/* $NetBSD: i386.c,v 1.43 2021/12/05 04:47:18 msaitoh Exp $ */

/*-
* Copyright (c) 2003 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by David Laight.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

#if HAVE_NBTOOL_CONFIG_H
#include "nbtool_config.h"
#endif

#include <sys/cdefs.h>
#if !defined(__lint)
__RCSID("$NetBSD: i386.c,v 1.43 2021/12/05 04:47:18 msaitoh Exp $");
#endif /* !__lint */

#include <sys/param.h>
#ifndef HAVE_NBTOOL_CONFIG_H
#include <sys/ioctl.h>
#include <sys/dkio.h>
#endif

#include <assert.h>
#include <errno.h>
#include <err.h>
#include <md5.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include "installboot.h"

static const struct console_name {
       const char      *name;          /* Name of console selection */
       const int       dev;            /* value matching CONSDEV_* from sys/arch/i386/stand/lib/libi386.h */
} consoles[] = {
       { "pc",         0 /* CONSDEV_PC */ },
       { "com0",       1 /* CONSDEV_COM0 */ },
       { "com1",       2 /* CONSDEV_COM1 */ },
       { "com2",       3 /* CONSDEV_COM2 */ },
       { "com3",       4 /* CONSDEV_COM3 */ },
       { "com0kbd",    5 /* CONSDEV_COM0KBD */ },
       { "com1kbd",    6 /* CONSDEV_COM1KBD */ },
       { "com2kbd",    7 /* CONSDEV_COM2KBD */ },
       { "com3kbd",    8 /* CONSDEV_COM3KBD */ },
       { "auto",       -1 /* CONSDEV_AUTO */ },
};

static int i386_setboot(ib_params *);
static int i386_editboot(ib_params *);

struct ib_mach ib_mach_i386 = {
       .name           =       "i386",
       .setboot        =       i386_setboot,
       .clearboot      =       no_clearboot,
       .editboot       =       i386_editboot,
       .valid_flags    =       IB_RESETVIDEO | IB_CONSOLE | IB_CONSPEED |
                                   IB_CONSADDR | IB_KEYMAP | IB_PASSWORD |
                                   IB_TIMEOUT | IB_MODULES | IB_BOOTCONF |
                                   IB_STAGE1START
};

struct ib_mach ib_mach_amd64 = {
       .name           =       "amd64",
       .setboot        =       i386_setboot,
       .clearboot      =       no_clearboot,
       .editboot       =       i386_editboot,
       .valid_flags    =       IB_RESETVIDEO | IB_CONSOLE | IB_CONSPEED |
                                   IB_CONSADDR | IB_KEYMAP | IB_PASSWORD |
                                   IB_TIMEOUT | IB_MODULES | IB_BOOTCONF |
                                   IB_STAGE1START
};

/*
* Attempting to write the 'labelsector' (or a sector near it - within 8k?)
* using the non-raw disk device fails silently.  This can be detected (today)
* by doing a fsync() and a read back.
* This is very likely to affect installboot, indeed the code may need to
* be written into the 'labelsector' itself - especially on non-512 byte media.
* We do all writes with a read verify.
* If EROFS is returned we also try to enable writes to the label sector.
* (Maybe these functions should be in the generic part of installboot.)
*/
static int
pwrite_validate(int fd, const void *buf, size_t n_bytes, off_t offset)
{
       void *r_buf;
       ssize_t rv;

       r_buf = malloc(n_bytes);
       if (r_buf == NULL)
               return -1;
       rv = pwrite(fd, buf, n_bytes, offset);
       if (rv == -1) {
               free(r_buf);
               return -1;
       }
       fsync(fd);
       if (pread(fd, r_buf, rv, offset) == rv && memcmp(r_buf, buf, rv) == 0) {
               free(r_buf);
               return rv;
       }
       free(r_buf);
       errno = EROFS;
       return -1;
}

static int
write_boot_area(ib_params *params, uint8_t *buf, size_t len)
{
       int rv, i;

       /*
        * Writing the 'label' sector (likely to be bytes 512-1023) could
        * fail, so we try to avoid writing that area.
        * Unfortunately, if we are accessing the raw disk, and the sector
        * size is larger than 512 bytes that is also doomed.
        * See how we get on....
        *
        * NB: Even if the physical sector size is not 512, the space for
        * the label is 512 bytes from the start of the disk.
        * So all the '512' constants in these functions are correct.
        */

       /* Write out first 512 bytes - the pbr code */
       rv = pwrite_validate(params->fsfd, buf, 512, 0);
       if (rv == 512) {
               /* That worked, do the rest */
               if (len == 512)
                       return 1;
               len -= 512 * 2;
               rv = pwrite_validate(params->fsfd, buf + 512 * 2, len, 512 * 2);
               if (rv != (ssize_t)len)
                       goto bad_write;
               return 1;
       }
       if (rv != -1 || (errno != EINVAL && errno != EROFS))
               goto bad_write;

       if (errno == EINVAL) {
               /* Assume the failure was due to to the sector size > 512 */
               rv = pwrite_validate(params->fsfd, buf, len, 0);
               if (rv == (ssize_t)len)
                       return 1;
               if (rv != -1 || (errno != EROFS))
                       goto bad_write;
       }

#ifdef DIOCWLABEL
       /* Pesky label is protected, try to unprotect it */
       i = 1;
       rv = ioctl(params->fsfd, DIOCWLABEL, &i);
       if (rv != 0) {
               warn("Cannot enable writes to the label sector");
               return 0;
       }
       /* Try again with label write-enabled */
       rv = pwrite_validate(params->fsfd, buf, len, 0);

       /* Reset write-protext */
       i = 0;
       ioctl(params->fsfd, DIOCWLABEL, &i);
       if (rv == (ssize_t)len)
               return 1;
#endif

 bad_write:
       if (rv == -1)
               warn("Writing `%s'", params->filesystem);
       else
               warnx("Writing `%s': short write, %u bytes",
                       params->filesystem, rv);
       return 0;
}

static void
show_i386_boot_params(struct x86_boot_params  *bpp)
{
       size_t i;

       printf("Boot options:        ");
       printf("timeout %d, ", le32toh(bpp->bp_timeout));
       printf("flags %x, ", le32toh(bpp->bp_flags));
       printf("speed %d, ", le32toh(bpp->bp_conspeed));
       printf("ioaddr %x, ", le32toh(bpp->bp_consaddr));
       for (i = 0; i < __arraycount(consoles); i++) {
               if (consoles[i].dev == (int)le32toh(bpp->bp_consdev))
                       break;
       }
       if (i == __arraycount(consoles))
               printf("console %d\n", le32toh(bpp->bp_consdev));
       else
               printf("console %s\n", consoles[i].name);
       if (bpp->bp_keymap[0])
               printf("                     keymap %s\n", bpp->bp_keymap);
}

static int
is_zero(const uint8_t *p, unsigned int len)
{
       return len == 0 || (p[0] == 0 && memcmp(p, p + 1, len - 1) == 0);
}

static int
update_i386_boot_params(ib_params *params, struct x86_boot_params  *bpp)
{
       struct x86_boot_params bp;
       uint32_t bplen;
       size_t i;

       bplen = le32toh(bpp->bp_length);
       if (bplen > sizeof bp)
               /* Ignore pad space in bootxx */
               bplen = sizeof bp;

       /* Take (and update) local copy so we handle size mismatches */
       memset(&bp, 0, sizeof bp);
       memcpy(&bp, bpp, bplen);

       if (params->flags & IB_TIMEOUT)
               bp.bp_timeout = htole32(params->timeout);
       if (params->flags & IB_RESETVIDEO)
               bp.bp_flags ^= htole32(X86_BP_FLAGS_RESET_VIDEO);
       if (params->flags & IB_CONSPEED)
               bp.bp_conspeed = htole32(params->conspeed);
       if (params->flags & IB_CONSADDR)
               bp.bp_consaddr = htole32(params->consaddr);
       if (params->flags & IB_CONSOLE) {
               for (i = 0; i < __arraycount(consoles); i++)
                       if (strcmp(consoles[i].name, params->console) == 0)
                               break;

               if (i == __arraycount(consoles)) {
                       warnx("invalid console name, valid names are:");
                       (void)fprintf(stderr, "\t%s", consoles[0].name);
                       for (i = 1; i < __arraycount(consoles); i++)
                               (void)fprintf(stderr, ", %s", consoles[i].name);
                       (void)fprintf(stderr, "\n");
                       return 1;
               }
               bp.bp_consdev = htole32(consoles[i].dev);
       }
       if (params->flags & IB_PASSWORD) {
               if (params->password[0]) {
                       MD5_CTX md5ctx;
                       MD5Init(&md5ctx);
                       MD5Update(&md5ctx, params->password,
                           strlen(params->password));
                       MD5Final(bp.bp_password, &md5ctx);
                       bp.bp_flags |= htole32(X86_BP_FLAGS_PASSWORD);
               } else {
                       memset(&bp.bp_password, 0, sizeof bp.bp_password);
                       bp.bp_flags &= ~htole32(X86_BP_FLAGS_PASSWORD);
               }
       }
       if (params->flags & IB_KEYMAP)
               strlcpy(bp.bp_keymap, params->keymap, sizeof bp.bp_keymap);
       if (params->flags & IB_MODULES)
               bp.bp_flags ^= htole32(X86_BP_FLAGS_NOMODULES);
       if (params->flags & IB_BOOTCONF)
               bp.bp_flags ^= htole32(X86_BP_FLAGS_NOBOOTCONF);

       if (params->flags & (IB_NOWRITE | IB_VERBOSE))
               show_i386_boot_params(&bp);

       /* Check we aren't trying to set anything we can't save */
       if (!is_zero((char *)&bp + bplen, sizeof bp - bplen)) {
               warnx("Patch area in stage1 bootstrap is too small");
               return 1;
       }
       memcpy(bpp, &bp, bplen);
       return 0;
}

static int
i386_setboot(ib_params *params)
{
       unsigned int    u;
       ssize_t         rv;
       uint32_t        *magic, expected_magic;
       union {
           struct mbr_sector   mbr;
           uint8_t             b[8192];
       } disk_buf, bootstrap;

       assert(params != NULL);
       assert(params->fsfd != -1);
       assert(params->filesystem != NULL);
       assert(params->s1fd != -1);
       assert(params->stage1 != NULL);

       /*
        * There is only 8k of space in a FFSv1 partition (and ustarfs)
        * so ensure we don't splat over anything important.
        */
       if (params->s1stat.st_size > (off_t)(sizeof bootstrap)) {
               warnx("stage1 bootstrap `%s' (%u bytes) is larger than 8192 bytes",
                       params->stage1, (unsigned int)params->s1stat.st_size);
               return 0;
       }
       if (params->s1stat.st_size < 3 * 512 && params->s1stat.st_size != 512) {
               warnx("stage1 bootstrap `%s' (%u bytes) is too small",
                       params->stage1, (unsigned int)params->s1stat.st_size);
               return 0;
       }

       /* Read in the existing disk header and boot code */
       rv = pread(params->fsfd, &disk_buf, sizeof (disk_buf), 0);
       if (rv != sizeof(disk_buf)) {
               if (rv == -1)
                       warn("Reading `%s'", params->filesystem);
               else
                       warnx("Reading `%s': short read, %ld bytes"
                           " (should be %ld)", params->filesystem, (long)rv,
                           (long)sizeof(disk_buf));
               return 0;
       }

       if (disk_buf.mbr.mbr_magic != le16toh(MBR_MAGIC)) {
               if (params->flags & IB_VERBOSE) {
                       printf(
                   "Ignoring PBR with invalid magic in sector 0 of `%s'\n",
                           params->filesystem);
               }
               memset(&disk_buf, 0, 512);
       }

       /* Read the new bootstrap code. */
       rv = pread(params->s1fd, &bootstrap, params->s1stat.st_size, 0);
       if (rv != params->s1stat.st_size) {
               if (rv == -1)
                       warn("Reading `%s'", params->stage1);
               else
                       warnx("Reading `%s': short read, %ld bytes"
                           " (should be %ld)", params->stage1, (long)rv,
                           (long)params->s1stat.st_size);
               return 0;
       }

       /*
        * The bootstrap code is either 512 bytes for booting FAT16, or best
        * part of 8k (with bytes 512-1023 all zeros).
        */
       if (params->s1stat.st_size == 512) {
               /* Magic number is at end of pbr code */
               magic = (void *)(bootstrap.b + 512 - 16 + 4);
               expected_magic = htole32(X86_BOOT_MAGIC_FAT);
       } else {
               /* Magic number is at start of sector following label */
               magic = (void *)(bootstrap.b + 512 * 2 + 4);
               expected_magic = htole32(X86_BOOT_MAGIC_1);
               /*
                * For a variety of reasons we restrict our 'normal' partition
                * boot code to a size which enable it to be used as mbr code.
                * IMHO this is bugus (dsl).
                */
               if (!is_zero(bootstrap.b + 512-2-64, 64)) {
                       warnx("Data in mbr partition table of new bootstrap");
                       return 0;
               }
               if (!is_zero(bootstrap.b + 512, 512)) {
                       warnx("Data in label part of new bootstrap");
                       return 0;
               }
               /* Copy mbr table and label from existing disk buffer */
               memcpy(bootstrap.b + 512-2-64, disk_buf.b + 512-2-64, 64);
               memcpy(bootstrap.b + 512, disk_buf.b + 512, 512);
       }

       /* Validate the 'magic number' that marks the parameter block */
       if (*magic != expected_magic) {
               warnx("Invalid magic in stage1 bootstrap %x != %x",
                               *magic, expected_magic);
               return 0;
       }

       /*
        * If the partition has a FAT (or NTFS) filesystem, then we must
        * preserve the BIOS Parameter Block (BPB).
        * It is also very likely that there isn't 8k of space available
        * for (say) bootxx_msdos, and that blindly installing it will trash
        * the FAT filesystem.
        * To avoid this we check the number of 'reserved' sectors to ensure
        * there there is enough space.
        * Unfortunately newfs(8) doesn't (yet) splat the BPB (which is
        * effectively the FAT superblock) when a filesystem is initailised
        * so this code tends to complain rather too often,
        * Specifying 'installboot -f' will delete the old BPB info.
        */
       if (!(params->flags & IB_FORCE)) {
               #define USE_F ", use -f (may invalidate filesystem)"
               /*
                * For FAT compatibility, the pbr code starts 'jmp xx; nop'
                * followed by the BIOS Parameter Block (BPB).
                * The 2nd byte (jump offset) is the size of the nop + BPB.
                */
               if (bootstrap.b[0] != 0xeb || bootstrap.b[2] != 0x90) {
                       warnx("No BPB in new bootstrap %02x:%02x:%02x" USE_F,
                               bootstrap.b[0], bootstrap.b[1], bootstrap.b[2]);
                       return 0;
               }

               /*
                * Find size of old BPB, and copy into new bootcode
                *
                * The 2nd byte (b[1]) contains jmp short relative offset.
                * If it is zero or some invalid input that is smaller than 9,
                * it will cause overflow and call is_zero() with enormous size.
                * Add a paranoid check to prevent this scenario.
                *
                * Verify that b[0] contains JMP (0xeb) and b[2] NOP (0x90).
                */
               if (disk_buf.b[0] == 0xeb && disk_buf.b[1] >= 9 &&
                   disk_buf.b[2] == 0x90 &&
                   !is_zero(disk_buf.b + 3 + 8, disk_buf.b[1] - 1 - 8)) {
                       struct mbr_bpbFAT16 *bpb = (void *)(disk_buf.b + 3 + 8);
                       /* Check enough space before the FAT for the bootcode */
                       u = le16toh(bpb->bpbBytesPerSec)
                           * le16toh(bpb->bpbResSectors);
                       if (u != 0 && u < params->s1stat.st_size) {
                               warnx("Insufficient reserved space before FAT "
                                       "(%u bytes available)" USE_F, u);
                               return 0;
                       }
                       /* Check we have enough space for the old bpb */
                       if (disk_buf.b[1] > bootstrap.b[1]) {
                               /* old BPB is larger, allow if extra zeros */
                               if (!is_zero(disk_buf.b + 2 + bootstrap.b[1],
                                   disk_buf.b[1] - bootstrap.b[1])) {
                                       warnx("Old BPB too big" USE_F);
                                           return 0;
                               }
                               u = bootstrap.b[1];
                       } else {
                               /* Old BPB is shorter, leave zero filled */
                               u = disk_buf.b[1];
                       }
                       if (params->s1start != 0)
                               /* Fixup physical offset of filesystem */
                               bpb->bpbHiddenSecs = htole32(params->s1start);
                       memcpy(bootstrap.b + 2, disk_buf.b + 2, u);
               }
               #undef USE_F
       }

       /*
        * Fill in any user-specified options into the
        *      struct x86_boot_params
        * that follows the magic number.
        * See sys/arch/i386/stand/bootxx/bootxx.S for more information.
        */
       if (update_i386_boot_params(params, (void *)(magic + 1)))
               return 0;

       if (params->flags & IB_NOWRITE) {
               return 1;
       }

       /* Copy new bootstrap data into disk buffer, ignoring label area */
       memcpy(&disk_buf, &bootstrap, 512);
       if (params->s1stat.st_size > 512 * 2) {
               memcpy(disk_buf.b + 2 * 512, bootstrap.b + 2 * 512,
                   params->s1stat.st_size - 2 * 512);
               /* Zero pad to 512 byte sector boundary */
               memset(disk_buf.b + params->s1stat.st_size, 0,
                       (8192 - params->s1stat.st_size) & 511);
       }

       return write_boot_area(params, disk_buf.b, sizeof disk_buf.b);
}

static int
i386_editboot(ib_params *params)
{
       int             retval;
       uint8_t         buf[512];
       ssize_t         rv;
       uint32_t        magic;
       uint32_t        offset;
       struct x86_boot_params  *bpp;

       assert(params != NULL);
       assert(params->fsfd != -1);
       assert(params->filesystem != NULL);

       retval = 0;

       /*
        * Read in the existing bootstrap.
        * Look in any of the first 4 sectors.
        */

       bpp = NULL;
       for (offset = 0; offset < 4 * 512; offset += 512) {
               rv = pread(params->fsfd, &buf, sizeof buf, offset);
               if (rv == -1) {
                       warn("Reading `%s'", params->filesystem);
                       goto done;
               } else if (rv != sizeof buf) {
                       warnx("Reading `%s': short read", params->filesystem);
                       goto done;
               }

               /* Magic number is 4 bytes in (to allow for a jmps) */
               /* Also allow any of the magic numbers. */
               magic = le32toh(*(uint32_t *)(buf + 4)) | 0xf;
               if (magic != (X86_BOOT_MAGIC_1 | 0xf))
                       continue;

               /* The parameters are just after the magic number */
               bpp = (void *)(buf + 8);
               break;
       }
       if (bpp == NULL) {
               warnx("Invalid magic in existing bootstrap");
               goto done;
       }

       /*
        * Fill in any user-specified options into the
        *      struct x86_boot_params
        * that's 8 bytes in from the start of the third sector.
        * See sys/arch/i386/stand/bootxx/bootxx.S for more information.
        */
       if (update_i386_boot_params(params, bpp))
               goto done;

       if (params->flags & IB_NOWRITE) {
               retval = 1;
               goto done;
       }

       /*
        * Write boot code back
        */
       rv = pwrite(params->fsfd, buf, sizeof buf, offset);
       if (rv == -1) {
               warn("Writing `%s'", params->filesystem);
               goto done;
       } else if (rv != sizeof buf) {
               warnx("Writing `%s': short write, %zd bytes (should be %zu)",
                   params->filesystem, rv, sizeof(buf));
               goto done;
       }

       retval = 1;

done:
       return retval;
}