHILDLESS_P(self->rb_right)));

                       /*
                        * If I'm a childless black node and my parent is
                        * black, my 2nd closet relative away from my parent
                        * is either red or has a red parent or red children.
                        */
                       if (!RB_ROOT_P(self)
                           && RB_CHILDLESS_P(self)
                           && RB_BLACK_P(self->rb_parent)) {
                               const unsigned int which = self->rb_position;
                               const unsigned int other = which ^ RB_NODE_OTHER;
                               const struct rb_node *relative0, *relative;

                               relative0 = rb_tree_iterate_const(rbt,
                                   self, other);
                               KASSERT(relative0 != NULL);
                               relative = rb_tree_iterate_const(rbt,
                                   relative0, other);
                               KASSERT(relative != NULL);
                               KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
#if 0
                               KASSERT(RB_RED_P(relative)
                                       || RB_RED_P(relative->rb_left)
                                       || RB_RED_P(relative->rb_right)
                                       || RB_RED_P(relative->rb_parent));
#endif
                       }
               }
               /*
                * A grandparent's children must be real nodes and not
                * sentinels.  First check out grandparent.
                */
               KASSERT(RB_ROOT_P(self)
                       || RB_ROOT_P(self->rb_parent)
                       || RB_TWOCHILDREN_P(self->rb_parent->rb_parent));
               /*
                * If we are have grandchildren on our left, then
                * we must have a child on our right.
                */
               KASSERT(RB_LEFT_SENTINEL_P(self)
                       || RB_CHILDLESS_P(self->rb_left)
                       || !RB_RIGHT_SENTINEL_P(self));
               /*
                * If we are have grandchildren on our right, then
                * we must have a child on our left.
                */
               KASSERT(RB_RIGHT_SENTINEL_P(self)
                       || RB_CHILDLESS_P(self->rb_right)
                       || !RB_LEFT_SENTINEL_P(self));

               /*
                * If we have a child on the left and it doesn't have two
                * children make sure we don't have great-great-grandchildren on
                * the right.
                */
               KASSERT(RB_TWOCHILDREN_P(self->rb_left)
                       || RB_CHILDLESS_P(self->rb_right)
                       || RB_CHILDLESS_P(self->rb_right->rb_left)
                       || RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
                       || RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
                       || RB_CHILDLESS_P(self->rb_right->rb_right)
                       || RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
                       || RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));

               /*
                * If we have a child on the right and it doesn't have two
                * children make sure we don't have great-great-grandchildren on
                * the left.
                */
               KASSERT(RB_TWOCHILDREN_P(self->rb_right)
                       || RB_CHILDLESS_P(self->rb_left)
                       || RB_CHILDLESS_P(self->rb_left->rb_left)
                       || RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
                       || RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
                       || RB_CHILDLESS_P(self->rb_left->rb_right)
                       || RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
                       || RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));

               /*
                * If we are fully interior node, then our predecessors and
                * successors must have no children in our direction.
                */
               if (RB_TWOCHILDREN_P(self)) {
                       const struct rb_node *prev0;
                       const struct rb_node *next0;

                       prev0 = rb_tree_iterate_const(rbt, self, RB_NODE_LEFT);
                       KASSERT(prev0 != NULL);
                       KASSERT(RB_RIGHT_SENTINEL_P(prev0));

                       next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT);
                       KASSERT(next0 != NULL);
                       KASSERT(RB_LEFT_SENTINEL_P(next0));
               }
       }

       return true;
}

static unsigned int
rb_tree_count_black(const struct rb_node *self)
{
       unsigned int left, right;

       if (RB_SENTINEL_P(self))
               return 0;

       left = rb_tree_count_black(self->rb_left);
       right = rb_tree_count_black(self->rb_right);

       KASSERT(left == right);

       return left + RB_BLACK_P(self);
}

void
_prop_rb_tree_check(const struct rb_tree *rbt, bool red_check)
{
       const struct rb_node *self;
       const struct rb_node *prev;
       unsigned int count;

       KASSERT(rbt->rbt_root == NULL || rbt->rbt_root->rb_position == RB_NODE_LEFT);

       prev = NULL;
       count = 0;
       TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
               rb_tree_check_node(rbt, self, prev, false);
               count++;
       }
       KASSERT(rbt->rbt_count == count);
       KASSERT(RB_SENTINEL_P(rbt->rbt_root)
               || rb_tree_count_black(rbt->rbt_root));

       /*
        * The root must be black.
        * There can never be two adjacent red nodes.
        */
       if (red_check) {
               KASSERT(rbt->rbt_root == NULL || RB_BLACK_P(rbt->rbt_root));
               TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
                       rb_tree_check_node(rbt, self, NULL, true);
               }
       }
}
#endif /* RBDEBUG */