/*      $NetBSD: mkfs.c,v 1.42 2023/01/07 19:41:30 chs Exp $    */

/*
* Copyright (c) 2002 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Marshall
* Kirk McKusick and Network Associates Laboratories, the Security
* Research Division of Network Associates, Inc. under DARPA/SPAWAR
* contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
* research program
*
* Copyright (c) 1980, 1989, 1993
*      The Regents of the University of California.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#if HAVE_NBTOOL_CONFIG_H
#include "nbtool_config.h"
#endif

#include <sys/cdefs.h>
#ifndef lint
#if 0
static char sccsid[] = "@(#)mkfs.c      8.11 (Berkeley) 5/3/95";
#else
#ifdef __RCSID
__RCSID("$NetBSD: mkfs.c,v 1.42 2023/01/07 19:41:30 chs Exp $");
#endif
#endif
#endif /* not lint */

#include <sys/param.h>
#include <sys/time.h>
#include <sys/resource.h>

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <util.h>

#include "makefs.h"
#include "ffs.h"

#include <ufs/ufs/dinode.h>
#include <ufs/ufs/ufs_bswap.h>
#include <ufs/ffs/fs.h>

#include "ffs/ufs_inode.h"
#include "ffs/ffs_extern.h"
#include "ffs/newfs_extern.h"

static void initcg(uint32_t, time_t, const fsinfo_t *);
static int ilog2(int);

static int count_digits(int);

/*
* make file system for cylinder-group style file systems
*/
#define UMASK           0755
#define POWEROF2(num)   (((num) & ((num) - 1)) == 0)

union {
       struct fs fs;
       char pad[SBLOCKSIZE];
} fsun;
#define sblock  fsun.fs
struct  csum *fscs;

union {
       struct cg cg;
       char pad[FFS_MAXBSIZE];
} cgun;
#define acg     cgun.cg

char *iobuf;
int iobufsize;

union {
       struct fs fs;
       char pad[FFS_MAXBSIZE];
} wb;
#define writebuf wb.pad

static int     Oflag;      /* format as an 4.3BSD file system */
static int     extattr;    /* use UFS2ea magic */
static int64_t fssize;     /* file system size */
static int     sectorsize;         /* bytes/sector */
static int     fsize;      /* fragment size */
static int     bsize;      /* block size */
static int     maxbsize;   /* maximum clustering */
static int     maxblkspercg;
static int     minfree;    /* free space threshold */
static int     opt;                /* optimization preference (space or time) */
static int     density;    /* number of bytes per inode */
static int     maxcontig;          /* max contiguous blocks to allocate */
static int     maxbpg;     /* maximum blocks per file in a cyl group */
static int     bbsize;     /* boot block size */
static int     sbsize;     /* superblock size */
static int     avgfilesize;        /* expected average file size */
static int     avgfpdir;           /* expected number of files per directory */

static void
ffs_sb_copy(struct fs *o, const struct fs *i, size_t l, const fsinfo_t *fsopts)
{
       memcpy(o, i, l);
       /* Zero out pointers */
       o->fs_csp = NULL;
       o->fs_maxcluster = NULL;
       if (fsopts->needswap)
               ffs_sb_swap(i, o);
}

struct fs *
ffs_mkfs(const char *fsys, const fsinfo_t *fsopts, time_t tstamp)
{
       int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
       uint32_t cylno, i;
       int32_t csfrags;
       long long sizepb;
       void *space;
       int size;
       int nprintcols, printcolwidth;
       ffs_opt_t       *ffs_opts = fsopts->fs_specific;

       Oflag =         ffs_opts->version;
       extattr =       ffs_opts->extattr;
       fssize =        fsopts->size / fsopts->sectorsize;
       sectorsize =    fsopts->sectorsize;
       fsize =         ffs_opts->fsize;
       bsize =         ffs_opts->bsize;
       maxbsize =      ffs_opts->maxbsize;
       maxblkspercg =  ffs_opts->maxblkspercg;
       minfree =       ffs_opts->minfree;
       opt =           ffs_opts->optimization;
       density =       ffs_opts->density;
       maxcontig =     ffs_opts->maxcontig;
       maxbpg =        ffs_opts->maxbpg;
       avgfilesize =   ffs_opts->avgfilesize;
       avgfpdir =      ffs_opts->avgfpdir;
       bbsize =        BBSIZE;
       sbsize =        SBLOCKSIZE;

       strlcpy((char *)sblock.fs_volname, ffs_opts->label,
           sizeof(sblock.fs_volname));

       if (Oflag == 0) {
               sblock.fs_old_inodefmt = FS_42INODEFMT;
               sblock.fs_maxsymlinklen = 0;
               sblock.fs_old_flags = 0;
       } else {
               sblock.fs_old_inodefmt = FS_44INODEFMT;
               sblock.fs_maxsymlinklen = (Oflag == 1 ? UFS1_MAXSYMLINKLEN :
                   UFS2_MAXSYMLINKLEN);
               sblock.fs_old_flags = FS_FLAGS_UPDATED;
               sblock.fs_flags = 0;
       }
       /*
        * Validate the given file system size.
        * Verify that its last block can actually be accessed.
        * Convert to file system fragment sized units.
        */
       if (fssize <= 0) {
               printf("preposterous size %lld\n", (long long)fssize);
               exit(13);
       }
       ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts);

       /*
        * collect and verify the filesystem density info
        */
       sblock.fs_avgfilesize = avgfilesize;
       sblock.fs_avgfpdir = avgfpdir;
       if (sblock.fs_avgfilesize <= 0)
               printf("illegal expected average file size %d\n",
                   sblock.fs_avgfilesize), exit(14);
       if (sblock.fs_avgfpdir <= 0)
               printf("illegal expected number of files per directory %d\n",
                   sblock.fs_avgfpdir), exit(15);
       /*
        * collect and verify the block and fragment sizes
        */
       sblock.fs_bsize = bsize;
       sblock.fs_fsize = fsize;
       if (!POWEROF2(sblock.fs_bsize)) {
               printf("block size must be a power of 2, not %d\n",
                   sblock.fs_bsize);
               exit(16);
       }
       if (!POWEROF2(sblock.fs_fsize)) {
               printf("fragment size must be a power of 2, not %d\n",
                   sblock.fs_fsize);
               exit(17);
       }
       if (sblock.fs_fsize < sectorsize) {
               printf("fragment size %d is too small, minimum is %d\n",
                   sblock.fs_fsize, sectorsize);
               exit(18);
       }
       if (sblock.fs_bsize < MINBSIZE) {
               printf("block size %d is too small, minimum is %d\n",
                   sblock.fs_bsize, MINBSIZE);
               exit(19);
       }
       if (sblock.fs_bsize > FFS_MAXBSIZE) {
               printf("block size %d is too large, maximum is %d\n",
                   sblock.fs_bsize, FFS_MAXBSIZE);
               exit(19);
       }
       if (sblock.fs_bsize < sblock.fs_fsize) {
               printf("block size (%d) cannot be smaller than fragment size (%d)\n",
                   sblock.fs_bsize, sblock.fs_fsize);
               exit(20);
       }

       if (maxbsize < bsize || !POWEROF2(maxbsize)) {
               sblock.fs_maxbsize = sblock.fs_bsize;
               printf("Extent size set to %d\n", sblock.fs_maxbsize);
       } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
               sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
               printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
       } else {
               sblock.fs_maxbsize = maxbsize;
       }
       sblock.fs_maxcontig = maxcontig;
       if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
               sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
               printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
       }

       if (sblock.fs_maxcontig > 1)
               sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);

       sblock.fs_bmask = ~(sblock.fs_bsize - 1);
       sblock.fs_fmask = ~(sblock.fs_fsize - 1);
       sblock.fs_qbmask = ~sblock.fs_bmask;
       sblock.fs_qfmask = ~sblock.fs_fmask;
       for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
               sblock.fs_bshift++;
       for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
               sblock.fs_fshift++;
       sblock.fs_frag = ffs_numfrags(&sblock, sblock.fs_bsize);
       for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
               sblock.fs_fragshift++;
       if (sblock.fs_frag > MAXFRAG) {
               printf("fragment size %d is too small, "
                       "minimum with block size %d is %d\n",
                   sblock.fs_fsize, sblock.fs_bsize,
                   sblock.fs_bsize / MAXFRAG);
               exit(21);
       }
       sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
       sblock.fs_size = fssize = FFS_DBTOFSB(&sblock, fssize);

       if (Oflag <= 1) {
               sblock.fs_magic = FS_UFS1_MAGIC;
               sblock.fs_sblockloc = SBLOCK_UFS1;
               sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t);
               sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
               sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
                   sizeof (int32_t));
               sblock.fs_old_inodefmt = FS_44INODEFMT;
               sblock.fs_old_cgoffset = 0;
               sblock.fs_old_cgmask = 0xffffffff;
               sblock.fs_old_size = sblock.fs_size;
               sblock.fs_old_rotdelay = 0;
               sblock.fs_old_rps = 60;
               sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
               sblock.fs_old_cpg = 1;
               sblock.fs_old_interleave = 1;
               sblock.fs_old_trackskew = 0;
               sblock.fs_old_cpc = 0;
               sblock.fs_old_postblformat = 1;
               sblock.fs_old_nrpos = 1;
       } else {
               if (extattr)
                       sblock.fs_magic = FS_UFS2EA_MAGIC;
               else
                       sblock.fs_magic = FS_UFS2_MAGIC;
#if 0 /* XXX makefs is used for small filesystems. */
               sblock.fs_sblockloc = SBLOCK_UFS2;
#else
               sblock.fs_sblockloc = SBLOCK_UFS1;
#endif
               sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t);
               sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
               sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) *
                   sizeof (int64_t));
       }

       sblock.fs_sblkno =
           roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
               sblock.fs_frag);
       sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
           roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag));
       sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
       sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1;
       for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) {
               sizepb *= FFS_NINDIR(&sblock);
               sblock.fs_maxfilesize += sizepb;
       }

       /*
        * Calculate the number of blocks to put into each cylinder group.
        *
        * This algorithm selects the number of blocks per cylinder
        * group. The first goal is to have at least enough data blocks
        * in each cylinder group to meet the density requirement. Once
        * this goal is achieved we try to expand to have at least
        * 1 cylinder group. Once this goal is achieved, we pack as
        * many blocks into each cylinder group map as will fit.
        *
        * We start by calculating the smallest number of blocks that we
        * can put into each cylinder group. If this is too big, we reduce
        * the density until it fits.
        */
       origdensity = density;
       for (;;) {
               fragsperinode = MAX(ffs_numfrags(&sblock, density), 1);
               minfpg = fragsperinode * FFS_INOPB(&sblock);
               if (minfpg > sblock.fs_size)
                       minfpg = sblock.fs_size;
               sblock.fs_ipg = FFS_INOPB(&sblock);
               sblock.fs_fpg = roundup(sblock.fs_iblkno +
                   sblock.fs_ipg / FFS_INOPF(&sblock), sblock.fs_frag);
               if (sblock.fs_fpg < minfpg)
                       sblock.fs_fpg = minfpg;
               sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
                   FFS_INOPB(&sblock));
               sblock.fs_fpg = roundup(sblock.fs_iblkno +
                   sblock.fs_ipg / FFS_INOPF(&sblock), sblock.fs_frag);
               if (sblock.fs_fpg < minfpg)
                       sblock.fs_fpg = minfpg;
               sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
                   FFS_INOPB(&sblock));
               if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
                       break;
               density -= sblock.fs_fsize;
       }
       if (density != origdensity)
               printf("density reduced from %d to %d\n", origdensity, density);

       if (maxblkspercg <= 0 || maxblkspercg >= fssize)
               maxblkspercg = fssize - 1;
       /*
        * Start packing more blocks into the cylinder group until
        * it cannot grow any larger, the number of cylinder groups
        * drops below 1, or we reach the size requested.
        */
       for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
               sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
                   FFS_INOPB(&sblock));
               if (sblock.fs_size / sblock.fs_fpg < 1)
                       break;
               if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
                       continue;
               if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
                       break;
               sblock.fs_fpg -= sblock.fs_frag;
               sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
                   FFS_INOPB(&sblock));
               break;
       }
       /*
        * Check to be sure that the last cylinder group has enough blocks
        * to be viable. If it is too small, reduce the number of blocks
        * per cylinder group which will have the effect of moving more
        * blocks into the last cylinder group.
        */
       optimalfpg = sblock.fs_fpg;
       for (;;) {
               sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
               lastminfpg = roundup(sblock.fs_iblkno +
                   sblock.fs_ipg / FFS_INOPF(&sblock), sblock.fs_frag);
               if (sblock.fs_size < lastminfpg) {
                       printf("Filesystem size %lld < minimum size of %d\n",
                           (long long)sblock.fs_size, lastminfpg);
                       exit(28);
               }
               if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
                   sblock.fs_size % sblock.fs_fpg == 0)
                       break;
               sblock.fs_fpg -= sblock.fs_frag;
               sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
                   FFS_INOPB(&sblock));
       }
       if (optimalfpg != sblock.fs_fpg)
               printf("Reduced frags per cylinder group from %d to %d %s\n",
                  optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
       sblock.fs_cgsize = ffs_fragroundup(&sblock, CGSIZE(&sblock));
       sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / FFS_INOPF(&sblock);
       if (Oflag <= 1) {
               sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
               sblock.fs_old_nsect = sblock.fs_old_spc;
               sblock.fs_old_npsect = sblock.fs_old_spc;
               sblock.fs_old_ncyl = sblock.fs_ncg;
       }

       /*
        * fill in remaining fields of the super block
        */
       sblock.fs_csaddr = cgdmin(&sblock, 0);
       sblock.fs_cssize =
           ffs_fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));

       /*
        * Setup memory for temporary in-core cylgroup summaries.
        * Cribbed from ffs_mountfs().
        */
       size = sblock.fs_cssize;
       if (sblock.fs_contigsumsize > 0)
               size += sblock.fs_ncg * sizeof(int32_t);
       space = ecalloc(1, size);
       sblock.fs_csp = space;
       space = (char *)space + sblock.fs_cssize;
       if (sblock.fs_contigsumsize > 0) {
               int32_t *lp;

               sblock.fs_maxcluster = lp = space;
               for (i = 0; i < sblock.fs_ncg; i++)
                       *lp++ = sblock.fs_contigsumsize;
       }

       sblock.fs_sbsize = ffs_fragroundup(&sblock, sizeof(struct fs));
       if (sblock.fs_sbsize > SBLOCKSIZE)
               sblock.fs_sbsize = SBLOCKSIZE;
       sblock.fs_minfree = minfree;
       sblock.fs_maxcontig = maxcontig;
       sblock.fs_maxbpg = maxbpg;
       sblock.fs_optim = opt;
       sblock.fs_cgrotor = 0;
       sblock.fs_pendingblocks = 0;
       sblock.fs_pendinginodes = 0;
       sblock.fs_cstotal.cs_ndir = 0;
       sblock.fs_cstotal.cs_nbfree = 0;
       sblock.fs_cstotal.cs_nifree = 0;
       sblock.fs_cstotal.cs_nffree = 0;
       sblock.fs_fmod = 0;
       sblock.fs_ronly = 0;
       sblock.fs_state = 0;
       sblock.fs_clean = FS_ISCLEAN;
       sblock.fs_ronly = 0;
       sblock.fs_id[0] = tstamp;
       sblock.fs_id[1] = random();
       sblock.fs_fsmnt[0] = '\0';
       csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
       sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
           sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
       sblock.fs_cstotal.cs_nbfree =
           ffs_fragstoblks(&sblock, sblock.fs_dsize) -
           howmany(csfrags, sblock.fs_frag);
       sblock.fs_cstotal.cs_nffree =
           ffs_fragnum(&sblock, sblock.fs_size) +
           (ffs_fragnum(&sblock, csfrags) > 0 ?
           sblock.fs_frag - ffs_fragnum(&sblock, csfrags) : 0);
       sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO;
       sblock.fs_cstotal.cs_ndir = 0;
       sblock.fs_dsize -= csfrags;
       sblock.fs_time = tstamp;
       if (Oflag <= 1) {
               sblock.fs_old_time = tstamp;
               sblock.fs_old_dsize = sblock.fs_dsize;
               sblock.fs_old_csaddr = sblock.fs_csaddr;
               sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
               sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
               sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
               sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
       }
       /*
        * Dump out summary information about file system.
        */
#define B2MBFACTOR (1 / (1024.0 * 1024.0))
       printf("%s: %.1fMB (%lld sectors) block size %d, "
              "fragment size %d\n",
           fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
           (long long)FFS_FSBTODB(&sblock, sblock.fs_size),
           sblock.fs_bsize, sblock.fs_fsize);
       printf("\tusing %d cylinder groups of %.2fMB, %d blks, "
              "%d inodes.\n",
           sblock.fs_ncg,
           (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
           sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
#undef B2MBFACTOR
       /*
        * Now determine how wide each column will be, and calculate how
        * many columns will fit in a 76 char line. 76 is the width of the
        * subwindows in sysinst.
        */
       printcolwidth = count_digits(
                       FFS_FSBTODB(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
       nprintcols = 76 / (printcolwidth + 2);

       /*
        * allocate space for superblock, cylinder group map, and
        * two sets of inode blocks.
        */
       if (sblock.fs_bsize < SBLOCKSIZE)
               iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
       else
               iobufsize = 4 * sblock.fs_bsize;
       iobuf = ecalloc(1, iobufsize);
       /*
        * Make a copy of the superblock into the buffer that we will be
        * writing out in each cylinder group.
        */
       ffs_sb_copy(&wb.fs, &sblock, sbsize, fsopts);
       memcpy(iobuf, writebuf, SBLOCKSIZE);

       printf("super-block backups (for fsck -b #) at:");
       for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
               initcg(cylno, tstamp, fsopts);
               if (cylno % nprintcols == 0)
                       printf("\n");
               printf(" %*lld,", printcolwidth,
                       (long long)FFS_FSBTODB(&sblock, cgsblock(&sblock, cylno)));
               fflush(stdout);
       }
       printf("\n");

       /*
        * Now construct the initial file system,
        * then write out the super-block.
        */
       sblock.fs_time = tstamp;
       if (Oflag <= 1) {
               sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
               sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
               sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
               sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
       }
       if (fsopts->needswap)
               sblock.fs_flags |= FS_SWAPPED;
       ffs_write_superblock(&sblock, fsopts);
       return (&sblock);
}

/*
* Write out the superblock and its duplicates,
* and the cylinder group summaries
*/
void
ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts)
{
       int size, blks, i, saveflag;
       uint32_t cylno;
       void *space;
       char *wrbuf;

       saveflag = fs->fs_flags & FS_INTERNAL;
       fs->fs_flags &= ~FS_INTERNAL;

       ffs_sb_copy(&wb.fs, &sblock, sbsize, fsopts);
       ffs_wtfs(fs->fs_sblockloc / sectorsize, sbsize, writebuf, fsopts);

       /* Write out the duplicate super blocks */
       for (cylno = 0; cylno < fs->fs_ncg; cylno++)
               ffs_wtfs(FFS_FSBTODB(fs, cgsblock(fs, cylno)),
                   sbsize, writebuf, fsopts);

       /* Write out the cylinder group summaries */
       size = fs->fs_cssize;
       blks = howmany(size, fs->fs_fsize);
       space = (void *)fs->fs_csp;
       wrbuf = emalloc(size);
       for (i = 0; i < blks; i+= fs->fs_frag) {
               size = fs->fs_bsize;
               if (i + fs->fs_frag > blks)
                       size = (blks - i) * fs->fs_fsize;
               if (fsopts->needswap)
                       ffs_csum_swap((struct csum *)space,
                           (struct csum *)wrbuf, size);
               else
                       memcpy(wrbuf, space, (u_int)size);
               ffs_wtfs(FFS_FSBTODB(fs, fs->fs_csaddr + i), size, wrbuf, fsopts);
               space = (char *)space + size;
       }
       free(wrbuf);
       fs->fs_flags |= saveflag;
}

/*
* Initialize a cylinder group.
*/
static void
initcg(uint32_t cylno, time_t utime, const fsinfo_t *fsopts)
{
       daddr_t cbase, dmax;
       uint32_t i, j, d, dlower, dupper, blkno;
       struct ufs1_dinode *dp1;
       struct ufs2_dinode *dp2;
       int start;

       /*
        * Determine block bounds for cylinder group.
        * Allow space for super block summary information in first
        * cylinder group.
        */
       cbase = cgbase(&sblock, cylno);
       dmax = cbase + sblock.fs_fpg;
       if (dmax > sblock.fs_size)
               dmax = sblock.fs_size;
       dlower = cgsblock(&sblock, cylno) - cbase;
       dupper = cgdmin(&sblock, cylno) - cbase;
       if (cylno == 0)
               dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
       memset(&acg, 0, sblock.fs_cgsize);
       acg.cg_time = utime;
       acg.cg_magic = CG_MAGIC;
       acg.cg_cgx = cylno;
       acg.cg_niblk = sblock.fs_ipg;
       acg.cg_initediblk = sblock.fs_ipg < 2 * FFS_INOPB(&sblock) ?
           sblock.fs_ipg : 2 * FFS_INOPB(&sblock);
       acg.cg_ndblk = dmax - cbase;
       if (sblock.fs_contigsumsize > 0)
               acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift;
       start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
       if (Oflag == 2) {
               acg.cg_iusedoff = start;
       } else {
               if (cylno == sblock.fs_ncg - 1)
                       acg.cg_old_ncyl = howmany(acg.cg_ndblk,
                           sblock.fs_fpg / sblock.fs_old_cpg);
               else
                       acg.cg_old_ncyl = sblock.fs_old_cpg;
               acg.cg_old_time = acg.cg_time;
               acg.cg_time = 0;
               acg.cg_old_niblk = acg.cg_niblk;
               acg.cg_niblk = 0;
               acg.cg_initediblk = 0;
               acg.cg_old_btotoff = start;
               acg.cg_old_boff = acg.cg_old_btotoff +
                   sblock.fs_old_cpg * sizeof(int32_t);
               acg.cg_iusedoff = acg.cg_old_boff +
                   sblock.fs_old_cpg * sizeof(u_int16_t);
       }
       acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
       if (sblock.fs_contigsumsize <= 0) {
               acg.cg_nextfreeoff = acg.cg_freeoff +
                  howmany(sblock.fs_fpg, CHAR_BIT);
       } else {
               acg.cg_clustersumoff = acg.cg_freeoff +
                   howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t);
               acg.cg_clustersumoff =
                   roundup(acg.cg_clustersumoff, sizeof(int32_t));
               acg.cg_clusteroff = acg.cg_clustersumoff +
                   (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
               acg.cg_nextfreeoff = acg.cg_clusteroff +
                   howmany(ffs_fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
       }
       if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
               printf("Panic: cylinder group too big\n");
               exit(37);
       }
       acg.cg_cs.cs_nifree += sblock.fs_ipg;
       if (cylno == 0) {
               size_t r;

               for (r = 0; r < UFS_ROOTINO; r++) {
                       setbit(cg_inosused(&acg, 0), r);
                       acg.cg_cs.cs_nifree--;
               }
       }
       if (cylno > 0) {
               /*
                * In cylno 0, beginning space is reserved
                * for boot and super blocks.
                */
               for (d = 0, blkno = 0; d < dlower;) {
                       ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno);
                       if (sblock.fs_contigsumsize > 0)
                               setbit(cg_clustersfree(&acg, 0), blkno);
                       acg.cg_cs.cs_nbfree++;
                       d += sblock.fs_frag;
                       blkno++;
               }
       }
       if ((i = (dupper & (sblock.fs_frag - 1))) != 0) {
               acg.cg_frsum[sblock.fs_frag - i]++;
               for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
                       setbit(cg_blksfree(&acg, 0), dupper);
                       acg.cg_cs.cs_nffree++;
               }
       }
       for (d = dupper, blkno = dupper >> sblock.fs_fragshift;
            d + sblock.fs_frag <= acg.cg_ndblk; ) {
               ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno);
               if (sblock.fs_contigsumsize > 0)
                       setbit(cg_clustersfree(&acg, 0), blkno);
               acg.cg_cs.cs_nbfree++;
               d += sblock.fs_frag;
               blkno++;
       }
       if (d < acg.cg_ndblk) {
               acg.cg_frsum[acg.cg_ndblk - d]++;
               for (; d < acg.cg_ndblk; d++) {
                       setbit(cg_blksfree(&acg, 0), d);
                       acg.cg_cs.cs_nffree++;
               }
       }
       if (sblock.fs_contigsumsize > 0) {
               int32_t *sump = cg_clustersum(&acg, 0);
               u_char *mapp = cg_clustersfree(&acg, 0);
               int map = *mapp++;
               int bit = 1;
               int run = 0;

               for (i = 0; i < acg.cg_nclusterblks; i++) {
                       if ((map & bit) != 0) {
                               run++;
                       } else if (run != 0) {
                               if (run > sblock.fs_contigsumsize)
                                       run = sblock.fs_contigsumsize;
                               sump[run]++;
                               run = 0;
                       }
                       if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) {
                               bit <<= 1;
                       } else {
                               map = *mapp++;
                               bit = 1;
                       }
               }
               if (run != 0) {
                       if (run > sblock.fs_contigsumsize)
                               run = sblock.fs_contigsumsize;
                       sump[run]++;
               }
       }
       sblock.fs_cs(&sblock, cylno) = acg.cg_cs;
       /*
        * Write out the duplicate super block, the cylinder group map
        * and two blocks worth of inodes in a single write.
        */
       start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
       memcpy(&iobuf[start], &acg, sblock.fs_cgsize);
       if (fsopts->needswap)
               ffs_cg_swap(&acg, (struct cg*)&iobuf[start], &sblock);
       start += sblock.fs_bsize;
       dp1 = (struct ufs1_dinode *)(&iobuf[start]);
       dp2 = (struct ufs2_dinode *)(&iobuf[start]);
       for (i = 0; i < acg.cg_initediblk; i++) {
               if (sblock.fs_magic == FS_UFS1_MAGIC) {
                       /* No need to swap, it'll stay random */
                       dp1->di_gen = random();
                       dp1++;
               } else {
                       dp2->di_gen = random();
                       dp2++;
               }
       }
       ffs_wtfs(FFS_FSBTODB(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf,
           fsopts);
       /*
        * For the old file system, we have to initialize all the inodes.
        */
       if (Oflag <= 1) {
               for (i = 2 * sblock.fs_frag;
                    i < sblock.fs_ipg / FFS_INOPF(&sblock);
                    i += sblock.fs_frag) {
                       dp1 = (struct ufs1_dinode *)(&iobuf[start]);
                       for (j = 0; j < FFS_INOPB(&sblock); j++) {
                               dp1->di_gen = random();
                               dp1++;
                       }
                       ffs_wtfs(FFS_FSBTODB(&sblock, cgimin(&sblock, cylno) + i),
                           sblock.fs_bsize, &iobuf[start], fsopts);
               }
       }
}

/*
* read a block from the file system
*/
void
ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
{
       int n;
       off_t offset;

       offset = bno * (off_t)fsopts->sectorsize + fsopts->offset;
       if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
               err(EXIT_FAILURE, "%s: seek error for sector %lld", __func__,
                   (long long)bno);
       n = read(fsopts->fd, bf, size);
       if (n == -1) {
               err(EXIT_FAILURE, "%s: read error bno %lld size %d", __func__,
                   (long long)bno, size);
       }
       else if (n != size)
               errx(EXIT_FAILURE, "%s: short read error for sector %lld", __func__,
                   (long long)bno);
}

/*
* write a block to the file system
*/
void
ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
{
       int n;
       off_t offset;

       offset = bno * (off_t)fsopts->sectorsize + fsopts->offset;
       if (lseek(fsopts->fd, offset, SEEK_SET) == -1)
               err(EXIT_FAILURE, "%s: seek error @%jd for sector %jd",
                   __func__, (intmax_t)offset, (intmax_t)bno);
       n = write(fsopts->fd, bf, size);
       if (n == -1)
               err(EXIT_FAILURE, "%s: write error for sector %jd", __func__,
                   (intmax_t)bno);
       else if (n != size)
               errx(EXIT_FAILURE, "%s: short write error for sector %jd",
                   __func__, (intmax_t)bno);
}


/* Determine how many digits are needed to print a given integer */
static int
count_digits(int num)
{
       int ndig;

       for(ndig = 1; num > 9; num /=10, ndig++);

       return (ndig);
}

static int
ilog2(int val)
{
       u_int n;

       for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
               if (1 << n == val)
                       return (n);
       errx(EXIT_FAILURE, "%s: %d is not a power of 2", __func__, val);
}