/*      $NetBSD: zopen.c,v 1.16 2022/03/23 11:08:28 andvar Exp $        */

/*-
* Copyright (c) 1985, 1986, 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Diomidis Spinellis and James A. Woods, derived from original
* work by Spencer Thomas and Joseph Orost.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#if defined(LIBC_SCCS) && !defined(lint)
#if 0
static char sccsid[] = "@(#)zopen.c     8.1 (Berkeley) 6/27/93";
#else
static char rcsid[] = "$NetBSD: zopen.c,v 1.16 2022/03/23 11:08:28 andvar Exp $";
#endif
#endif /* LIBC_SCCS and not lint */

/*-
* fcompress.c - File compression ala IEEE Computer, June 1984.
*
* Compress authors:
*              Spencer W. Thomas       (decvax!utah-cs!thomas)
*              Jim McKie               (decvax!mcvax!jim)
*              Steve Davies            (decvax!vax135!petsd!peora!srd)
*              Ken Turkowski           (decvax!decwrl!turtlevax!ken)
*              James A. Woods          (decvax!ihnp4!ames!jaw)
*              Joe Orost               (decvax!vax135!petsd!joe)
*
* Cleaned up and converted to library returning I/O streams by
* Diomidis Spinellis <[email protected]>.
*
* zopen(filename, mode, bits)
*      Returns a FILE * that can be used for read or write.  The modes
*      supported are only "r" and "w".  Seeking is not allowed.  On
*      reading the file is decompressed, on writing it is compressed.
*      The output is compatible with compress(1) with 16 bit tables.
*      Any file produced by compress(1) can be read.
*/

#include <sys/param.h>
#include <sys/stat.h>

#include <errno.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#define BITS            16              /* Default bits. */
#define HSIZE           69001           /* 95% occupancy */

/* A code_int must be able to hold 2**BITS values of type int, and also -1. */
typedef long code_int;
typedef long count_int;

typedef u_char char_type;
static char_type magic_header[] =
       {'\037', '\235'};               /* 1F 9D */

#define BIT_MASK        0x1f            /* Defines for third byte of header. */
#define BLOCK_MASK      0x80

/*
* Masks 0x40 and 0x20 are free.  I think 0x20 should mean that there is
* a fourth header byte (for expansion).
*/
#define INIT_BITS 9                     /* Initial number of bits/code. */

#define MAXCODE(n_bits) ((1 << (n_bits)) - 1)

struct s_zstate {
       FILE *zs_fp;                    /* File stream for I/O */
       char zs_mode;                   /* r or w */
       enum {
               S_START, S_MIDDLE, S_EOF
       } zs_state;                     /* State of computation */
       int zs_n_bits;                  /* Number of bits/code. */
       int zs_maxbits;                 /* User settable max # bits/code. */
       code_int zs_maxcode;            /* Maximum code, given n_bits. */
       code_int zs_maxmaxcode;         /* Should NEVER generate this code. */
       count_int zs_htab [HSIZE];
       u_short zs_codetab [HSIZE];
       code_int zs_hsize;              /* For dynamic table sizing. */
       code_int zs_free_ent;           /* First unused entry. */
       /*
        * Block compression parameters -- after all codes are used up,
        * and compression rate changes, start over.
        */
       int zs_block_compress;
       int zs_clear_flg;
       long zs_ratio;
       count_int zs_checkpoint;
       int zs_offset;
       long zs_in_count;               /* Length of input. */
       long zs_bytes_out;              /* Length of compressed output. */
       long zs_out_count;              /* # of codes output (for debugging). */
       char_type zs_buf[BITS];
       union {
               struct {
                       long zs_fcode;
                       code_int zs_ent;
                       code_int zs_hsize_reg;
                       int zs_hshift;
               } w;                    /* Write parameters */
               struct {
                       char_type *zs_stackp;
                       int zs_finchar;
                       code_int zs_code, zs_oldcode, zs_incode;
                       int zs_roffset, zs_size;
                       char_type zs_gbuf[BITS];
               } r;                    /* Read parameters */
       } u;
};

/* Definitions to retain old variable names */
#define fp              zs->zs_fp
#define zmode           zs->zs_mode
#define state           zs->zs_state
#define n_bits          zs->zs_n_bits
#define maxbits         zs->zs_maxbits
#define maxcode         zs->zs_maxcode
#define maxmaxcode      zs->zs_maxmaxcode
#define htab            zs->zs_htab
#define codetab         zs->zs_codetab
#define hsize           zs->zs_hsize
#define free_ent        zs->zs_free_ent
#define block_compress  zs->zs_block_compress
#define clear_flg       zs->zs_clear_flg
#define ratio           zs->zs_ratio
#define checkpoint      zs->zs_checkpoint
#define offset          zs->zs_offset
#define in_count        zs->zs_in_count
#define bytes_out       zs->zs_bytes_out
#define out_count       zs->zs_out_count
#define buf             zs->zs_buf
#define fcode           zs->u.w.zs_fcode
#define hsize_reg       zs->u.w.zs_hsize_reg
#define ent             zs->u.w.zs_ent
#define hshift          zs->u.w.zs_hshift
#define stackp          zs->u.r.zs_stackp
#define finchar         zs->u.r.zs_finchar
#define code            zs->u.r.zs_code
#define oldcode         zs->u.r.zs_oldcode
#define incode          zs->u.r.zs_incode
#define roffset         zs->u.r.zs_roffset
#define size            zs->u.r.zs_size
#define gbuf            zs->u.r.zs_gbuf

/*
* To save much memory, we overlay the table used by compress() with those
* used by decompress().  The tab_prefix table is the same size and type as
* the codetab.  The tab_suffix table needs 2**BITS characters.  We get this
* from the beginning of htab.  The output stack uses the rest of htab, and
* contains characters.  There is plenty of room for any possible stack
* (stack used to be 8000 characters).
*/

#define htabof(i)       htab[i]
#define codetabof(i)    codetab[i]

#define tab_prefixof(i) codetabof(i)
#define tab_suffixof(i) ((char_type *)(htab))[i]
#define de_stack        ((char_type *)&tab_suffixof(1 << BITS))

#define CHECK_GAP 10000         /* Ratio check interval. */

/*
* the next two codes should not be changed lightly, as they must not
* lie within the contiguous general code space.
*/
#define FIRST   257             /* First free entry. */
#define CLEAR   256             /* Table clear output code. */

static int      cl_block(struct s_zstate *);
static code_int getcode(struct s_zstate *);
static int      output(struct s_zstate *, code_int);
static int      zclose(void *);
FILE           *zopen(const char *, const char *, int);
static int      zread(void *, char *, int);
static int      zwrite(void *, const char *, int);

/*-
* Algorithm from "A Technique for High Performance Data Compression",
* Terry A. Welch, IEEE Computer Vol 17, No 6 (June 1984), pp 8-19.
*
* Algorithm:
*      Modified Lempel-Ziv method (LZW).  Basically finds common
* substrings and replaces them with a variable size code.  This is
* deterministic, and can be done on the fly.  Thus, the decompression
* procedure needs no input table, but tracks the way the table was built.
*/

/*-
* compress write
*
* Algorithm:  use open addressing double hashing (no chaining) on the
* prefix code / next character combination.  We do a variant of Knuth's
* algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
* secondary probe.  Here, the modular division first probe is gives way
* to a faster exclusive-or manipulation.  Also do block compression with
* an adaptive reset, whereby the code table is cleared when the compression
* ratio decreases, but after the table fills.  The variable-length output
* codes are re-sized at this point, and a special CLEAR code is generated
* for the decompressor.  Late addition:  construct the table according to
* file size for noticeable speed improvement on small files.  Please direct
* questions about this implementation to ames!jaw.
*/
static int
zwrite(void *cookie, const char *wbp, int num)
{
       code_int i;
       int c, disp;
       struct s_zstate *zs;
       const u_char *bp;
       u_char tmp;
       int count;

       if (num == 0)
               return (0);

       zs = cookie;
       count = num;
       bp = (const u_char *)wbp;
       if (state == S_MIDDLE)
               goto middle;
       state = S_MIDDLE;

       maxmaxcode = 1L << maxbits;
       if (fwrite(magic_header,
           sizeof(char), sizeof(magic_header), fp) != sizeof(magic_header))
               return (-1);
       tmp = (u_char)(maxbits | block_compress);
       if (fwrite(&tmp, sizeof(char), sizeof(tmp), fp) != sizeof(tmp))
               return (-1);

       offset = 0;
       bytes_out = 3;          /* Includes 3-byte header mojo. */
       out_count = 0;
       clear_flg = 0;
       ratio = 0;
       in_count = 1;
       checkpoint = CHECK_GAP;
       maxcode = MAXCODE(n_bits = INIT_BITS);
       free_ent = ((block_compress) ? FIRST : 256);

       ent = *bp++;
       --count;

       hshift = 0;
       for (fcode = (long)hsize; fcode < 65536L; fcode *= 2L)
               hshift++;
       hshift = 8 - hshift;    /* Set hash code range bound. */

       hsize_reg = hsize;
       memset(htab, 0xff, hsize_reg * sizeof(count_int));

middle: while (count--) {
               c = *bp++;
               in_count++;
               fcode = (long)(((long)c << maxbits) + ent);
               i = ((c << hshift) ^ ent);      /* Xor hashing. */

               if (htabof(i) == fcode) {
                       ent = codetabof(i);
                       continue;
               } else if ((long)htabof(i) < 0) /* Empty slot. */
                       goto nomatch;
               disp = hsize_reg - i;   /* Secondary hash (after G. Knott). */
               if (i == 0)
                       disp = 1;
probe:          if ((i -= disp) < 0)
                       i += hsize_reg;

               if (htabof(i) == fcode) {
                       ent = codetabof(i);
                       continue;
               }
               if ((long)htabof(i) >= 0)
                       goto probe;
nomatch:        if (output(zs, (code_int) ent) == -1)
                       return (-1);
               out_count++;
               ent = c;
               if (free_ent < maxmaxcode) {
                       codetabof(i) = free_ent++;      /* code -> hashtable */
                       htabof(i) = fcode;
               } else if ((count_int)in_count >=
                   checkpoint && block_compress) {
                       if (cl_block(zs) == -1)
                               return (-1);
               }
       }
       return (num);
}

static int
zclose(void *cookie)
{
       struct s_zstate *zs;
       int rval;

       zs = cookie;
       if (zmode == 'w') {             /* Put out the final code. */
               if (output(zs, (code_int) ent) == -1) {
                       (void)fclose(fp);
                       free(zs);
                       return (-1);
               }
               out_count++;
               if (output(zs, (code_int) - 1) == -1) {
                       (void)fclose(fp);
                       free(zs);
                       return (-1);
               }
       }
       rval = fclose(fp) == EOF ? -1 : 0;
       free(zs);
       return (rval);
}

/*-
* Output the given code.
* Inputs:
*      code:   A n_bits-bit integer.  If == -1, then EOF.  This assumes
*              that n_bits =< (long)wordsize - 1.
* Outputs:
*      Outputs code to the file.
* Assumptions:
*      Chars are 8 bits long.
* Algorithm:
*      Maintain a BITS character long buffer (so that 8 codes will
* fit in it exactly).  Use the VAX insv instruction to insert each
* code in turn.  When the buffer fills up empty it and start over.
*/

static char_type lmask[9] =
       {0xff, 0xfe, 0xfc, 0xf8, 0xf0, 0xe0, 0xc0, 0x80, 0x00};
static char_type rmask[9] =
       {0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff};

static int
output(struct s_zstate *zs, code_int ocode)
{
       int bits, r_off;
       char_type *bp;

       r_off = offset;
       bits = n_bits;
       bp = buf;
       if (ocode >= 0) {
               /* Get to the first byte. */
               bp += (r_off >> 3);
               r_off &= 7;
               /*
                * Since ocode is always >= 8 bits, only need to mask the first
                * hunk on the left.
                */
               *bp = (*bp & rmask[r_off]) | ((ocode << r_off) & lmask[r_off]);
               bp++;
               bits -= (8 - r_off);
               ocode >>= 8 - r_off;
               /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
               if (bits >= 8) {
                       *bp++ = ocode;
                       ocode >>= 8;
                       bits -= 8;
               }
               /* Last bits. */
               if (bits)
                       *bp = ocode;
               offset += n_bits;
               if (offset == (n_bits << 3)) {
                       bp = buf;
                       bits = n_bits;
                       bytes_out += bits;
                       if (fwrite(bp, sizeof(char), bits, fp) != (size_t)bits)
                               return (-1);
                       bp += bits;
                       bits = 0;
                       offset = 0;
               }
               /*
                * If the next entry is going to be too big for the ocode size,
                * then increase it, if possible.
                */
               if (free_ent > maxcode || (clear_flg > 0)) {
                      /*
                       * Write the whole buffer, because the input side won't
                       * discover the size increase until after it has read it.
                       */
                       if (offset > 0) {
                               if (fwrite(buf, 1, n_bits, fp) != (size_t)n_bits)
                                       return (-1);
                               bytes_out += n_bits;
                       }
                       offset = 0;

                       if (clear_flg) {
                               maxcode = MAXCODE(n_bits = INIT_BITS);
                               clear_flg = 0;
                       } else {
                               n_bits++;
                               if (n_bits == maxbits)
                                       maxcode = maxmaxcode;
                               else
                                       maxcode = MAXCODE(n_bits);
                       }
               }
       } else {
               /* At EOF, write the rest of the buffer. */
               if (offset > 0) {
                       offset = (offset + 7) / 8;
                       if (fwrite(buf, 1, offset, fp) != (size_t)offset)
                               return (-1);
                       bytes_out += offset;
               }
               offset = 0;
       }
       return (0);
}

/*
* Decompress read.  This routine adapts to the codes in the file building
* the "string" table on-the-fly; requiring no table to be stored in the
* compressed file.  The tables used herein are shared with those of the
* compress() routine.  See the definitions above.
*/
static int
zread(void *cookie, char *rbp, int num)
{
       u_int count;
       struct s_zstate *zs;
       u_char *bp, header[3];

       if (num == 0)
               return (0);

       zs = cookie;
       count = num;
       bp = (u_char *)rbp;
       switch (state) {
       case S_START:
               state = S_MIDDLE;
               break;
       case S_MIDDLE:
               goto middle;
       case S_EOF:
               goto eof;
       }

       /* Check the magic number */
       if (fread(header,
           sizeof(char), sizeof(header), fp) != sizeof(header) ||
           memcmp(header, magic_header, sizeof(magic_header)) != 0) {
               errno = EFTYPE;
               return (-1);
       }
       maxbits = header[2];    /* Set -b from file. */
       block_compress = maxbits & BLOCK_MASK;
       maxbits &= BIT_MASK;
       maxmaxcode = 1L << maxbits;
       if (maxbits > BITS || maxbits < 12) {
               errno = EFTYPE;
               return (-1);
       }
       /* As above, initialize the first 256 entries in the table. */
       maxcode = MAXCODE(n_bits = INIT_BITS);
       for (code = 255; code >= 0; code--) {
               tab_prefixof(code) = 0;
               tab_suffixof(code) = (char_type) code;
       }
       free_ent = block_compress ? FIRST : 256;
       oldcode = -1;
       stackp = de_stack;

       while ((code = getcode(zs)) > -1) {

               if ((code == CLEAR) && block_compress) {
                       for (code = 255; code >= 0; code--)
                               tab_prefixof(code) = 0;
                       clear_flg = 1;
                       free_ent = FIRST;
                       oldcode = -1;
                       continue;
               }
               incode = code;

               /* Special case for kWkWk string. */
               if (code >= free_ent) {
                       if (code > free_ent || oldcode == -1) {
                               /* Bad stream. */
                               errno = EINVAL;
                               return (-1);
                       }
                       *stackp++ = finchar;
                       code = oldcode;
               }
               /*
                * The above condition ensures that code < free_ent.
                * The construction of tab_prefixof in turn guarantees that
                * each iteration decreases code and therefore stack usage is
                * bound by 1 << BITS - 256.
                */

               /* Generate output characters in reverse order. */
               while (code >= 256) {
                       *stackp++ = tab_suffixof(code);
                       code = tab_prefixof(code);
               }
               *stackp++ = finchar = tab_suffixof(code);

               /* And put them out in forward order.  */
middle:         do {
                       if (count-- == 0)
                               return (num);
                       *bp++ = *--stackp;
               } while (stackp > de_stack);

               /* Generate the new entry. */
               if ((code = free_ent) < maxmaxcode && oldcode != -1) {
                       tab_prefixof(code) = (u_short) oldcode;
                       tab_suffixof(code) = finchar;
                       free_ent = code + 1;
               }

               /* Remember previous code. */
               oldcode = incode;
       }
       state = S_EOF;
eof:    return (num - count);
}

/*-
* Read one code from the standard input.  If EOF, return -1.
* Inputs:
*      stdin
* Outputs:
*      code or -1 is returned.
*/
static code_int
getcode(struct s_zstate *zs)
{
       code_int gcode;
       int r_off, bits;
       char_type *bp;

       bp = gbuf;
       if (clear_flg > 0 || roffset >= size || free_ent > maxcode) {
               /*
                * If the next entry will be too big for the current gcode
                * size, then we must increase the size.  This implies reading
                * a new buffer full, too.
                */
               if (free_ent > maxcode) {
                       n_bits++;
                       if (n_bits == maxbits)  /* Won't get any bigger now. */
                               maxcode = maxmaxcode;
                       else
                               maxcode = MAXCODE(n_bits);
               }
               if (clear_flg > 0) {
                       maxcode = MAXCODE(n_bits = INIT_BITS);
                       clear_flg = 0;
               }
               size = fread(gbuf, 1, n_bits, fp);
               if (size <= 0)                  /* End of file. */
                       return (-1);
               roffset = 0;
               /* Round size down to integral number of codes. */
               size = (size << 3) - (n_bits - 1);
       }
       r_off = roffset;
       bits = n_bits;

       /* Get to the first byte. */
       bp += (r_off >> 3);
       r_off &= 7;

       /* Get first part (low order bits). */
       gcode = (*bp++ >> r_off);
       bits -= (8 - r_off);
       r_off = 8 - r_off;      /* Now, roffset into gcode word. */

       /* Get any 8 bit parts in the middle (<=1 for up to 16 bits). */
       if (bits >= 8) {
               gcode |= *bp++ << r_off;
               r_off += 8;
               bits -= 8;
       }

       /* High order bits. */
       gcode |= (*bp & rmask[bits]) << r_off;
       roffset += n_bits;

       return (gcode);
}

static int
cl_block(struct s_zstate *zs)           /* Table clear for block compress. */
{
       long rat;

       checkpoint = in_count + CHECK_GAP;

       if (in_count > 0x007fffff) {    /* Shift will overflow. */
               rat = bytes_out >> 8;
               if (rat == 0)           /* Don't divide by zero. */
                       rat = 0x7fffffff;
               else
                       rat = in_count / rat;
       } else
               rat = (in_count << 8) / bytes_out;      /* 8 fractional bits. */
       if (rat > ratio)
               ratio = rat;
       else {
               ratio = 0;
               memset(htab, 0xff, hsize * sizeof(count_int));
               free_ent = FIRST;
               clear_flg = 1;
               if (output(zs, (code_int) CLEAR) == -1)
                       return (-1);
       }
       return (0);
}

FILE *
zopen(const char *fname, const char *mode, int bits)
{
       struct s_zstate *zs;

       if ((mode[0] != 'r' && mode[0] != 'w') || mode[1] != '\0' ||
           bits < 0 || bits > BITS) {
               errno = EINVAL;
               return (NULL);
       }

       if ((zs = calloc(1, sizeof(struct s_zstate))) == NULL)
               return (NULL);

       maxbits = bits ? bits : BITS;   /* User settable max # bits/code. */
       maxmaxcode = 1 << maxbits;      /* Should NEVER generate this code. */
       hsize = HSIZE;                  /* For dynamic table sizing. */
       free_ent = 0;                   /* First unused entry. */
       block_compress = BLOCK_MASK;
       clear_flg = 0;
       ratio = 0;
       checkpoint = CHECK_GAP;
       in_count = 1;                   /* Length of input. */
       out_count = 0;                  /* # of codes output (for debugging). */
       state = S_START;
       roffset = 0;
       size = 0;

       /*
        * Layering compress on top of stdio in order to provide buffering,
        * and ensure that reads and write work with the data specified.
        */
       if ((fp = fopen(fname, mode)) == NULL) {
               free(zs);
               return (NULL);
       }
       switch (*mode) {
       case 'r':
               zmode = 'r';
               return (funopen(zs, zread, NULL, NULL, zclose));
       case 'w':
               zmode = 'w';
               return (funopen(zs, NULL, zwrite, NULL, zclose));
       }
       /* NOTREACHED */
       return (NULL);
}