/*      $NetBSD: ffs_alloc.c,v 1.33 2025/06/27 19:55:38 andvar Exp $    */
/* From: NetBSD: ffs_alloc.c,v 1.50 2001/09/06 02:16:01 lukem Exp */

/*
* Copyright (c) 2002 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Marshall
* Kirk McKusick and Network Associates Laboratories, the Security
* Research Division of Network Associates, Inc. under DARPA/SPAWAR
* contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
* research program
*
* Copyright (c) 1982, 1986, 1989, 1993
*      The Regents of the University of California.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)ffs_alloc.c 8.19 (Berkeley) 7/13/95
*/

#if HAVE_NBTOOL_CONFIG_H
#include "nbtool_config.h"
#endif

#include <sys/cdefs.h>
#if defined(__RCSID) && !defined(__lint)
__RCSID("$NetBSD: ffs_alloc.c,v 1.33 2025/06/27 19:55:38 andvar Exp $");
#endif  /* !__lint */

#include <sys/param.h>
#include <sys/time.h>

#include <errno.h>

#include "makefs.h"

#include <ufs/ufs/dinode.h>
#include <ufs/ufs/ufs_bswap.h>
#include <ufs/ffs/fs.h>

#include "ffs/buf.h"
#include "ffs/ufs_inode.h"
#include "ffs/ffs_extern.h"


static int scanc(u_int, const u_char *, const u_char *, int);

static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
static daddr_t ffs_hashalloc(struct inode *, uint32_t, daddr_t, int,
                    daddr_t (*)(struct inode *, int, daddr_t, int));
static int32_t ffs_mapsearch(struct fs *, struct cg *, daddr_t, int);

/* in ffs_tables.c */
extern const int inside[], around[];
extern const u_char * const fragtbl[];

/*
* Allocate a block in the file system.
*
* The size of the requested block is given, which must be some
* multiple of fs_fsize and <= fs_bsize.
* A preference may be optionally specified. If a preference is given
* the following hierarchy is used to allocate a block:
*   1) allocate the requested block.
*   2) allocate a rotationally optimal block in the same cylinder.
*   3) allocate a block in the same cylinder group.
*   4) quadratically rehash into other cylinder groups, until an
*      available block is located.
* If no block preference is given the following hierarchy is used
* to allocate a block:
*   1) allocate a block in the cylinder group that contains the
*      inode for the file.
*   2) quadratically rehash into other cylinder groups, until an
*      available block is located.
*/
int
ffs_alloc(struct inode *ip, daddr_t lbn __unused, daddr_t bpref, int size,
   daddr_t *bnp)
{
       struct fs *fs = ip->i_fs;
       daddr_t bno;
       int cg;

       *bnp = 0;
       if (size > fs->fs_bsize || ffs_fragoff(fs, size) != 0) {
               errx(EXIT_FAILURE, "%s: bad size: bsize %d size %d", __func__,
                   fs->fs_bsize, size);
       }
       if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
               goto nospace;
       if (bpref >= fs->fs_size)
               bpref = 0;
       if (bpref == 0)
               cg = ino_to_cg(fs, ip->i_number);
       else
               cg = dtog(fs, bpref);
       bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
       if (bno > 0) {
               DIP_ADD(ip, blocks, size / DEV_BSIZE);
               *bnp = bno;
               return (0);
       }
nospace:
       return (ENOSPC);
}

/*
* Select the desired position for the next block in a file.  The file is
* logically divided into sections. The first section is composed of the
* direct blocks. Each additional section contains fs_maxbpg blocks.
*
* If no blocks have been allocated in the first section, the policy is to
* request a block in the same cylinder group as the inode that describes
* the file. If no blocks have been allocated in any other section, the
* policy is to place the section in a cylinder group with a greater than
* average number of free blocks.  An appropriate cylinder group is found
* by using a rotor that sweeps the cylinder groups. When a new group of
* blocks is needed, the sweep begins in the cylinder group following the
* cylinder group from which the previous allocation was made. The sweep
* continues until a cylinder group with greater than the average number
* of free blocks is found. If the allocation is for the first block in an
* indirect block, the information on the previous allocation is unavailable;
* here a best guess is made based upon the logical block number being
* allocated.
*
* If a section is already partially allocated, the policy is to
* contiguously allocate fs_maxcontig blocks.  The end of one of these
* contiguous blocks and the beginning of the next is physically separated
* so that the disk head will be in transit between them for at least
* fs_rotdelay milliseconds.  This is to allow time for the processor to
* schedule another I/O transfer.
*/
/* XXX ondisk32 */
daddr_t
ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int32_t *bap)
{
       struct fs *fs;
       uint32_t cg, startcg;
       int avgbfree;

       fs = ip->i_fs;
       if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
               if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
                       cg = ino_to_cg(fs, ip->i_number);
                       return (fs->fs_fpg * cg + fs->fs_frag);
               }
               /*
                * Find a cylinder with greater than average number of
                * unused data blocks.
                */
               if (indx == 0 || bap[indx - 1] == 0)
                       startcg =
                           ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
               else
                       startcg = dtog(fs,
                               ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
               startcg %= fs->fs_ncg;
               avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
               for (cg = startcg; cg < fs->fs_ncg; cg++)
                       if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
                               return (fs->fs_fpg * cg + fs->fs_frag);
               for (cg = 0; cg <= startcg; cg++)
                       if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
                               return (fs->fs_fpg * cg + fs->fs_frag);
               return (0);
       }
       /*
        * We just always try to lay things out contiguously.
        */
       return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
}

daddr_t
ffs_blkpref_ufs2(struct inode *ip, daddr_t lbn, int indx, int64_t *bap)
{
       struct fs *fs;
       uint32_t cg, startcg;
       int avgbfree;

       fs = ip->i_fs;
       if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
               if (lbn < UFS_NDADDR + FFS_NINDIR(fs)) {
                       cg = ino_to_cg(fs, ip->i_number);
                       return (fs->fs_fpg * cg + fs->fs_frag);
               }
               /*
                * Find a cylinder with greater than average number of
                * unused data blocks.
                */
               if (indx == 0 || bap[indx - 1] == 0)
                       startcg =
                           ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
               else
                       startcg = dtog(fs,
                               ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
               startcg %= fs->fs_ncg;
               avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
               for (cg = startcg; cg < fs->fs_ncg; cg++)
                       if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
                               return (fs->fs_fpg * cg + fs->fs_frag);
                       }
               for (cg = 0; cg < startcg; cg++)
                       if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
                               return (fs->fs_fpg * cg + fs->fs_frag);
                       }
               return (0);
       }
       /*
        * We just always try to lay things out contiguously.
        */
       return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
}

/*
* Implement the cylinder overflow algorithm.
*
* The policy implemented by this algorithm is:
*   1) allocate the block in its requested cylinder group.
*   2) quadratically rehash on the cylinder group number.
*   3) brute force search for a free block.
*
* `size':      size for data blocks, mode for inodes
*/
/*VARARGS5*/
static daddr_t
ffs_hashalloc(struct inode *ip, uint32_t cg, daddr_t pref, int size,
   daddr_t (*allocator)(struct inode *, int, daddr_t, int))
{
       struct fs *fs;
       daddr_t result;
       uint32_t i, icg = cg;

       fs = ip->i_fs;
       /*
        * 1: preferred cylinder group
        */
       result = (*allocator)(ip, cg, pref, size);
       if (result)
               return (result);
       /*
        * 2: quadratic rehash
        */
       for (i = 1; i < fs->fs_ncg; i *= 2) {
               cg += i;
               if (cg >= fs->fs_ncg)
                       cg -= fs->fs_ncg;
               result = (*allocator)(ip, cg, 0, size);
               if (result)
                       return (result);
       }
       /*
        * 3: brute force search
        * Note that we start at i == 2, since 0 was checked initially,
        * and 1 is always checked in the quadratic rehash.
        */
       cg = (icg + 2) % fs->fs_ncg;
       for (i = 2; i < fs->fs_ncg; i++) {
               result = (*allocator)(ip, cg, 0, size);
               if (result)
                       return (result);
               cg++;
               if (cg == fs->fs_ncg)
                       cg = 0;
       }
       return (0);
}

/*
* Determine whether a block can be allocated.
*
* Check to see if a block of the appropriate size is available,
* and if it is, allocate it.
*/
static daddr_t
ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
{
       struct cg *cgp;
       struct buf *bp;
       daddr_t bno, blkno;
       int error, frags, allocsiz, i;
       struct fs *fs = ip->i_fs;
       const int needswap = UFS_FSNEEDSWAP(fs);

       if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
               return (0);
       error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
           (int)fs->fs_cgsize, 0, &bp);
       if (error) {
               return (0);
       }
       cgp = (struct cg *)bp->b_data;
       if (!cg_chkmagic(cgp, needswap) ||
           (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
               brelse(bp, 0);
               return (0);
       }
       if (size == fs->fs_bsize) {
               bno = ffs_alloccgblk(ip, bp, bpref);
               bwrite(bp);
               return (bno);
       }
       /*
        * check to see if any fragments are already available
        * allocsiz is the size which will be allocated, hacking
        * it down to a smaller size if necessary
        */
       frags = ffs_numfrags(fs, size);
       for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
               if (cgp->cg_frsum[allocsiz] != 0)
                       break;
       if (allocsiz == fs->fs_frag) {
               /*
                * no fragments were available, so a block will be
                * allocated, and hacked up
                */
               if (cgp->cg_cs.cs_nbfree == 0) {
                       brelse(bp, 0);
                       return (0);
               }
               bno = ffs_alloccgblk(ip, bp, bpref);
               bpref = dtogd(fs, bno);
               for (i = frags; i < fs->fs_frag; i++)
                       setbit(cg_blksfree(cgp, needswap), bpref + i);
               i = fs->fs_frag - frags;
               ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
               fs->fs_cstotal.cs_nffree += i;
               fs->fs_cs(fs, cg).cs_nffree += i;
               fs->fs_fmod = 1;
               ufs_add32(cgp->cg_frsum[i], 1, needswap);
               bdwrite(bp);
               return (bno);
       }
       bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
       for (i = 0; i < frags; i++)
               clrbit(cg_blksfree(cgp, needswap), bno + i);
       ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
       fs->fs_cstotal.cs_nffree -= frags;
       fs->fs_cs(fs, cg).cs_nffree -= frags;
       fs->fs_fmod = 1;
       ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
       if (frags != allocsiz)
               ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
       blkno = cg * fs->fs_fpg + bno;
       bdwrite(bp);
       return blkno;
}

/*
* Allocate a block in a cylinder group.
*
* This algorithm implements the following policy:
*   1) allocate the requested block.
*   2) allocate a rotationally optimal block in the same cylinder.
*   3) allocate the next available block on the block rotor for the
*      specified cylinder group.
* Note that this routine only allocates fs_bsize blocks; these
* blocks may be fragmented by the routine that allocates them.
*/
static daddr_t
ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
{
       struct cg *cgp;
       daddr_t blkno;
       int32_t bno;
       struct fs *fs = ip->i_fs;
       const int needswap = UFS_FSNEEDSWAP(fs);
       u_int8_t *blksfree;

       cgp = (struct cg *)bp->b_data;
       blksfree = cg_blksfree(cgp, needswap);
       if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
               bpref = ufs_rw32(cgp->cg_rotor, needswap);
       } else {
               bpref = ffs_blknum(fs, bpref);
               bno = dtogd(fs, bpref);
               /*
                * if the requested block is available, use it
                */
               if (ffs_isblock(fs, blksfree, ffs_fragstoblks(fs, bno)))
                       goto gotit;
       }
       /*
        * Take the next available one in this cylinder group.
        */
       bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
       if (bno < 0)
               return (0);
       cgp->cg_rotor = ufs_rw32(bno, needswap);
gotit:
       blkno = ffs_fragstoblks(fs, bno);
       ffs_clrblock(fs, blksfree, (long)blkno);
       ffs_clusteracct(fs, cgp, blkno, -1);
       ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
       fs->fs_cstotal.cs_nbfree--;
       fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
       fs->fs_fmod = 1;
       blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
       return (blkno);
}

/*
* Free a block or fragment.
*
* The specified block or fragment is placed back in the
* free map. If a fragment is deallocated, a possible
* block reassembly is checked.
*/
void
ffs_blkfree(struct inode *ip, daddr_t bno, long size)
{
       struct cg *cgp;
       struct buf *bp;
       int32_t fragno, cgbno;
       int i, error, cg, blk, frags, bbase;
       struct fs *fs = ip->i_fs;
       const int needswap = UFS_FSNEEDSWAP(fs);

       if (size > fs->fs_bsize || ffs_fragoff(fs, size) != 0 ||
           ffs_fragnum(fs, bno) + ffs_numfrags(fs, size) > fs->fs_frag) {
               errx(EXIT_FAILURE, "%s: bad size: bno %lld bsize %d "
                   "size %ld", __func__, (long long)bno, fs->fs_bsize, size);
       }
       cg = dtog(fs, bno);
       if (bno >= fs->fs_size) {
               warnx("bad block %lld, ino %llu", (long long)bno,
                   (unsigned long long)ip->i_number);
               return;
       }
       error = bread(ip->i_devvp, FFS_FSBTODB(fs, cgtod(fs, cg)),
           (int)fs->fs_cgsize, 0, &bp);
       if (error) {
               return;
       }
       cgp = (struct cg *)bp->b_data;
       if (!cg_chkmagic(cgp, needswap)) {
               brelse(bp, 0);
               return;
       }
       cgbno = dtogd(fs, bno);
       if (size == fs->fs_bsize) {
               fragno = ffs_fragstoblks(fs, cgbno);
               if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), fragno)) {
                       errx(EXIT_FAILURE, "%s: freeing free block %lld",
                           __func__, (long long)bno);
               }
               ffs_setblock(fs, cg_blksfree(cgp, needswap), fragno);
               ffs_clusteracct(fs, cgp, fragno, 1);
               ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
               fs->fs_cstotal.cs_nbfree++;
               fs->fs_cs(fs, cg).cs_nbfree++;
       } else {
               bbase = cgbno - ffs_fragnum(fs, cgbno);
               /*
                * decrement the counts associated with the old frags
                */
               blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
               ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
               /*
                * deallocate the fragment
                */
               frags = ffs_numfrags(fs, size);
               for (i = 0; i < frags; i++) {
                       if (isset(cg_blksfree(cgp, needswap), cgbno + i)) {
                               errx(EXIT_FAILURE, "%s: freeing free frag: "
                                   "block %lld", __func__,
                                   (long long)(cgbno + i));
                       }
                       setbit(cg_blksfree(cgp, needswap), cgbno + i);
               }
               ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
               fs->fs_cstotal.cs_nffree += i;
               fs->fs_cs(fs, cg).cs_nffree += i;
               /*
                * add back in counts associated with the new frags
                */
               blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
               ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
               /*
                * if a complete block has been reassembled, account for it
                */
               fragno = ffs_fragstoblks(fs, bbase);
               if (ffs_isblock(fs, cg_blksfree(cgp, needswap), fragno)) {
                       ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
                       fs->fs_cstotal.cs_nffree -= fs->fs_frag;
                       fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
                       ffs_clusteracct(fs, cgp, fragno, 1);
                       ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
                       fs->fs_cstotal.cs_nbfree++;
                       fs->fs_cs(fs, cg).cs_nbfree++;
               }
       }
       fs->fs_fmod = 1;
       bdwrite(bp);
}


static int
scanc(u_int size, const u_char *cp, const u_char table[], int mask)
{
       const u_char *end = &cp[size];

       while (cp < end && (table[*cp] & mask) == 0)
               cp++;
       return (end - cp);
}

/*
* Find a block of the specified size in the specified cylinder group.
*
* It is a panic if a request is made to find a block if none are
* available.
*/
static int32_t
ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
{
       int32_t bno;
       int start, len, loc, i;
       int blk, field, subfield, pos;
       int ostart, olen;
       const int needswap = UFS_FSNEEDSWAP(fs);

       /*
        * find the fragment by searching through the free block
        * map for an appropriate bit pattern
        */
       if (bpref)
               start = dtogd(fs, bpref) / NBBY;
       else
               start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
       len = howmany(fs->fs_fpg, NBBY) - start;
       ostart = start;
       olen = len;
       loc = scanc((u_int)len,
               (const u_char *)&cg_blksfree(cgp, needswap)[start],
               (const u_char *)fragtbl[fs->fs_frag],
               (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
       if (loc == 0) {
               len = start + 1;
               start = 0;
               loc = scanc((u_int)len,
                       (const u_char *)&cg_blksfree(cgp, needswap)[0],
                       (const u_char *)fragtbl[fs->fs_frag],
                       (1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
               if (loc == 0) {
                       errx(EXIT_FAILURE, "%s: map corrupted: start %d "
                           "len %d offset %d %ld", __func__, ostart, olen,
                           ufs_rw32(cgp->cg_freeoff, needswap),
                           (long)cg_blksfree(cgp, needswap) - (long)cgp);
                       /* NOTREACHED */
               }
       }
       bno = (start + len - loc) * NBBY;
       cgp->cg_frotor = ufs_rw32(bno, needswap);
       /*
        * found the byte in the map
        * sift through the bits to find the selected frag
        */
       for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
               blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
               blk <<= 1;
               field = around[allocsiz];
               subfield = inside[allocsiz];
               for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
                       if ((blk & field) == subfield)
                               return (bno + pos);
                       field <<= 1;
                       subfield <<= 1;
               }
       }
       errx(EXIT_FAILURE, "%s: block not in map: bno %lld", __func__,
           (long long)bno);
       return (-1);
}