/*
* Copyright (c) 1988, 1989, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Adam de Boor.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1988, 1989 by Adam de Boor
* Copyright (c) 1989 by Berkeley Softworks
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Adam de Boor.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Handling of conditionals in a makefile.
*
* Interface:
* Cond_EvalLine Evaluate the conditional directive, such as
* '.if <cond>', '.elifnmake <cond>', '.else', '.endif'.
*
* Cond_EvalCondition
* Evaluate the conditional, which is either the argument
* of one of the .if directives or the condition in a
* ':?then:else' variable modifier.
*
* Cond_EndFile At the end of reading a makefile, ensure that the
* conditional directives are well-balanced.
*/
/*
* Conditional expressions conform to this grammar:
* Or -> And ('||' And)*
* And -> Term ('&&' Term)*
* Term -> Function '(' Argument ')'
* Term -> Leaf Operator Leaf
* Term -> Leaf
* Term -> '(' Or ')'
* Term -> '!' Term
* Leaf -> "string"
* Leaf -> Number
* Leaf -> VariableExpression
* Leaf -> BareWord
* Operator -> '==' | '!=' | '>' | '<' | '>=' | '<='
*
* BareWord is an unquoted string literal, its evaluation depends on the kind
* of '.if' directive.
*
* The tokens are scanned by CondParser_Token, which returns:
* TOK_AND for '&&'
* TOK_OR for '||'
* TOK_NOT for '!'
* TOK_LPAREN for '('
* TOK_RPAREN for ')'
*
* Other terminal symbols are evaluated using either the default function or
* the function given in the terminal, they return either TOK_TRUE, TOK_FALSE
* or TOK_ERROR.
*/
typedef enum Token {
TOK_FALSE, TOK_TRUE, TOK_AND, TOK_OR, TOK_NOT,
TOK_LPAREN, TOK_RPAREN, TOK_EOF, TOK_NONE, TOK_ERROR
} Token;
typedef enum ComparisonOp {
LT, LE, GT, GE, EQ, NE
} ComparisonOp;
typedef struct CondParser {
/*
* The plain '.if ${VAR}' evaluates to true if the value of the
* expression has length > 0 and is not numerically zero. The other
* '.if' variants delegate to evalBare instead, for example '.ifdef
* ${VAR}' is equivalent to '.if defined(${VAR})', checking whether
* the variable named by the expression '${VAR}' is defined.
*/
bool plain;
/* The function to apply on unquoted bare words. */
bool (*evalBare)(const char *);
bool negateEvalBare;
/*
* Whether the left-hand side of a comparison may be an unquoted
* string. This is allowed for expressions of the form
* ${condition:?:}, see ApplyModifier_IfElse. Such a condition is
* expanded before it is evaluated, due to ease of implementation.
* This means that at the point where the condition is evaluated,
* make cannot know anymore whether the left-hand side had originally
* been an expression or a plain word.
*
* In conditional directives like '.if', the left-hand side must
* either be an expression, a quoted string or a number.
*/
bool leftUnquotedOK;
const char *p; /* The remaining condition to parse */
Token curr; /* Single push-back token used in parsing */
} CondParser;
/*
* Parse a single word, taking into account balanced parentheses as well as
* embedded expressions. Used for the argument of a built-in function as
* well as for bare words, which are then passed to the default function.
*/
static char *
ParseWord(const char **pp, bool doEval)
{
const char *p = *pp;
Buffer word;
int depth;
/* Parse the function argument, including the surrounding parentheses. */
static char *
ParseFuncArg(const char **pp, bool doEval, const char *func)
{
const char *p = *pp, *argStart, *argEnd;
char *res;
p++; /* skip the '(' */
cpp_skip_hspace(&p);
argStart = p;
res = ParseWord(&p, doEval);
argEnd = p;
cpp_skip_hspace(&p);
if (*p++ != ')') {
int len = 0;
while (ch_isalpha(func[len]))
len++;
Parse_Error(PARSE_FATAL,
"Missing ')' after argument '%.*s' for '%.*s'",
(int)(argEnd - argStart), argStart, len, func);
free(res);
return NULL;
}
*pp = p;
return res;
}
/* See if the given variable is defined. */
static bool
FuncDefined(const char *var)
{
return Var_Exists(SCOPE_CMDLINE, var);
}
/* See if a target matching targetPattern is requested to be made. */
static bool
FuncMake(const char *targetPattern)
{
StringListNode *ln;
bool warned = false;
for (ln = opts.create.first; ln != NULL; ln = ln->next) {
StrMatchResult res = Str_Match(ln->datum, targetPattern);
if (res.error != NULL && !warned) {
warned = true;
Parse_Error(PARSE_WARNING,
"%s in pattern argument '%s' to function 'make'",
res.error, targetPattern);
}
if (res.matched)
return true;
}
return false;
}
/* See if the given file exists. */
static bool
FuncExists(const char *file)
{
bool result;
char *path;
path = Dir_FindFile(file, &dirSearchPath);
DEBUG2(COND, "exists(%s) result is \"%s\"\n",
file, path != NULL ? path : "");
result = path != NULL;
free(path);
return result;
}
/* See if the given node exists and is an actual target. */
static bool
FuncTarget(const char *node)
{
GNode *gn = Targ_FindNode(node);
return gn != NULL && GNode_IsTarget(gn);
}
/*
* See if the given node exists and is an actual target with commands
* associated with it.
*/
static bool
FuncCommands(const char *node)
{
GNode *gn = Targ_FindNode(node);
return gn != NULL && GNode_IsTarget(gn) &&
!Lst_IsEmpty(&gn->commands);
}
/*
* Convert the string to a floating point number. Accepted formats are
* base-10 integer, base-16 integer and finite floating point numbers.
*/
static bool
TryParseNumber(const char *str, double *out_value)
{
char *end;
unsigned long ul_val;
double dbl_val;
if (str[0] == '\0') { /* XXX: why is an empty string a number? */
*out_value = 0.0;
return true;
}
/*
* In a quoted or unquoted string literal or a number, parse an
* expression and add its value to the buffer.
*
* Return whether to continue parsing the leaf.
*
* Example: .if x${CENTER}y == "${PREFIX}${SUFFIX}" || 0x${HEX}
*/
static bool
CondParser_StringExpr(CondParser *par, const char *start,
bool doEval, bool quoted,
Buffer *buf, FStr *inout_str)
{
VarEvalMode emode;
const char *p;
bool atStart; /* true means an expression outside quotes */
/*
* Parse a string from an expression or an optionally quoted string,
* on the left-hand and right-hand sides of comparisons.
*
* Return the string without any enclosing quotes, or NULL on error.
* Sets out_quoted if the leaf was a quoted string literal.
*/
static FStr
CondParser_Leaf(CondParser *par, bool doEval, bool unquotedOK,
bool *out_quoted)
{
Buffer buf;
FStr str;
bool quoted;
const char *start;
while (par->p[0] != '\0' && str.str == NULL) {
switch (par->p[0]) {
case '\\':
par->p++;
if (par->p[0] != '\0') {
Buf_AddByte(&buf, par->p[0]);
par->p++;
}
continue;
case '"':
par->p++;
if (quoted)
goto return_buf; /* skip the closing quote */
Buf_AddByte(&buf, '"');
continue;
case ')': /* see is_separator */
case '!':
case '=':
case '>':
case '<':
case ' ':
case '\t':
if (!quoted)
goto return_buf;
Buf_AddByte(&buf, par->p[0]);
par->p++;
continue;
case '$':
if (!CondParser_StringExpr(par,
start, doEval, quoted, &buf, &str))
goto return_str;
continue;
default:
if (!unquotedOK && !quoted && *start != '$' &&
!ch_isdigit(*start)) {
str = FStr_InitRefer(NULL);
goto return_str;
}
Buf_AddByte(&buf, par->p[0]);
par->p++;
continue;
}
}
return_buf:
str = FStr_InitOwn(buf.data);
buf.data = NULL;
return_str:
Buf_Done(&buf);
return str;
}
/*
* Evaluate a "comparison without operator", such as in ".if ${VAR}" or
* ".if 0".
*/
static bool
EvalTruthy(CondParser *par, const char *value, bool quoted)
{
double num;
if (quoted)
return value[0] != '\0';
if (TryParseNumber(value, &num))
return num != 0.0;
if (par->plain)
return value[0] != '\0';
return par->evalBare(value) != par->negateEvalBare;
}
/* Evaluate a numerical comparison, such as in ".if ${VAR} >= 9". */
static bool
EvalCompareNum(double lhs, ComparisonOp op, double rhs)
{
DEBUG3(COND, "Comparing %f %s %f\n", lhs, opname[op], rhs);
switch (op) {
case LT:
return lhs < rhs;
case LE:
return lhs <= rhs;
case GT:
return lhs > rhs;
case GE:
return lhs >= rhs;
case EQ:
return lhs == rhs;
default:
return lhs != rhs;
}
}
static Token
EvalCompareStr(const char *lhs, ComparisonOp op, const char *rhs)
{
if (op != EQ && op != NE) {
Parse_Error(PARSE_FATAL,
"Comparison with '%s' requires both operands "
"'%s' and '%s' to be numeric",
opname[op], lhs, rhs);
return TOK_ERROR;
}
/*
* Parse a comparison that neither starts with '"' nor '$', such as the
* unusual 'bare == right' or '3 == ${VAR}', or a simple leaf without
* operator, which is a number, an expression or a string literal.
*
* TODO: Can this be merged into CondParser_Comparison?
*/
static Token
CondParser_ComparisonOrLeaf(CondParser *par, bool doEval)
{
Token t;
char *arg;
const char *p;
p = par->p;
if (ch_isdigit(p[0]) || p[0] == '-' || p[0] == '+')
return CondParser_Comparison(par, doEval);
/*
* Most likely we have a bare word to apply the default function to.
* However, ".if a == b" gets here when the "a" is unquoted and
* doesn't start with a '$'. This surprises people.
* If what follows the function argument is a '=' or '!' then the
* syntax would be invalid if we did "defined(a)" - so instead treat
* as an expression.
*/
/*
* XXX: In edge cases, an expression may be evaluated twice,
* see cond-token-plain.mk, keyword 'twice'.
*/
arg = ParseWord(&p, doEval);
assert(arg[0] != '\0');
cpp_skip_hspace(&p);
/*
* Evaluate the argument using the default function.
* This path always treats .if as .ifdef. To get here, the character
* after .if must have been taken literally, so the argument cannot
* be empty - even if it contained an expression.
*/
t = ToToken(doEval && par->evalBare(arg) != par->negateEvalBare);
free(arg);
return t;
}
/* Return the next token or comparison result from the parser. */
static Token
CondParser_Token(CondParser *par, bool doEval)
{
Token t;
t = par->curr;
if (t != TOK_NONE) {
par->curr = TOK_NONE;
return t;
}
cpp_skip_hspace(&par->p);
switch (par->p[0]) {
case '(':
par->p++;
return TOK_LPAREN;
case ')':
par->p++;
return TOK_RPAREN;
case '|':
par->p++;
if (par->p[0] == '|')
par->p++;
else {
Parse_Error(PARSE_FATAL, "Unknown operator '|'");
return TOK_ERROR;
}
return TOK_OR;
case '&':
par->p++;
if (par->p[0] == '&')
par->p++;
else {
Parse_Error(PARSE_FATAL, "Unknown operator '&'");
return TOK_ERROR;
}
return TOK_AND;
case '!':
par->p++;
return TOK_NOT;
case '#': /* XXX: see unit-tests/cond-token-plain.mk */
case '\n': /* XXX: why should this end the condition? */
/* Probably obsolete now, from 1993-03-21. */
case '\0':
return TOK_EOF;
case '"':
case '$':
return CondParser_Comparison(par, doEval);
default:
if (CondParser_FuncCallEmpty(par, doEval, &t))
return t;
if (CondParser_FuncCall(par, doEval, &t))
return t;
return CondParser_ComparisonOrLeaf(par, doEval);
}
}
/* Skip the next token if it equals t. */
static bool
CondParser_Skip(CondParser *par, Token t)
{
Token actual;
actual = CondParser_Token(par, false);
if (actual == t)
return true;
/*
* Term -> '(' Or ')'
* Term -> '!' Term
* Term -> Leaf Operator Leaf
* Term -> Leaf
*/
static CondResult
CondParser_Term(CondParser *par, bool doEval)
{
CondResult res;
Token t;
bool neg = false;
while ((t = CondParser_Token(par, doEval)) == TOK_NOT)
neg = !neg;
if (t == TOK_TRUE || t == TOK_FALSE)
return neg == (t == TOK_FALSE) ? CR_TRUE : CR_FALSE;
if (t == TOK_LPAREN) {
res = CondParser_Or(par, doEval);
if (res == CR_ERROR)
return CR_ERROR;
if (CondParser_Token(par, doEval) != TOK_RPAREN)
return CR_ERROR;
return neg == (res == CR_FALSE) ? CR_TRUE : CR_FALSE;
}
return CR_ERROR;
}
/*
* And -> Term ('&&' Term)*
*/
static CondResult
CondParser_And(CondParser *par, bool doEval)
{
CondResult res, rhs;
res = CR_TRUE;
do {
if ((rhs = CondParser_Term(par, doEval)) == CR_ERROR)
return CR_ERROR;
if (rhs == CR_FALSE) {
res = CR_FALSE;
doEval = false;
}
} while (CondParser_Skip(par, TOK_AND));
return res;
}
/*
* Or -> And ('||' And)*
*/
static CondResult
CondParser_Or(CondParser *par, bool doEval)
{
CondResult res, rhs;
res = CR_FALSE;
do {
if ((rhs = CondParser_And(par, doEval)) == CR_ERROR)
return CR_ERROR;
if (rhs == CR_TRUE) {
res = CR_TRUE;
doEval = false;
}
} while (CondParser_Skip(par, TOK_OR));
return res;
}
/*
* Evaluate the condition, including any side effects from the
* expressions in the condition. The condition consists of &&, ||, !,
* function(arg), comparisons and parenthetical groupings thereof.
*/
static CondResult
CondEvalExpression(const char *cond, bool plain,
bool (*evalBare)(const char *), bool negate,
bool eprint, bool leftUnquotedOK)
{
CondParser par;
CondResult rval;
int parseErrorsBefore = parseErrors;
if (skip_string(&p, "def")) { /* .ifdef and .ifndef */
} else if (skip_string(&p, "make")) /* .ifmake and .ifnmake */
*out_evalBare = FuncMake;
else if (!*out_negate) /* plain .if */
*out_plain = true;
else
goto unknown_directive;
if (ch_isalpha(*p))
goto unknown_directive;
*pp = p;
return true;
unknown_directive:
return false;
}
/*
* Evaluate the conditional directive in the line, which is one of:
*
* .if <cond>
* .ifmake <cond>
* .ifnmake <cond>
* .ifdef <cond>
* .ifndef <cond>
* .elif <cond>
* .elifmake <cond>
* .elifnmake <cond>
* .elifdef <cond>
* .elifndef <cond>
* .else
* .endif
*
* In these directives, <cond> consists of &&, ||, !, function(arg),
* comparisons, expressions, bare words, numbers and strings, and
* parenthetical groupings thereof.
*
* Results:
* CR_TRUE to continue parsing the lines that follow the
* conditional (when <cond> evaluates to true)
* CR_FALSE to skip the lines after the conditional
* (when <cond> evaluates to false, or when a previous
* branch was already taken)
* CR_ERROR if the conditional was not valid, either because of
* a syntax error or because some variable was undefined
* or because the condition could not be evaluated
*/
CondResult
Cond_EvalLine(const char *line)
{
typedef enum IfState {
/* None of the previous <cond> evaluated to true. */
IFS_INITIAL = 0,
/*
* The previous <cond> evaluated to true. The lines following
* this condition are interpreted.
*/
IFS_ACTIVE = 1 << 0,
/* The previous directive was an '.else'. */
IFS_SEEN_ELSE = 1 << 1,
/* One of the previous <cond> evaluated to true. */
IFS_WAS_ACTIVE = 1 << 2
/* Return state for previous conditional */
cond_depth--;
Parse_GuardEndif();
return cond_states[cond_depth] & IFS_ACTIVE
? CR_TRUE : CR_FALSE;
}
/* Parse the name of the directive, such as 'if', 'elif', 'endif'. */
if (p[0] == 'e') {
if (p[1] != 'l')
return CR_ERROR;
/* Quite likely this is 'else' or 'elif' */
p += 2;
if (strncmp(p, "se", 2) == 0 && !ch_isalpha(p[2])) {
if (p[2] != '\0')
Parse_Error(PARSE_FATAL,
"The .else directive "
"does not take arguments");
state = cond_states[cond_depth];
if (state == IFS_INITIAL) {
state = IFS_ACTIVE | IFS_SEEN_ELSE;
} else {
if (state & IFS_SEEN_ELSE)
Parse_Error(PARSE_WARNING,
"extra else");
state = IFS_WAS_ACTIVE | IFS_SEEN_ELSE;
}
cond_states[cond_depth] = state;
return state & IFS_ACTIVE ? CR_TRUE : CR_FALSE;
}
/* Assume for now it is an elif */
isElif = true;
} else
isElif = false;
if (p[0] != 'i' || p[1] != 'f')
return CR_ERROR;
if (!DetermineKindOfConditional(&p, &plain, &evalBare, &negate))
return CR_ERROR;
if (isElif) {
if (cond_depth == CurFile_CondMinDepth()) {
Parse_Error(PARSE_FATAL, "if-less elif");
return CR_TRUE;
}
Parse_GuardElse();
state = cond_states[cond_depth];
if (state & IFS_SEEN_ELSE) {
Parse_Error(PARSE_WARNING, "extra elif");
cond_states[cond_depth] =
IFS_WAS_ACTIVE | IFS_SEEN_ELSE;
return CR_FALSE;
}
if (state != IFS_INITIAL) {
cond_states[cond_depth] = IFS_WAS_ACTIVE;
return CR_FALSE;
}
} else {
/* Normal .if */
if (cond_depth + 1 >= cond_states_cap) {
/*
* This is rare, but not impossible.
* In meta mode, dirdeps.mk (only runs at level 0)
* can need more than the default.
*/
cond_states_cap += 32;
cond_states = bmake_realloc(cond_states,
cond_states_cap * sizeof *cond_states);
}
state = cond_states[cond_depth];
cond_depth++;
if (!(state & IFS_ACTIVE)) {
cond_states[cond_depth] = IFS_WAS_ACTIVE;
return CR_FALSE;
}
}
res = CondEvalExpression(p, plain, evalBare, negate, true, false);
if (res == CR_ERROR) {
/* Syntax error, error message already output. */
/* Skip everything to the matching '.endif'. */
/* An extra '.else' is not detected in this case. */
cond_states[cond_depth] = IFS_WAS_ACTIVE;
return CR_FALSE;
}