/*      $NetBSD: nbperf-bdz.c,v 1.12 2023/07/31 21:07:50 andvar Exp $   */
/*-
* Copyright (c) 2009, 2012 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Joerg Sonnenberger.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in
*    the documentation and/or other materials provided with the
*    distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#if HAVE_NBTOOL_CONFIG_H
#include "nbtool_config.h"
#endif

#include <sys/cdefs.h>
__RCSID("$NetBSD: nbperf-bdz.c,v 1.12 2023/07/31 21:07:50 andvar Exp $");

#include <err.h>
#include <inttypes.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "nbperf.h"

/*
* A full description of the algorithm can be found in:
* "Simple and Space-Efficient Minimal Perfect Hash Functions"
* by Botelho, Pagh and Ziviani, proceedings of WADS 2007.
*/

/*
* The algorithm is based on random, acyclic 3-graphs.
*
* Each edge in the represents a key.  The vertices are the reminder of
* the hash function mod n.  n = cm with c > 1.23.  This ensures that
* an acyclic graph can be found with a very high probality.
*
* An acyclic graph has an edge order, where at least one vertex of
* each edge hasn't been seen before.   It is declares the first unvisited
* vertex as authoritive for the edge and assigns a 2bit value to unvisited
* vertices, so that the sum of all vertices of the edge modulo 4 is
* the index of the authoritive vertex.
*/

#define GRAPH_SIZE 3
#include "graph2.h"

struct state {
       struct SIZED(graph) graph;
       uint32_t *visited;
       uint32_t *holes64k;
       uint16_t *holes64;
       uint8_t *g;
       uint32_t *result_map;
};

static void
assign_nodes(struct state *state)
{
       struct SIZED(edge) *e;
       size_t i, j;
       uint32_t t, r, holes;

       for (i = 0; i < state->graph.v; ++i)
               state->g[i] = 3;

       for (i = 0; i < state->graph.e; ++i) {
               j = state->graph.output_order[i];
               e = &state->graph.edges[j];
               if (!state->visited[e->vertices[0]]) {
                       r = 0;
                       t = e->vertices[0];
               } else if (!state->visited[e->vertices[1]]) {
                       r = 1;
                       t = e->vertices[1];
               } else {
                       if (state->visited[e->vertices[2]])
                               abort();
                       r = 2;
                       t = e->vertices[2];
               }

               state->visited[t] = 2 + j;
               if (state->visited[e->vertices[0]] == 0)
                       state->visited[e->vertices[0]] = 1;
               if (state->visited[e->vertices[1]] == 0)
                       state->visited[e->vertices[1]] = 1;
               if (state->visited[e->vertices[2]] == 0)
                       state->visited[e->vertices[2]] = 1;

               state->g[t] = (9 + r - state->g[e->vertices[0]] - state->g[e->vertices[1]]
                   - state->g[e->vertices[2]]) % 3;
       }

       holes = 0;
       for (i = 0; i < state->graph.v; ++i) {
               if (i % 65536 == 0)
                       state->holes64k[i >> 16] = holes;

               if (i % 64 == 0)
                       state->holes64[i >> 6] = holes - state->holes64k[i >> 16];

               if (state->visited[i] > 1) {
                       j = state->visited[i] - 2;
                       state->result_map[j] = i - holes;
               }

               if (state->g[i] == 3)
                       ++holes;
       }
}

static void
print_hash(struct nbperf *nbperf, struct state *state)
{
       uint64_t sum;
       size_t i;

       fprintf(nbperf->output, "#include <stdlib.h>\n");
       fprintf(nbperf->output, "#include <strings.h>\n\n");

       fprintf(nbperf->output, "%suint32_t\n",
           nbperf->static_hash ? "static " : "");
       fprintf(nbperf->output,
           "%s(const void * __restrict key, size_t keylen)\n",
           nbperf->hash_name);
       fprintf(nbperf->output, "{\n");

       fprintf(nbperf->output,
           "\tstatic const uint64_t g1[%" PRId32 "] = {\n",
           (state->graph.v + 63) / 64);
       sum = 0;
       for (i = 0; i < state->graph.v; ++i) {
               sum |= ((uint64_t)state->g[i] & 1) << (i & 63);
               if (i % 64 == 63) {
                       fprintf(nbperf->output, "%s0x%016" PRIx64 "ULL,%s",
                           (i / 64 % 2 == 0 ? "\t    " : " "),
                           sum,
                           (i / 64 % 2 == 1 ? "\n" : ""));
                       sum = 0;
               }
       }
       if (i % 64 != 0) {
               fprintf(nbperf->output, "%s0x%016" PRIx64 "ULL,%s",
                   (i / 64 % 2 == 0 ? "\t    " : " "),
                   sum,
                   (i / 64 % 2 == 1 ? "\n" : ""));
       }
       fprintf(nbperf->output, "%s\t};\n", (i % 2 ? "\n" : ""));

       fprintf(nbperf->output,
           "\tstatic const uint64_t g2[%" PRId32 "] = {\n",
           (state->graph.v + 63) / 64);
       sum = 0;
       for (i = 0; i < state->graph.v; ++i) {
               sum |= (((uint64_t)state->g[i] & 2) >> 1) << (i & 63);
               if (i % 64 == 63) {
                       fprintf(nbperf->output, "%s0x%016" PRIx64 "ULL,%s",
                           (i / 64 % 2 == 0 ? "\t    " : " "),
                           sum,
                           (i / 64 % 2 == 1 ? "\n" : ""));
                       sum = 0;
               }
       }
       if (i % 64 != 0) {
               fprintf(nbperf->output, "%s0x%016" PRIx64 "ULL,%s",
                   (i / 64 % 2 == 0 ? "\t    " : " "),
                   sum,
                   (i / 64 % 2 == 1 ? "\n" : ""));
       }
       fprintf(nbperf->output, "%s\t};\n", (i % 2 ? "\n" : ""));

       fprintf(nbperf->output,
           "\tstatic const uint32_t holes64k[%" PRId32 "] = {\n",
           (state->graph.v + 65535) / 65536);
       for (i = 0; i < state->graph.v; i += 65536)
               fprintf(nbperf->output, "%s0x%08" PRIx32 ",%s",
                   (i / 65536 % 4 == 0 ? "\t    " : " "),
                   state->holes64k[i >> 16],
                   (i / 65536 % 4 == 3 ? "\n" : ""));
       fprintf(nbperf->output, "%s\t};\n", (i / 65536 % 4 ? "\n" : ""));

       fprintf(nbperf->output,
           "\tstatic const uint16_t holes64[%" PRId32 "] = {\n",
           (state->graph.v + 63) / 64);
       for (i = 0; i < state->graph.v; i += 64)
               fprintf(nbperf->output, "%s0x%04" PRIx32 ",%s",
                   (i / 64 % 4 == 0 ? "\t    " : " "),
                   state->holes64[i >> 6],
                   (i / 64 % 4 == 3 ? "\n" : ""));
       fprintf(nbperf->output, "%s\t};\n", (i / 64 % 4 ? "\n" : ""));

       fprintf(nbperf->output, "\tuint64_t m;\n");
       fprintf(nbperf->output, "\tuint32_t idx, i, idx2;\n");
       fprintf(nbperf->output, "\tuint32_t h[%zu];\n\n", nbperf->hash_size);

       (*nbperf->print_hash)(nbperf, "\t", "key", "keylen", "h");

       fprintf(nbperf->output, "\n\th[0] = h[0] %% %" PRIu32 ";\n",
           state->graph.v);
       fprintf(nbperf->output, "\th[1] = h[1] %% %" PRIu32 ";\n",
           state->graph.v);
       fprintf(nbperf->output, "\th[2] = h[2] %% %" PRIu32 ";\n",
           state->graph.v);

       if (state->graph.hash_fudge & 1)
               fprintf(nbperf->output, "\th[1] ^= (h[0] == h[1]);\n");

       if (state->graph.hash_fudge & 2) {
               fprintf(nbperf->output,
                   "\th[2] ^= (h[0] == h[2] || h[1] == h[2]);\n");
               fprintf(nbperf->output,
                   "\th[2] ^= 2 * (h[0] == h[2] || h[1] == h[2]);\n");
       }

       fprintf(nbperf->output,
           "\tidx = 9 + ((g1[h[0] >> 6] >> (h[0] & 63)) &1)\n"
           "\t      + ((g1[h[1] >> 6] >> (h[1] & 63)) & 1)\n"
           "\t      + ((g1[h[2] >> 6] >> (h[2] & 63)) & 1)\n"
           "\t      - ((g2[h[0] >> 6] >> (h[0] & 63)) & 1)\n"
           "\t      - ((g2[h[1] >> 6] >> (h[1] & 63)) & 1)\n"
           "\t      - ((g2[h[2] >> 6] >> (h[2] & 63)) & 1);\n"
           );

       fprintf(nbperf->output,
           "\tidx = h[idx %% 3];\n");
       fprintf(nbperf->output,
           "\tidx2 = idx - holes64[idx >> 6] - holes64k[idx >> 16];\n"
           "\tidx2 -= popcount64(g1[idx >> 6] & g2[idx >> 6]\n"
           "\t                   & (((uint64_t)1 << (idx & 63)) - 1));\n"
           "\treturn idx2;\n");

       fprintf(nbperf->output, "}\n");

       if (nbperf->map_output != NULL) {
               for (i = 0; i < state->graph.e; ++i)
                       fprintf(nbperf->map_output, "%" PRIu32 "\n",
                           state->result_map[i]);
       }
}

int
bpz_compute(struct nbperf *nbperf)
{
       struct state state;
       int retval = -1;
       uint32_t v, e;

       if (nbperf->c == 0)
               nbperf->c = 1.24;
       if (nbperf->c < 1.24)
               errx(1, "The argument for option -c must be at least 1.24");
       if (nbperf->hash_size < 3)
               errx(1, "The hash function must generate at least 3 values");

       (*nbperf->seed_hash)(nbperf);
       e = nbperf->n;
       v = nbperf->c * nbperf->n;
       if (1.24 * nbperf->n > v)
               ++v;
       if (v < 10)
               v = 10;
       if (nbperf->allow_hash_fudging)
               v = (v + 3) & ~3;

       graph3_setup(&state.graph, v, e);

       state.holes64k = calloc(sizeof(uint32_t), (v + 65535) / 65536);
       state.holes64 = calloc(sizeof(uint16_t), (v + 63) / 64 );
       state.g = calloc(sizeof(uint32_t), v | 63);
       state.visited = calloc(sizeof(uint32_t), v);
       state.result_map = calloc(sizeof(uint32_t), e);

       if (state.holes64k == NULL || state.holes64 == NULL ||
           state.g == NULL || state.visited == NULL ||
           state.result_map == NULL)
               err(1, "malloc failed");

       if (SIZED2(_hash)(nbperf, &state.graph))
               goto failed;
       if (SIZED2(_output_order)(&state.graph))
               goto failed;
       assign_nodes(&state);
       print_hash(nbperf, &state);

       retval = 0;

failed:
       SIZED2(_free)(&state.graph);
       free(state.visited);
       free(state.g);
       free(state.holes64k);
       free(state.holes64);
       free(state.result_map);
       return retval;
}