/*-
* Copyright (c) 2011-2025 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This material is based upon work partially supported by The
* NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* npfctl(8) building of the configuration.
*/

#include <sys/cdefs.h>
__RCSID("$NetBSD: npf_build.c,v 1.59 2025/07/01 19:55:15 joe Exp $");

#include <sys/types.h>
#define __FAVOR_BSD
#include <netinet/tcp.h>

#include <stdlib.h>
#include <inttypes.h>
#include <string.h>
#include <ctype.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <err.h>

#include <pcap/pcap.h>

#include "npfctl.h"

#define MAX_RULE_NESTING        16

static nl_config_t *            npf_conf = NULL;
static bool                     npf_debug = false;
static nl_rule_t *              the_rule = NULL;
static bool                     npf_conf_built = false;

static bool                     l2_group = false;
static nl_rule_t *              defgroup_l3 = NULL;
static nl_rule_t *              defgroup_l2 = NULL;
static nl_rule_t *              current_group[MAX_RULE_NESTING];
static unsigned                 rule_nesting_level = 0;
static unsigned                 npfctl_tid_counter = 0;

static void                     npfctl_dump_bpf(struct bpf_program *);

void
npfctl_config_init(bool debug)
{
       npf_conf = npf_config_create();
       if (npf_conf == NULL) {
               errx(EXIT_FAILURE, "npf_config_create() failed");
       }
       memset(current_group, 0, sizeof(current_group));
       npf_debug = debug;
       npf_conf_built = false;
}

nl_config_t *
npfctl_config_ref(void)
{
       return npf_conf;
}

nl_rule_t *
npfctl_rule_ref(void)
{
       return the_rule;
}

void
npfctl_config_build(void)
{
       /* Run-once. */
       if (npf_conf_built) {
               return;
       }

       /*
        * The layer 3 default group is mandatory.  Note: npfctl_build_group_end()
        * skipped the default rule, since it must be the last one.
        * if you set a layer 2 rule, layer 2 default also becomes mandatory.
        * if you don't set layer 2 rules, only layer 3 default is mandatory
        */
       if (!defgroup_l3) {
               errx(EXIT_FAILURE, "layer 3 default group was not defined");
       }

       if (l2_group & !defgroup_l2) {
               errx(EXIT_FAILURE, "layer 2 default group not defined");
       }
       assert(rule_nesting_level == 0);
       npf_rule_insert(npf_conf, NULL, defgroup_l3);

       if (defgroup_l2)
               npf_rule_insert(npf_conf, NULL, defgroup_l2);

       npf_config_build(npf_conf);
       npf_conf_built = true;
}

int
npfctl_config_send(int fd)
{
       npf_error_t errinfo;
       int error = 0;

       npfctl_config_build();
       error = npf_config_submit(npf_conf, fd, &errinfo);
       if (error) {
               npfctl_print_error(&errinfo);
       }
       npf_config_destroy(npf_conf);
       return error;
}

void
npfctl_config_save(nl_config_t *ncf, const char *outfile)
{
       void *blob;
       size_t len;
       int fd;

       blob = npf_config_export(ncf, &len);
       if (!blob) {
               err(EXIT_FAILURE, "npf_config_export");
       }
       if ((fd = open(outfile, O_CREAT | O_TRUNC | O_WRONLY, 0644)) == -1) {
               err(EXIT_FAILURE, "could not open %s", outfile);
       }
       if (write(fd, blob, len) != (ssize_t)len) {
               err(EXIT_FAILURE, "write to %s failed", outfile);
       }
       free(blob);
       close(fd);
}

bool
npfctl_debug_addif(const char *ifname)
{
       const char tname[] = "npftest";
       const size_t tnamelen = sizeof(tname) - 1;

       if (npf_debug) {
               _npf_debug_addif(npf_conf, ifname);
               return strncmp(ifname, tname, tnamelen) == 0;
       }
       return 0;
}

nl_table_t *
npfctl_table_getbyname(nl_config_t *ncf, const char *name)
{
       nl_iter_t i = NPF_ITER_BEGIN;
       nl_table_t *tl;

       /* XXX dynamic ruleset */
       if (!ncf) {
               return NULL;
       }
       while ((tl = npf_table_iterate(ncf, &i)) != NULL) {
               const char *tname = npf_table_getname(tl);
               if (strcmp(tname, name) == 0) {
                       break;
               }
       }
       return tl;
}

unsigned
npfctl_table_getid(const char *name)
{
       nl_table_t *tl;

       tl = npfctl_table_getbyname(npf_conf, name);
       return tl ? npf_table_getid(tl) : (unsigned)-1;
}

const char *
npfctl_table_getname(nl_config_t *ncf, unsigned tid, bool *ifaddr)
{
       const char *name = NULL;
       nl_iter_t i = NPF_ITER_BEGIN;
       nl_table_t *tl;

       while ((tl = npf_table_iterate(ncf, &i)) != NULL) {
               if (npf_table_getid(tl) == tid) {
                       name = npf_table_getname(tl);
                       break;
               }
       }
       if (!name) {
               return NULL;
       }
       if (!strncmp(name, NPF_IFNET_TABLE_PREF, NPF_IFNET_TABLE_PREFLEN)) {
               name += NPF_IFNET_TABLE_PREFLEN;
               *ifaddr = true;
       } else {
               *ifaddr = false;
       }
       return name;
}

static in_port_t
npfctl_get_singleport(const npfvar_t *vp)
{
       port_range_t *pr;
       in_port_t *port;

       if (npfvar_get_count(vp) > 1) {
               yyerror("multiple ports are not valid");
       }
       pr = npfvar_get_data(vp, NPFVAR_PORT_RANGE, 0);
       if (pr->pr_start != pr->pr_end) {
               yyerror("port range is not valid");
       }
       port = &pr->pr_start;
       return *port;
}

static fam_addr_mask_t *
npfctl_get_singlefam(const npfvar_t *vp)
{
       fam_addr_mask_t *am;

       if (npfvar_get_type(vp, 0) != NPFVAR_FAM) {
               yyerror("map segment must be an address or network");
       }
       if (npfvar_get_count(vp) > 1) {
               yyerror("map segment cannot have multiple static addresses");
       }
       am = npfvar_get_data(vp, NPFVAR_FAM, 0);
       if (am == NULL) {
               yyerror("invalid map segment");
       }
       return am;
}

static unsigned
npfctl_get_singletable(const npfvar_t *vp)
{
       unsigned *tid;

       if (npfvar_get_count(vp) > 1) {
               yyerror("invalid use of multiple tables");
       }
       tid = npfvar_get_data(vp, NPFVAR_TABLE, 0);
       assert(tid != NULL);
       return *tid;
}

static bool
npfctl_build_fam(npf_bpf_t *ctx, sa_family_t family,
   fam_addr_mask_t *fam, unsigned opts)
{
       /*
        * If family is specified, address does not match it and the
        * address is extracted from the interface, then simply ignore.
        * Otherwise, address of invalid family was passed manually.
        */
       if (family != AF_UNSPEC && family != fam->fam_family) {
               if (!fam->fam_ifindex) {
                       yyerror("specified address is not of the required "
                           "family %d", family);
               }
               return false;
       }

       family = fam->fam_family;
       if (family != AF_INET && family != AF_INET6) {
               yyerror("family %d is not supported", family);
       }

       /*
        * Optimise 0.0.0.0/0 case to be NOP.  Otherwise, address with
        * zero mask would never match and therefore is not valid.
        */
       if (fam->fam_mask == 0) {
               if (!npfctl_addr_iszero(&fam->fam_addr)) {
                       yyerror("filter criterion would never match");
               }
               return false;
       }

       npfctl_bpf_cidr(ctx, opts, family, &fam->fam_addr, fam->fam_mask);
       return true;
}

static void
npfctl_build_vars(npf_bpf_t *ctx, sa_family_t family, npfvar_t *vars, int opts)
{
       npfctl_bpf_group_enter(ctx, (opts & MATCH_INVERT) != 0);
       for (unsigned i = 0; i < npfvar_get_count(vars); i++) {
               const unsigned type = npfvar_get_type(vars, i);
               void *data = npfvar_get_data(vars, type, i);

               assert(data != NULL);

               switch (type) {
               case NPFVAR_FAM: {
                       fam_addr_mask_t *fam = data;
                       npfctl_build_fam(ctx, family, fam, opts);
                       break;
               }
               case NPFVAR_PORT_RANGE: {
                       port_range_t *pr = data;
                       npfctl_bpf_ports(ctx, opts, pr->pr_start, pr->pr_end);
                       break;
               }
               case NPFVAR_TABLE: {
                       unsigned tid;
                       memcpy(&tid, data, sizeof(unsigned));
                       npfctl_bpf_table(ctx, opts, tid);
                       break;
               }
               case NPFVAR_MAC: {
                       struct ether_addr *eth = data;
                       npfctl_bpf_ether(ctx, opts, eth);
                       break;
               }
               default:
                       yyerror("unexpected %s", npfvar_type(type));
               }
       }
       npfctl_bpf_group_exit(ctx);
}

static void
npfctl_build_proto_block(npf_bpf_t *ctx, const opt_proto_t *op, bool multiple)
{
       const unsigned proto = op->op_proto;
       npfvar_t *popts = op->op_opts;

       if (multiple && popts) {
               yyerror("multiple protocol options with protocol filters "
                   "are not yet supported");
       }

       /* Build the protocol filter. */
       npfctl_bpf_proto(ctx, proto);

       switch (proto) {
       case IPPROTO_TCP:
               /* Build TCP flags matching (optional). */
               if (popts) {
                       uint8_t *tf, *tf_mask;

                       assert(npfvar_get_count(popts) == 2);
                       tf = npfvar_get_data(popts, NPFVAR_TCPFLAG, 0);
                       tf_mask = npfvar_get_data(popts, NPFVAR_TCPFLAG, 1);
                       npfctl_bpf_tcpfl(ctx, *tf, *tf_mask);
               }
               break;
       case IPPROTO_ICMP:
       case IPPROTO_ICMPV6:
               /* Build ICMP/ICMPv6 type and/or code matching. */
               if (popts) {
                       int *icmp_type, *icmp_code;

                       assert(npfvar_get_count(popts) == 2);
                       icmp_type = npfvar_get_data(popts, NPFVAR_ICMP, 0);
                       icmp_code = npfvar_get_data(popts, NPFVAR_ICMP, 1);
                       npfctl_bpf_icmp(ctx, *icmp_type, *icmp_code);
               }
               break;
       default:
               /* No options for other protocols. */
               break;
       }
}

static void
npfctl_build_proto(npf_bpf_t *ctx, const npfvar_t *vars)
{
       const unsigned count = npfvar_get_count(vars);

       /*
        * XXX: For now, just do not support multiple protocol
        * blocks with options; this is because npfctl_bpf_tcpfl()
        * and npfctl_bpf_icmp() will not work correctly in a group.
        */
       if (count == 1) {
               const opt_proto_t *op = npfvar_get_data(vars, NPFVAR_PROTO, 0);
               npfctl_build_proto_block(ctx, op, false);
               return;
       }

       npfctl_bpf_group_enter(ctx, false);
       for (unsigned i = 0; i < count; i++) {
               const opt_proto_t *op = npfvar_get_data(vars, NPFVAR_PROTO, i);
               npfctl_build_proto_block(ctx, op, true);
       }
       npfctl_bpf_group_exit(ctx);
}

static bool
npfctl_check_proto(const npfvar_t *vars, bool *non_tcpudp, bool *tcp_with_nofl)
{
       unsigned count;

       *non_tcpudp = false;
       *tcp_with_nofl = false;

       if (vars == NULL) {
               return false;
       }

       count = npfvar_get_count(vars);
       for (unsigned i = 0; i < count; i++) {
               const opt_proto_t *op = npfvar_get_data(vars, NPFVAR_PROTO, i);

               switch (op->op_proto) {
               case IPPROTO_TCP:
                       *tcp_with_nofl = op->op_opts == NULL;
                       break;
               case IPPROTO_UDP:
               case -1:
                       break;
               default:
                       *non_tcpudp = true;
                       break;
               }
       }
       return count != 0;
}

static bool
build_l3_code(npf_bpf_t *bc, nl_rule_t *rl, sa_family_t family, const npfvar_t *popts,
   const filt_opts_t *fopts)
{
       unsigned opts;
       const addr_port_t *apfrom = &fopts->filt.opt3.fo_from;
       const addr_port_t *apto = &fopts->filt.opt3.fo_to;
       bool any_proto, any_addrs, any_ports, stateful;
       bool any_l4proto, non_tcpudp, tcp_with_nofl;

       /*
        * Gather some information about the protocol options, if any.
        * Check the filter criteria in general -- if none specified,
        * then no byte-code.
        */
       any_l4proto = npfctl_check_proto(popts, &non_tcpudp, &tcp_with_nofl);
       any_proto = (family != AF_UNSPEC) || any_l4proto;
       any_addrs = apfrom->ap_netaddr || apto->ap_netaddr;
       any_ports = apfrom->ap_portrange || apto->ap_portrange;
       stateful = (npf_rule_getattr(rl) & NPF_RULE_STATEFUL) != 0;
       if (!any_proto && !any_addrs && !any_ports && !stateful) {
               return false;
       }

       /*
        * Sanity check: ports can only be used with TCP or UDP protocol.
        */
       if (any_ports && non_tcpudp) {
               yyerror("invalid filter options for given the protocol(s)");
       }

       /* Build layer 3 and 4 protocol blocks. */
       if (family != AF_UNSPEC) {
               npfctl_bpf_ipver(bc, family);
       }
       if (any_l4proto) {
               npfctl_build_proto(bc, popts);
       }

       /*
        * If this is a stateful rule and TCP flags are not specified,
        * then add "flags S/SAFR" filter for TCP protocol case.
        */
       if (stateful && (!any_l4proto || tcp_with_nofl)) {
               npfctl_bpf_tcpfl(bc, TH_SYN, TH_SYN | TH_ACK | TH_FIN | TH_RST);
       }

       /* Build IP address blocks. */
       opts = MATCH_SRC | (fopts->fo_finvert ? MATCH_INVERT : 0);
       npfctl_build_vars(bc, family, apfrom->ap_netaddr, opts);
       opts = MATCH_DST | (fopts->fo_tinvert ? MATCH_INVERT : 0);
       npfctl_build_vars(bc, family, apto->ap_netaddr, opts);

       /*
        * Build the port-range blocks.  If no protocol is specified,
        * then we implicitly filter for the TCP / UDP protocols.
        */
       if (any_ports && !any_l4proto) {
               npfctl_bpf_group_enter(bc, false);
               npfctl_bpf_proto(bc, IPPROTO_TCP);
               npfctl_bpf_proto(bc, IPPROTO_UDP);
               npfctl_bpf_group_exit(bc);
       }

       npfctl_build_vars(bc, family, apfrom->ap_portrange, MATCH_SRC);
       npfctl_build_vars(bc, family, apto->ap_portrange, MATCH_DST);

       return true;
}

static bool
build_l2_code(npf_bpf_t *bc, const filt_opts_t *fopts)
{
       unsigned opts;
       npfvar_t *ap_from = fopts->filt.opt2.from_mac;
       npfvar_t *ap_to = fopts->filt.opt2.to_mac;
       const uint16_t ether_type = fopts->filt.opt2.ether_type;
       bool addr_or_ether;

       addr_or_ether = ap_from || ap_to || ether_type;
       if(!addr_or_ether)
               return false;

       if (ether_type != 0) {
               fetch_ether_type(bc, ether_type);
       }

       /* Build ether address blocks. */
       opts = MATCH_DST | (fopts->fo_tinvert ? MATCH_INVERT : 0);
       npfctl_build_vars(bc, 0, ap_to, opts);
       opts = MATCH_SRC | (fopts->fo_finvert ? MATCH_INVERT : 0);
       npfctl_build_vars(bc, 0, ap_from, opts);

       return true;
}

static bool
npfctl_build_code(nl_rule_t *rl, sa_family_t family, const npfvar_t *popts,
   const filt_opts_t *fopts)
{
       npf_bpf_t *bc;
       size_t len;
       uint32_t layer = fopts->layer;

       bc = npfctl_bpf_create();
       if (layer == NPF_RULE_LAYER_3) {
               if (!build_l3_code(bc, rl, family, popts, fopts))
                       return false;
       } else if (layer == NPF_RULE_LAYER_2) {
               if (!build_l2_code(bc, fopts))
                       return false;
       } else {
               yyerror("%s: layer not supported", __func__);
       }

       /* Set the byte-code marks, if any. */
       const void *bmarks = npfctl_bpf_bmarks(bc, &len);
       if (bmarks && npf_rule_setinfo(rl, bmarks, len) != 0) {
               errx(EXIT_FAILURE, "npf_rule_setinfo");
       }

       /* Complete BPF byte-code and pass to the rule. */
       struct bpf_program *bf = npfctl_bpf_complete(bc);
       if (bf == NULL) {
               npfctl_bpf_destroy(bc);
               return true;
       }
       len = bf->bf_len * sizeof(struct bpf_insn);

       if (npf_rule_setcode(rl, NPF_CODE_BPF, bf->bf_insns, len) != 0) {
               errx(EXIT_FAILURE, "npf_rule_setcode");
       }
       npfctl_dump_bpf(bf);
       npfctl_bpf_destroy(bc);

       return true;
}

static void
npfctl_build_pcap(nl_rule_t *rl, const char *filter)
{
       const size_t maxsnaplen = 64 * 1024;
       struct bpf_program bf;
       size_t len;
       pcap_t *pd;

       pd = pcap_open_dead(DLT_RAW, maxsnaplen);
       if (pd == NULL) {
               err(EXIT_FAILURE, "pcap_open_dead");
       }

       if (pcap_compile(pd, &bf,
           filter, 1, PCAP_NETMASK_UNKNOWN) == -1) {
               yyerror("invalid pcap-filter(7) syntax");
       }
       len = bf.bf_len * sizeof(struct bpf_insn);

       if (npf_rule_setcode(rl, NPF_CODE_BPF, bf.bf_insns, len) != 0) {
               errx(EXIT_FAILURE, "npf_rule_setcode failed");
       }
       npfctl_dump_bpf(&bf);
       pcap_freecode(&bf);
       pcap_close(pd);
}

static void
npfctl_build_rpcall(nl_rproc_t *rp, const char *name, npfvar_t *args)
{
       npf_extmod_t *extmod;
       nl_ext_t *extcall;
       int error;

       extmod = npf_extmod_get(name, &extcall);
       if (extmod == NULL) {
               yyerror("unknown rule procedure '%s'", name);
       }

       for (size_t i = 0; i < npfvar_get_count(args); i++) {
               const char *param, *value;
               proc_param_t *p;

               p = npfvar_get_data(args, NPFVAR_PROC_PARAM, i);
               param = p->pp_param;
               value = p->pp_value;

               error = npf_extmod_param(extmod, extcall, param, value);
               switch (error) {
               case EINVAL:
                       yyerror("invalid parameter '%s'", param);
               default:
                       break;
               }
       }
       error = npf_rproc_extcall(rp, extcall);
       if (error) {
               yyerror(error == EEXIST ?
                   "duplicate procedure call" : "unexpected error");
       }
}

/*
* npfctl_build_rproc: create and insert a rule procedure.
*/
void
npfctl_build_rproc(const char *name, npfvar_t *procs)
{
       nl_rproc_t *rp;
       size_t i;

       rp = npf_rproc_create(name);
       if (rp == NULL) {
               errx(EXIT_FAILURE, "%s failed", __func__);
       }

       for (i = 0; i < npfvar_get_count(procs); i++) {
               proc_call_t *pc = npfvar_get_data(procs, NPFVAR_PROC, i);
               npfctl_build_rpcall(rp, pc->pc_name, pc->pc_opts);
       }
       npf_rproc_insert(npf_conf, rp);
}

/*
* npfctl_build_maprset: create and insert a NAT ruleset.
*/
void
npfctl_build_maprset(const char *name, int attr, const char *ifname)
{
       const int attr_di = (NPF_RULE_IN | NPF_RULE_OUT);
       nl_rule_t *rl;
       bool natset;
       int err;

       /* Validate the prefix. */
       err = npfctl_nat_ruleset_p(name, &natset);
       if (!natset) {
               yyerror("NAT ruleset names must be prefixed with `"
                   NPF_RULESET_MAP_PREF "`");
       }
       if (err) {
               yyerror("NAT ruleset is missing a name (only prefix found)");
       }

       /* If no direction is not specified, then both. */
       if ((attr & attr_di) == 0) {
               attr |= attr_di;
       }

       /* Allow only "in/out" attributes. */
       attr = NPF_RULE_GROUP | NPF_RULE_DYNAMIC | (attr & attr_di);
       rl = npf_rule_create(name, attr, ifname);
       npf_rule_setprio(rl, NPF_PRI_LAST);
       npf_nat_insert(npf_conf, rl);
}

static void
npf_check_layer(const char **lstr, uint32_t lattr, const char *func)
{
       if (lattr & NPF_RULE_LAYER_2)
               *lstr = "layer 2";
       else if (lattr & NPF_RULE_LAYER_3)
               *lstr = "layer 3";
       else
               yyerror("%s: layer not yet supported", func);
}

static nl_rule_t *
set_defgroup(nl_rule_t *rl, nl_rule_t *def_group, int attr)
{
       if (def_group) {
               const char *str;
               npf_check_layer(&str, attr, __func__);
               yyerror("multiple %s default groups are not valid", str);
       }
       if (rule_nesting_level) {
               yyerror("default group can only be at the top level");
       }

       return rl;
}

/*
* npfctl_build_group: create a group, update the current group pointer
* and increase the nesting level.
*/
void
npfctl_build_group(const char *name, int attr, const char *ifname, bool def)
{
       const int attr_di = (NPF_RULE_IN | NPF_RULE_OUT);
       nl_rule_t *rl;

       if (def || (attr & attr_di) == 0) {
               attr |= attr_di;
       }

       rl = npf_rule_create(name, attr | NPF_RULE_GROUP, ifname);
       npf_rule_setprio(rl, NPF_PRI_LAST);
       if (def) {
               if (attr & NPF_RULE_LAYER_3) {
                       defgroup_l3 = set_defgroup(rl, defgroup_l3, attr);
               }
               else if (attr & NPF_RULE_LAYER_2) {
                       defgroup_l2 = set_defgroup(rl, defgroup_l2, attr);
               }
               else {
                       yyerror("%s: layer not supported", __func__);
               }
       } else {
               if (attr & NPF_RULE_LAYER_2)
                       l2_group = true;
       }

       /* Set the current group and increase the nesting level. */
       if (rule_nesting_level >= MAX_RULE_NESTING) {
               yyerror("rule nesting limit reached");
       }
       current_group[++rule_nesting_level] = rl;
}

void
npfctl_build_group_end(void)
{
       nl_rule_t *parent, *group;

       assert(rule_nesting_level > 0);
       parent = current_group[rule_nesting_level - 1];
       group = current_group[rule_nesting_level];
       current_group[rule_nesting_level--] = NULL;

       /*
        * Note:
        * - If the parent is NULL, then it is a global rule.
        * - The default rule must be the last, so it is inserted later.
        */
       if (group == defgroup_l3 || group == defgroup_l2) {
               assert(parent == NULL);
               return;
       }
       npf_rule_insert(npf_conf, parent, group);
}

/*
* this function is here to ensure that layer 2 rules are
* rightfully embedded in layer2 groups
* and vice versa. layer3 group => layer 3 rules
* does not allow setting layer 2 rules in layer 3 groups
*/
static uint32_t
npf_rule_layer_compat(nl_rule_t *cg, uint32_t layer)
{
       uint32_t attr = attr = npf_rule_getattr(cg);

       if ((attr & layer) == 0) {
               /* only set the layer strings when you need them */
               const char *str;
               npf_check_layer(&str, layer, __func__);

               yyerror("cannot insert %s rules in this group"
                       " make sure to insert same layer rules in the same group ", str);
       }
       return layer;
}

/*
* npfctl_build_rule: create a rule, build byte-code from filter options,
* if any, and insert into the ruleset of current group, or set the rule.
*/
void
npfctl_build_rule(uint32_t attr, const char *ifname, sa_family_t family,
   const npfvar_t *popts, const filt_opts_t *fopts,
   const char *pcap_filter, const char *rproc)
{
       nl_rule_t *rl, *cg;

       attr |= (npf_conf ? 0 : NPF_RULE_DYNAMIC);

       /*
        * quickly check for group-rule layer compat
        * if the filter layer matches group layer,
        * set the layer bit in rule attribute for kernel
        */
       if (npf_conf) {
               cg = current_group[rule_nesting_level];
               attr |= npf_rule_layer_compat(cg, fopts->layer);
       }

       if (attr & NPF_RULE_LAYER_2 && attr & (NPF_RULE_RETRST | NPF_RULE_RETICMP))
               yyerror("return blocks not yet supported in layer 2");

       rl = npf_rule_create(NULL, attr, ifname);
       if (pcap_filter) {
               npfctl_build_pcap(rl, pcap_filter);
       } else {
               npfctl_build_code(rl, family, popts, fopts);
       }

       if (fopts->uid.op != NPF_OP_NONE) {
               npf_rule_setrid(rl, fopts->uid, "r_user");
       }

       if (fopts->gid.op != NPF_OP_NONE) {
               npf_rule_setrid(rl, fopts->gid, "r_group");
       }

       if (rproc) {
               npf_rule_setproc(rl, rproc);
       }

       if (npf_conf) {
               cg = current_group[rule_nesting_level];

               if (rproc && !npf_rproc_exists_p(npf_conf, rproc)) {
                       yyerror("rule procedure '%s' is not defined", rproc);
               }
               assert(cg != NULL);
               npf_rule_setprio(rl, NPF_PRI_LAST);
               npf_rule_insert(npf_conf, cg, rl);
       } else {
               /* We have parsed a single rule - set it. */
               the_rule = rl;
       }
}

/*
* npfctl_build_nat: create a single NAT policy of a specified
* type with a given filter options.
*/
static nl_nat_t *
npfctl_build_nat(int type, const char *ifname, const addr_port_t *ap,
   const npfvar_t *popts, const filt_opts_t *fopts, unsigned flags)
{
       fam_addr_mask_t *am;
       sa_family_t family;
       in_port_t port;
       nl_nat_t *nat;
       unsigned tid;

       if (ap->ap_portrange) {
               /*
                * The port forwarding case.  In such case, there has to
                * be a single port used for translation; we keep the port
                * translation on, but disable the port map.
                */
               port = npfctl_get_singleport(ap->ap_portrange);
               flags = (flags & ~NPF_NAT_PORTMAP) | NPF_NAT_PORTS;
       } else {
               port = 0;
       }

       nat = npf_nat_create(type, flags, ifname);

       switch (npfvar_get_type(ap->ap_netaddr, 0)) {
       case NPFVAR_FAM:
               /* Translation address. */
               am = npfctl_get_singlefam(ap->ap_netaddr);
               family = am->fam_family;
               npf_nat_setaddr(nat, family, &am->fam_addr, am->fam_mask);
               break;
       case NPFVAR_TABLE:
               /* Translation table. */
               family = AF_UNSPEC;
               tid = npfctl_get_singletable(ap->ap_netaddr);
               npf_nat_settable(nat, tid);
               break;
       default:
               yyerror("map must have a valid translation address");
               abort();
       }
       npf_nat_setport(nat, port);
       npfctl_build_code(nat, family, popts, fopts);
       return nat;
}

static void
npfctl_dnat_check(const addr_port_t *ap, const unsigned algo)
{
       const unsigned type = npfvar_get_type(ap->ap_netaddr, 0);
       fam_addr_mask_t *am;

       switch (algo) {
       case NPF_ALGO_NETMAP:
               if (type == NPFVAR_FAM) {
                       break;
               }
               yyerror("translation address using NETMAP must be "
                   "a network and not a dynamic pool");
               break;
       case NPF_ALGO_IPHASH:
       case NPF_ALGO_RR:
       case NPF_ALGO_NONE:
               if (type != NPFVAR_FAM) {
                       break;
               }
               am = npfctl_get_singlefam(ap->ap_netaddr);
               if (am->fam_mask == NPF_NO_NETMASK) {
                       break;
               }
               yyerror("translation address, given the specified algorithm, "
                   "must be a pool or a single address");
               break;
       default:
               yyerror("invalid algorithm specified for dynamic NAT");
       }
}

/*
* npfctl_build_natseg: validate and create NAT policies.
*/
void
npfctl_build_natseg(int sd, int type, unsigned mflags, const char *ifname,
   const addr_port_t *ap1, const addr_port_t *ap2, const npfvar_t *popts,
   const filt_opts_t *fopts, unsigned algo)
{
       fam_addr_mask_t *am1 = NULL, *am2 = NULL;
       nl_nat_t *nt1 = NULL, *nt2 = NULL;
       filt_opts_t imfopts;
       uint16_t adj = 0;
       unsigned flags;
       bool binat;

       assert(ifname != NULL);

       /*
        * Validate that mapping has the translation address(es) set.
        */
       if ((type & NPF_NATIN) != 0 && ap1->ap_netaddr == NULL) {
               yyerror("inbound network segment is not specified");
       }
       if ((type & NPF_NATOUT) != 0 && ap2->ap_netaddr == NULL) {
               yyerror("outbound network segment is not specified");
       }

       /*
        * Bi-directional NAT is a combination of inbound NAT and outbound
        * NAT policies with the translation segments inverted respectively.
        */
       binat = (NPF_NATIN | NPF_NATOUT) == type;

       switch (sd) {
       case NPFCTL_NAT_DYNAMIC:
               /*
                * Dynamic NAT: stateful translation -- traditional NAPT
                * is expected.  Unless it is bi-directional NAT, perform
                * the port mapping.
                */
               flags = !binat ? (NPF_NAT_PORTS | NPF_NAT_PORTMAP) : 0;
               if (type & NPF_NATIN) {
                       npfctl_dnat_check(ap1, algo);
               }
               if (type & NPF_NATOUT) {
                       npfctl_dnat_check(ap2, algo);
               }
               break;
       case NPFCTL_NAT_STATIC:
               /*
                * Static NAT: stateless translation.
                */
               flags = NPF_NAT_STATIC;

               /* Note: translation address/network cannot be a table. */
               if (type & NPF_NATIN) {
                       am1 = npfctl_get_singlefam(ap1->ap_netaddr);
               }
               if (type & NPF_NATOUT) {
                       am2 = npfctl_get_singlefam(ap2->ap_netaddr);
               }

               /* Validate the algorithm. */
               switch (algo) {
               case NPF_ALGO_NPT66:
                       if (!binat || am1->fam_mask != am2->fam_mask) {
                               yyerror("asymmetric NPTv6 is not supported");
                       }
                       adj = npfctl_npt66_calcadj(am1->fam_mask,
                           &am1->fam_addr, &am2->fam_addr);
                       break;
               case NPF_ALGO_NETMAP:
                       if (binat && am1->fam_mask != am2->fam_mask) {
                               yyerror("net-to-net mapping using the "
                                   "NETMAP algorithm must be 1:1");
                       }
                       break;
               case NPF_ALGO_NONE:
                       if ((am1 && am1->fam_mask != NPF_NO_NETMASK) ||
                           (am2 && am2->fam_mask != NPF_NO_NETMASK)) {
                               yyerror("static net-to-net translation "
                                   "must have an algorithm specified");
                       }
                       break;
               default:
                       yyerror("invalid algorithm specified for static NAT");
               }
               break;
       default:
               abort();
       }

       /*
        * Apply the flag modifications.
        */
       if (mflags & NPF_NAT_PORTS) {
               flags &= ~(NPF_NAT_PORTS | NPF_NAT_PORTMAP);
       }

       /*
        * If the filter criteria is not specified explicitly, apply implicit
        * filtering according to the given network segments.
        *
        * Note: filled below, depending on the type.
        */
       if (__predict_true(!fopts)) {
               fopts = &imfopts;
       }

       if (type & NPF_NATIN) {
               memset(&imfopts, 0, sizeof(imfopts));
               imfopts.layer = NPF_RULE_LAYER_3;
               memcpy(&imfopts.filt.opt3.fo_to, ap2, sizeof(imfopts.filt.opt3.fo_to));
               nt1 = npfctl_build_nat(NPF_NATIN, ifname,
                   ap1, popts, fopts, flags);
       }
       if (type & NPF_NATOUT) {
               memset(&imfopts, 0, sizeof(imfopts));
               imfopts.layer = NPF_RULE_LAYER_3;
               memcpy(&imfopts.filt.opt3.fo_from, ap1, sizeof(imfopts.filt.opt3.fo_from));
               nt2 = npfctl_build_nat(NPF_NATOUT, ifname,
                   ap2, popts, fopts, flags);
       }

       switch (algo) {
       case NPF_ALGO_NONE:
               break;
       case NPF_ALGO_NPT66:
               /*
                * NPTv6 is a special case using special adjustment value.
                * It is always bidirectional NAT.
                */
               assert(nt1 && nt2);
               npf_nat_setnpt66(nt1, ~adj);
               npf_nat_setnpt66(nt2, adj);
               break;
       default:
               /*
                * Set the algorithm.
                */
               if (nt1) {
                       npf_nat_setalgo(nt1, algo);
               }
               if (nt2) {
                       npf_nat_setalgo(nt2, algo);
               }
       }

       if (npf_conf) {
               if (nt1) {
                       npf_rule_setprio(nt1, NPF_PRI_LAST);
                       npf_nat_insert(npf_conf, nt1);
               }
               if (nt2) {
                       npf_rule_setprio(nt2, NPF_PRI_LAST);
                       npf_nat_insert(npf_conf, nt2);
               }
       } else {
               // XXX/TODO: need to refactor a bit to enable this..
               if (nt1 && nt2) {
                       errx(EXIT_FAILURE, "bidirectional NAT is currently "
                           "not yet supported in the dynamic rules");
               }
               the_rule = nt1 ? nt1 : nt2;
       }
}

/*
* npfctl_fill_table: fill NPF table with entries from a specified file.
*/
static void
npfctl_fill_table(nl_table_t *tl, unsigned type, const char *fname, FILE *fp)
{
       char *buf = NULL;
       int l = 0;
       size_t n;

       if (fp == NULL && (fp = fopen(fname, "r")) == NULL) {
               err(EXIT_FAILURE, "open '%s'", fname);
       }
       while (l++, getline(&buf, &n, fp) != -1) {
               fam_addr_mask_t fam;
               int alen;

               if (*buf == '\n' || *buf == '#') {
                       continue;
               }

               if (!npfctl_parse_cidr(buf, &fam, &alen)) {
                       errx(EXIT_FAILURE,
                           "%s:%d: invalid table entry", fname, l);
               }
               if (type != NPF_TABLE_LPM && fam.fam_mask != NPF_NO_NETMASK) {
                       errx(EXIT_FAILURE, "%s:%d: mask used with the "
                           "table type other than \"lpm\"", fname, l);
               }

               npf_table_add_entry(tl, fam.fam_family,
                   &fam.fam_addr, fam.fam_mask);
       }
       free(buf);
}

/*
* npfctl_load_table: create an NPF table and fill with contents from a file.
*/
nl_table_t *
npfctl_load_table(const char *tname, int tid, unsigned type,
   const char *fname, FILE *fp)
{
       nl_table_t *tl;

       tl = npf_table_create(tname, tid, type);
       if (tl && fname) {
               npfctl_fill_table(tl, type, fname, fp);
       }

       return tl;
}

/*
* npfctl_build_table: create an NPF table, add to the configuration and,
* if required, fill with contents from a file.
*/
void
npfctl_build_table(const char *tname, unsigned type, const char *fname)
{
       nl_table_t *tl;

       if (type == NPF_TABLE_CONST && !fname) {
               yyerror("table type 'const' must be loaded from a file");
       }

       tl = npfctl_load_table(tname, npfctl_tid_counter++, type, fname, NULL);
       assert(tl != NULL);

       if (npf_table_insert(npf_conf, tl)) {
               yyerror("table '%s' is already defined", tname);
       }
}

/*
* npfctl_ifnet_table: get a variable with ifaddr-table; auto-create
* the table on first reference.
*/
npfvar_t *
npfctl_ifnet_table(const char *ifname)
{
       char tname[NPF_TABLE_MAXNAMELEN];
       nl_table_t *tl;
       unsigned tid;

       snprintf(tname, sizeof(tname), NPF_IFNET_TABLE_PREF "%s", ifname);
       if (!npf_conf) {
               errx(EXIT_FAILURE, "expression `ifaddrs(%s)` is currently "
                   "not yet supported in dynamic rules", ifname);
       }

       tid = npfctl_table_getid(tname);
       if (tid == (unsigned)-1) {
               tid = npfctl_tid_counter++;
               tl = npf_table_create(tname, tid, NPF_TABLE_IFADDR);
               (void)npf_table_insert(npf_conf, tl);
       }
       return npfvar_create_element(NPFVAR_TABLE, &tid, sizeof(unsigned));
}

/*
* npfctl_build_alg: create an NPF application level gateway and add it
* to the configuration.
*/
void
npfctl_build_alg(const char *al_name)
{
       if (npf_alg_load(npf_conf, al_name) != 0) {
               yyerror("ALG '%s' is already loaded", al_name);
       }
}

void
npfctl_setparam(const char *name, int val)
{
       if (strcmp(name, "bpf.jit") == 0) {
               npfctl_bpfjit(val != 0);
               return;
       }
       if (npf_param_set(npf_conf, name, val) != 0) {
               yyerror("invalid parameter `%s` or its value", name);
       }
}

static void
npfctl_dump_bpf(struct bpf_program *bf)
{
       if (npf_debug) {
               extern char *yytext;
               extern int yylineno;

               int rule_line = yylineno - (int)(*yytext == '\n');
               printf("\nRULE AT LINE %d\n", rule_line);
               bpf_dump(bf, 0);
       }
}