/*      $NetBSD: uvm_swap.c,v 1.209 2025/02/22 09:36:29 mlelstv Exp $   */

/*
* Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
* from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.209 2025/02/22 09:36:29 mlelstv Exp $");

#include "opt_uvmhist.h"
#include "opt_compat_netbsd.h"
#include "opt_ddb.h"
#include "opt_vmswap.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/atomic.h>
#include <sys/buf.h>
#include <sys/bufq.h>
#include <sys/conf.h>
#include <sys/cprng.h>
#include <sys/proc.h>
#include <sys/namei.h>
#include <sys/disklabel.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/vmem.h>
#include <sys/blist.h>
#include <sys/mount.h>
#include <sys/pool.h>
#include <sys/kmem.h>
#include <sys/syscallargs.h>
#include <sys/swap.h>
#include <sys/kauth.h>
#include <sys/sysctl.h>
#include <sys/workqueue.h>

#include <uvm/uvm.h>

#include <miscfs/specfs/specdev.h>

#include <crypto/aes/aes.h>
#include <crypto/aes/aes_cbc.h>

/*
* uvm_swap.c: manage configuration and i/o to swap space.
*/

/*
* swap space is managed in the following way:
*
* each swap partition or file is described by a "swapdev" structure.
* each "swapdev" structure contains a "swapent" structure which contains
* information that is passed up to the user (via system calls).
*
* each swap partition is assigned a "priority" (int) which controls
* swap partition usage.
*
* the system maintains a global data structure describing all swap
* partitions/files.   there is a sorted LIST of "swappri" structures
* which describe "swapdev"'s at that priority.   this LIST is headed
* by the "swap_priority" global var.    each "swappri" contains a
* TAILQ of "swapdev" structures at that priority.
*
* locking:
*  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
*    system call and prevents the swap priority list from changing
*    while we are in the middle of a system call (e.g. SWAP_STATS).
*  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
*    structures including the priority list, the swapdev structures,
*    and the swapmap arena.
*
* each swap device has the following info:
*  - swap device in use (could be disabled, preventing future use)
*  - swap enabled (allows new allocations on swap)
*  - map info in /dev/drum
*  - vnode pointer
* for swap files only:
*  - block size
*  - max byte count in buffer
*  - buffer
*
* userland controls and configures swap with the swapctl(2) system call.
* the sys_swapctl performs the following operations:
*  [1] SWAP_NSWAP: returns the number of swap devices currently configured
*  [2] SWAP_STATS: given a pointer to an array of swapent structures
*      (passed in via "arg") of a size passed in via "misc" ... we load
*      the current swap config into the array. The actual work is done
*      in the uvm_swap_stats() function.
*  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
*      priority in "misc", start swapping on it.
*  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
*  [5] SWAP_CTL: changes the priority of a swap device (new priority in
*      "misc")
*/

/*
* swapdev: describes a single swap partition/file
*
* note the following should be true:
* swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
* swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
*/
struct swapdev {
       dev_t                   swd_dev;        /* device id */
       int                     swd_flags;      /* flags:inuse/enable/fake */
       int                     swd_priority;   /* our priority */
       int                     swd_nblks;      /* blocks in this device */
       char                    *swd_path;      /* saved pathname of device */
       int                     swd_pathlen;    /* length of pathname */
       int                     swd_npages;     /* #pages we can use */
       int                     swd_npginuse;   /* #pages in use */
       int                     swd_npgbad;     /* #pages bad */
       int                     swd_drumoffset; /* page0 offset in drum */
       int                     swd_drumsize;   /* #pages in drum */
       blist_t                 swd_blist;      /* blist for this swapdev */
       struct vnode            *swd_vp;        /* backing vnode */
       TAILQ_ENTRY(swapdev)    swd_next;       /* priority tailq */

       int                     swd_bsize;      /* blocksize (bytes) */
       int                     swd_maxactive;  /* max active i/o reqs */
       struct bufq_state       *swd_tab;       /* buffer list */
       int                     swd_active;     /* number of active buffers */

       volatile uint32_t       *swd_encmap;    /* bitmap of encrypted slots */
       struct aesenc           swd_enckey;     /* AES key expanded for enc */
       struct aesdec           swd_deckey;     /* AES key expanded for dec */
       bool                    swd_encinit;    /* true if keys initialized */
};

/*
* swap device priority entry; the list is kept sorted on `spi_priority'.
*/
struct swappri {
       int                     spi_priority;     /* priority */
       TAILQ_HEAD(spi_swapdev, swapdev)        spi_swapdev;
       /* tailq of swapdevs at this priority */
       LIST_ENTRY(swappri)     spi_swappri;      /* global list of pri's */
};

/*
* The following two structures are used to keep track of data transfers
* on swap devices associated with regular files.
* NOTE: this code is more or less a copy of vnd.c; we use the same
* structure names here to ease porting..
*/
struct vndxfer {
       struct buf      *vx_bp;         /* Pointer to parent buffer */
       struct swapdev  *vx_sdp;
       int             vx_error;
       int             vx_pending;     /* # of pending aux buffers */
       int             vx_flags;
#define VX_BUSY         1
#define VX_DEAD         2
};

struct vndbuf {
       struct buf      vb_buf;
       struct vndxfer  *vb_xfer;
};

/*
* We keep a of pool vndbuf's and vndxfer structures.
*/
static struct pool vndxfer_pool, vndbuf_pool;

/*
* local variables
*/
static vmem_t *swapmap; /* controls the mapping of /dev/drum */

/* list of all active swap devices [by priority] */
LIST_HEAD(swap_priority, swappri);
static struct swap_priority swap_priority;

/* locks */
static kmutex_t uvm_swap_data_lock __cacheline_aligned;
static krwlock_t swap_syscall_lock;
bool uvm_swap_init_done = false;

/* workqueue and use counter for swap to regular files */
static int sw_reg_count = 0;
static struct workqueue *sw_reg_workqueue;

/* tuneables */
u_int uvm_swapisfull_factor = 99;
#if VMSWAP_DEFAULT_PLAINTEXT
bool uvm_swap_encrypt = false;
#else
bool uvm_swap_encrypt = true;
#endif

/*
* prototypes
*/
static struct swapdev   *swapdrum_getsdp(int);

static struct swapdev   *swaplist_find(struct vnode *, bool);
static void              swaplist_insert(struct swapdev *,
                                        struct swappri *, int);
static void              swaplist_trim(void);

static int swap_on(struct lwp *, struct swapdev *);
static int swap_off(struct lwp *, struct swapdev *);

static void sw_reg_strategy(struct swapdev *, struct buf *, int);
static void sw_reg_biodone(struct buf *);
static void sw_reg_iodone(struct work *wk, void *dummy);
static void sw_reg_start(struct swapdev *);

static int uvm_swap_io(struct vm_page **, int, int, int);

static void uvm_swap_genkey(struct swapdev *);
static void uvm_swap_encryptpage(struct swapdev *, void *, int);
static void uvm_swap_decryptpage(struct swapdev *, void *, int);

static size_t
encmap_size(size_t npages)
{
       struct swapdev *sdp;
       const size_t bytesperword = sizeof(sdp->swd_encmap[0]);
       const size_t bitsperword = NBBY * bytesperword;
       const size_t nbits = npages; /* one bit for each page */
       const size_t nwords = howmany(nbits, bitsperword);
       const size_t nbytes = nwords * bytesperword;

       return nbytes;
}

/*
* uvm_swap_init: init the swap system data structures and locks
*
* => called at boot time from init_main.c after the filesystems
*      are brought up (which happens after uvm_init())
*/
void
uvm_swap_init(void)
{
       UVMHIST_FUNC(__func__);

       UVMHIST_CALLED(pdhist);
       /*
        * first, init the swap list, its counter, and its lock.
        * then get a handle on the vnode for /dev/drum by using
        * the its dev_t number ("swapdev", from MD conf.c).
        */

       LIST_INIT(&swap_priority);
       uvmexp.nswapdev = 0;
       rw_init(&swap_syscall_lock);
       mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);

       if (bdevvp(swapdev, &swapdev_vp))
               panic("%s: can't get vnode for swap device", __func__);
       if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
               panic("%s: can't lock swap device", __func__);
       if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
               panic("%s: can't open swap device", __func__);
       VOP_UNLOCK(swapdev_vp);

       /*
        * create swap block resource map to map /dev/drum.   the range
        * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
        * that block 0 is reserved (used to indicate an allocation
        * failure, or no allocation).
        */
       swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
           VM_NOSLEEP, IPL_NONE);
       if (swapmap == 0) {
               panic("%s: vmem_create failed", __func__);
       }

       pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
           NULL, IPL_BIO);
       pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
           NULL, IPL_BIO);

       uvm_swap_init_done = true;

       UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
}

/*
* swaplist functions: functions that operate on the list of swap
* devices on the system.
*/

/*
* swaplist_insert: insert swap device "sdp" into the global list
*
* => caller must hold both swap_syscall_lock and uvm_swap_data_lock
* => caller must provide a newly allocated swappri structure (we will
*      FREE it if we don't need it... this it to prevent allocation
*      blocking here while adding swap)
*/
static void
swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
{
       struct swappri *spp, *pspp;
       UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);

       KASSERT(rw_write_held(&swap_syscall_lock));
       KASSERT(mutex_owned(&uvm_swap_data_lock));

       /*
        * find entry at or after which to insert the new device.
        */
       pspp = NULL;
       LIST_FOREACH(spp, &swap_priority, spi_swappri) {
               if (priority <= spp->spi_priority)
                       break;
               pspp = spp;
       }

       /*
        * new priority?
        */
       if (spp == NULL || spp->spi_priority != priority) {
               spp = newspp;  /* use newspp! */
               UVMHIST_LOG(pdhist, "created new swappri = %jd",
                           priority, 0, 0, 0);

               spp->spi_priority = priority;
               TAILQ_INIT(&spp->spi_swapdev);

               if (pspp)
                       LIST_INSERT_AFTER(pspp, spp, spi_swappri);
               else
                       LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
       } else {
               /* we don't need a new priority structure, free it */
               kmem_free(newspp, sizeof(*newspp));
       }

       /*
        * priority found (or created).   now insert on the priority's
        * tailq list and bump the total number of swapdevs.
        */
       sdp->swd_priority = priority;
       TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
       uvmexp.nswapdev++;
}

/*
* swaplist_find: find and optionally remove a swap device from the
*      global list.
*
* => caller must hold both swap_syscall_lock and uvm_swap_data_lock
* => we return the swapdev we found (and removed)
*/
static struct swapdev *
swaplist_find(struct vnode *vp, bool remove)
{
       struct swapdev *sdp;
       struct swappri *spp;

       KASSERT(rw_lock_held(&swap_syscall_lock));
       KASSERT(remove ? rw_write_held(&swap_syscall_lock) : 1);
       KASSERT(mutex_owned(&uvm_swap_data_lock));

       /*
        * search the lists for the requested vp
        */

       LIST_FOREACH(spp, &swap_priority, spi_swappri) {
               TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
                       if (sdp->swd_vp == vp) {
                               if (remove) {
                                       TAILQ_REMOVE(&spp->spi_swapdev,
                                           sdp, swd_next);
                                       uvmexp.nswapdev--;
                               }
                               return(sdp);
                       }
               }
       }
       return (NULL);
}

/*
* swaplist_trim: scan priority list for empty priority entries and kill
*      them.
*
* => caller must hold both swap_syscall_lock and uvm_swap_data_lock
*/
static void
swaplist_trim(void)
{
       struct swappri *spp, *nextspp;

       KASSERT(rw_write_held(&swap_syscall_lock));
       KASSERT(mutex_owned(&uvm_swap_data_lock));

       LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
               if (!TAILQ_EMPTY(&spp->spi_swapdev))
                       continue;
               LIST_REMOVE(spp, spi_swappri);
               kmem_free(spp, sizeof(*spp));
       }
}

/*
* swapdrum_getsdp: given a page offset in /dev/drum, convert it back
*      to the "swapdev" that maps that section of the drum.
*
* => each swapdev takes one big contig chunk of the drum
* => caller must hold uvm_swap_data_lock
*/
static struct swapdev *
swapdrum_getsdp(int pgno)
{
       struct swapdev *sdp;
       struct swappri *spp;

       KASSERT(mutex_owned(&uvm_swap_data_lock));

       LIST_FOREACH(spp, &swap_priority, spi_swappri) {
               TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
                       if (sdp->swd_flags & SWF_FAKE)
                               continue;
                       if (pgno >= sdp->swd_drumoffset &&
                           pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
                               return sdp;
                       }
               }
       }
       return NULL;
}

/*
* swapdrum_sdp_is: true iff the swap device for pgno is sdp
*
* => for use in positive assertions only; result is not stable
*/
static bool __debugused
swapdrum_sdp_is(int pgno, struct swapdev *sdp)
{
       bool result;

       mutex_enter(&uvm_swap_data_lock);
       result = swapdrum_getsdp(pgno) == sdp;
       mutex_exit(&uvm_swap_data_lock);

       return result;
}

void swapsys_lock(krw_t op)
{
       rw_enter(&swap_syscall_lock, op);
}

void swapsys_unlock(void)
{
       rw_exit(&swap_syscall_lock);
}

static void
swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
{
       se->se_dev = sdp->swd_dev;
       se->se_flags = sdp->swd_flags;
       se->se_nblks = sdp->swd_nblks;
       se->se_inuse = inuse;
       se->se_priority = sdp->swd_priority;
       KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
       strcpy(se->se_path, sdp->swd_path);
}

int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
   (void *)enosys;
int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
   (void *)enosys;

/*
* sys_swapctl: main entry point for swapctl(2) system call
*      [with two helper functions: swap_on and swap_off]
*/
int
sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
{
       /* {
               syscallarg(int) cmd;
               syscallarg(void *) arg;
               syscallarg(int) misc;
       } */
       struct vnode *vp;
       struct nameidata nd;
       struct swappri *spp;
       struct swapdev *sdp;
#define SWAP_PATH_MAX (PATH_MAX + 1)
       char    *userpath;
       size_t  len = 0;
       int     error;
       int     priority;
       UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);

       /*
        * we handle the non-priv NSWAP and STATS request first.
        *
        * SWAP_NSWAP: return number of config'd swap devices
        * [can also be obtained with uvmexp sysctl]
        */
       if (SCARG(uap, cmd) == SWAP_NSWAP) {
               const int nswapdev = uvmexp.nswapdev;
               UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
                   0, 0, 0);
               *retval = nswapdev;
               return 0;
       }

       userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);

       /*
        * ensure serialized syscall access by grabbing the swap_syscall_lock
        */
       rw_enter(&swap_syscall_lock, RW_WRITER);

       /*
        * SWAP_STATS: get stats on current # of configured swap devs
        *
        * note that the swap_priority list can't change as long
        * as we are holding the swap_syscall_lock.  we don't want
        * to grab the uvm_swap_data_lock because we may fault&sleep during
        * copyout() and we don't want to be holding that lock then!
        */
       switch (SCARG(uap, cmd)) {
       case SWAP_STATS13:
               error = (*uvm_swap_stats13)(uap, retval);
               goto out;
       case SWAP_STATS50:
               error = (*uvm_swap_stats50)(uap, retval);
               goto out;
       case SWAP_STATS:
               error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
                   NULL, sizeof(struct swapent), retval);
               UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
               goto out;

       case SWAP_GETDUMPDEV:
               error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
               goto out;
       default:
               break;
       }

       /*
        * all other requests require superuser privs.   verify.
        */
       if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
           0, NULL, NULL, NULL)))
               goto out;

       if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
               /* drop the current dump device */
               dumpdev = NODEV;
               dumpcdev = NODEV;
               cpu_dumpconf();
               goto out;
       }

       /*
        * at this point we expect a path name in arg.   we will
        * use namei() to gain a vnode reference (vref), and lock
        * the vnode (VOP_LOCK).
        *
        * XXX: a NULL arg means use the root vnode pointer (e.g. for
        * miniroot)
        */
       if (SCARG(uap, arg) == NULL) {
               vp = rootvp;            /* miniroot */
               vref(vp);
               if (vn_lock(vp, LK_EXCLUSIVE)) {
                       vrele(vp);
                       error = EBUSY;
                       goto out;
               }
               if (SCARG(uap, cmd) == SWAP_ON &&
                   copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
                       panic("swapctl: miniroot copy failed");
       } else {
               struct pathbuf *pb;

               /*
                * This used to allow copying in one extra byte
                * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
                * This was completely pointless because if anyone
                * used that extra byte namei would fail with
                * ENAMETOOLONG anyway, so I've removed the excess
                * logic. - dholland 20100215
                */

               error = pathbuf_copyin(SCARG(uap, arg), &pb);
               if (error) {
                       goto out;
               }
               if (SCARG(uap, cmd) == SWAP_ON) {
                       /* get a copy of the string */
                       pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
                       len = strlen(userpath) + 1;
               }
               NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
               if ((error = namei(&nd))) {
                       pathbuf_destroy(pb);
                       goto out;
               }
               vp = nd.ni_vp;
               pathbuf_destroy(pb);
       }
       /* note: "vp" is referenced and locked */

       error = 0;              /* assume no error */
       switch(SCARG(uap, cmd)) {

       case SWAP_DUMPDEV:
               if (vp->v_type != VBLK) {
                       error = ENOTBLK;
                       break;
               }
               if (bdevsw_lookup(vp->v_rdev)) {
                       dumpdev = vp->v_rdev;
                       dumpcdev = devsw_blk2chr(dumpdev);
               } else
                       dumpdev = NODEV;
               cpu_dumpconf();
               break;

       case SWAP_CTL:
               /*
                * get new priority, remove old entry (if any) and then
                * reinsert it in the correct place.  finally, prune out
                * any empty priority structures.
                */
               priority = SCARG(uap, misc);
               spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
               mutex_enter(&uvm_swap_data_lock);
               if ((sdp = swaplist_find(vp, true)) == NULL) {
                       error = ENOENT;
               } else {
                       swaplist_insert(sdp, spp, priority);
                       swaplist_trim();
               }
               mutex_exit(&uvm_swap_data_lock);
               if (error)
                       kmem_free(spp, sizeof(*spp));
               break;

       case SWAP_ON:

               /*
                * check for duplicates.   if none found, then insert a
                * dummy entry on the list to prevent someone else from
                * trying to enable this device while we are working on
                * it.
                */

               priority = SCARG(uap, misc);
               sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
               spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
               sdp->swd_flags = SWF_FAKE;
               sdp->swd_vp = vp;
               sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
               bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
               mutex_enter(&uvm_swap_data_lock);
               if (swaplist_find(vp, false) != NULL) {
                       error = EBUSY;
                       mutex_exit(&uvm_swap_data_lock);
                       bufq_free(sdp->swd_tab);
                       kmem_free(sdp, sizeof(*sdp));
                       kmem_free(spp, sizeof(*spp));
                       break;
               }
               swaplist_insert(sdp, spp, priority);
               mutex_exit(&uvm_swap_data_lock);

               KASSERT(len > 0);
               sdp->swd_pathlen = len;
               sdp->swd_path = kmem_alloc(len, KM_SLEEP);
               if (copystr(userpath, sdp->swd_path, len, 0) != 0)
                       panic("swapctl: copystr");

               /*
                * we've now got a FAKE placeholder in the swap list.
                * now attempt to enable swap on it.  if we fail, undo
                * what we've done and kill the fake entry we just inserted.
                * if swap_on is a success, it will clear the SWF_FAKE flag
                */

               if ((error = swap_on(l, sdp)) != 0) {
                       mutex_enter(&uvm_swap_data_lock);
                       (void) swaplist_find(vp, true);  /* kill fake entry */
                       swaplist_trim();
                       mutex_exit(&uvm_swap_data_lock);
                       bufq_free(sdp->swd_tab);
                       kmem_free(sdp->swd_path, sdp->swd_pathlen);
                       kmem_free(sdp, sizeof(*sdp));
                       break;
               }
               break;

       case SWAP_OFF:
               mutex_enter(&uvm_swap_data_lock);
               if ((sdp = swaplist_find(vp, false)) == NULL) {
                       mutex_exit(&uvm_swap_data_lock);
                       error = ENXIO;
                       break;
               }

               /*
                * If a device isn't in use or enabled, we
                * can't stop swapping from it (again).
                */
               if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
                       mutex_exit(&uvm_swap_data_lock);
                       error = EBUSY;
                       break;
               }

               /*
                * do the real work.
                */
               error = swap_off(l, sdp);
               break;

       default:
               error = EINVAL;
       }

       /*
        * done!  release the ref gained by namei() and unlock.
        */
       vput(vp);
out:
       rw_exit(&swap_syscall_lock);
       kmem_free(userpath, SWAP_PATH_MAX);

       UVMHIST_LOG(pdhist, "<- done!  error=%jd", error, 0, 0, 0);
       return (error);
}

/*
* uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
* away from sys_swapctl() in order to allow COMPAT_* swapctl()
* emulation to use it directly without going through sys_swapctl().
* The problem with using sys_swapctl() there is that it involves
* copying the swapent array to the stackgap, and this array's size
* is not known at build time. Hence it would not be possible to
* ensure it would fit in the stackgap in any case.
*/
int
uvm_swap_stats(char *ptr, int misc,
   void (*f)(void *, const struct swapent *), size_t len,
   register_t *retval)
{
       struct swappri *spp;
       struct swapdev *sdp;
       struct swapent sep;
       int count = 0;
       int error;

       KASSERT(len <= sizeof(sep));
       if (len == 0)
               return ENOSYS;

       if (misc < 0)
               return EINVAL;

       if (misc == 0 || uvmexp.nswapdev == 0)
               return 0;

       /* Make sure userland cannot exhaust kernel memory */
       if ((size_t)misc > (size_t)uvmexp.nswapdev)
               misc = uvmexp.nswapdev;

       KASSERT(rw_lock_held(&swap_syscall_lock));

       LIST_FOREACH(spp, &swap_priority, spi_swappri) {
               TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
                       int inuse;

                       if (misc-- <= 0)
                               break;

                       inuse = btodb((uint64_t)sdp->swd_npginuse <<
                           PAGE_SHIFT);

                       memset(&sep, 0, sizeof(sep));
                       swapent_cvt(&sep, sdp, inuse);
                       if (f)
                               (*f)(&sep, &sep);
                       if ((error = copyout(&sep, ptr, len)) != 0)
                               return error;
                       ptr += len;
                       count++;
               }
       }
       *retval = count;
       return 0;
}

/*
* swap_on: attempt to enable a swapdev for swapping.   note that the
*      swapdev is already on the global list, but disabled (marked
*      SWF_FAKE).
*
* => we avoid the start of the disk (to protect disk labels)
* => we also avoid the miniroot, if we are swapping to root.
* => caller should leave uvm_swap_data_lock unlocked, we may lock it
*      if needed.
*/
static int
swap_on(struct lwp *l, struct swapdev *sdp)
{
       struct vnode *vp;
       int error, npages, nblocks, size;
       long addr;
       vmem_addr_t result;
       struct vattr va;
       dev_t dev;
       UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);

       /*
        * we want to enable swapping on sdp.   the swd_vp contains
        * the vnode we want (locked and ref'd), and the swd_dev
        * contains the dev_t of the file, if it a block device.
        */

       vp = sdp->swd_vp;
       dev = sdp->swd_dev;

       /*
        * open the swap file (mostly useful for block device files to
        * let device driver know what is up).
        *
        * we skip the open/close for root on swap because the root
        * has already been opened when root was mounted (mountroot).
        */
       if (vp != rootvp) {
               if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
                       return (error);
       }

       /* XXX this only works for block devices */
       UVMHIST_LOG(pdhist, "  dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);

       /*
        * we now need to determine the size of the swap area.   for
        * block specials we can call the d_psize function.
        * for normal files, we must stat [get attrs].
        *
        * we put the result in nblks.
        * for normal files, we also want the filesystem block size
        * (which we get with statfs).
        */
       switch (vp->v_type) {
       case VBLK:
               if ((nblocks = bdev_size(dev)) == -1) {
                       error = ENXIO;
                       goto bad;
               }
               break;

       case VREG:
               if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
                       goto bad;
               nblocks = (int)btodb(va.va_size);
               sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
               /*
                * limit the max # of outstanding I/O requests we issue
                * at any one time.   take it easy on NFS servers.
                */
               if (vp->v_tag == VT_NFS)
                       sdp->swd_maxactive = 2; /* XXX */
               else
                       sdp->swd_maxactive = 8; /* XXX */
               break;

       default:
               error = ENXIO;
               goto bad;
       }

       /*
        * save nblocks in a safe place and convert to pages.
        */

       sdp->swd_nblks = nblocks;
       npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;

       /*
        * for block special files, we want to make sure that leave
        * the disklabel and bootblocks alone, so we arrange to skip
        * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
        * note that because of this the "size" can be less than the
        * actual number of blocks on the device.
        */
       if (vp->v_type == VBLK) {
               /* we use pages 1 to (size - 1) [inclusive] */
               size = npages - 1;
               addr = 1;
       } else {
               /* we use pages 0 to (size - 1) [inclusive] */
               size = npages;
               addr = 0;
       }

       /*
        * make sure we have enough blocks for a reasonable sized swap
        * area.   we want at least one page.
        */

       if (size < 1) {
               UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
               error = EINVAL;
               goto bad;
       }

       UVMHIST_LOG(pdhist, "  dev=%#jx: size=%jd addr=%jd", dev, size, addr, 0);

       /*
        * now we need to allocate an extent to manage this swap device
        */

       sdp->swd_blist = blist_create(npages);
       /* mark all expect the `saved' region free. */
       blist_free(sdp->swd_blist, addr, size);

       /*
        * allocate space to for swap encryption state and mark the
        * keys uninitialized so we generate them lazily
        */
       sdp->swd_encmap = kmem_zalloc(encmap_size(npages), KM_SLEEP);
       sdp->swd_encinit = false;

       /*
        * if the vnode we are swapping to is the root vnode
        * (i.e. we are swapping to the miniroot) then we want
        * to make sure we don't overwrite it.   do a statfs to
        * find its size and skip over it.
        */
       if (vp == rootvp) {
               struct mount *mp;
               struct statvfs *sp;
               int rootblocks, rootpages;

               mp = rootvnode->v_mount;
               sp = &mp->mnt_stat;
               rootblocks = sp->f_blocks * btodb(sp->f_frsize);
               /*
                * XXX: sp->f_blocks isn't the total number of
                * blocks in the filesystem, it's the number of
                * data blocks.  so, our rootblocks almost
                * definitely underestimates the total size
                * of the filesystem - how badly depends on the
                * details of the filesystem type.  there isn't
                * an obvious way to deal with this cleanly
                * and perfectly, so for now we just pad our
                * rootblocks estimate with an extra 5 percent.
                */
               rootblocks += (rootblocks >> 5) +
                       (rootblocks >> 6) +
                       (rootblocks >> 7);
               rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
               if (rootpages > size)
                       panic("swap_on: miniroot larger than swap?");

               if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
                       panic("swap_on: unable to preserve miniroot");
               }

               size -= rootpages;
               printf("Preserved %d pages of miniroot ", rootpages);
               printf("leaving %d pages of swap\n", size);
       }

       /*
        * add a ref to vp to reflect usage as a swap device.
        */
       vref(vp);

       /*
        * now add the new swapdev to the drum and enable.
        */
       error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
       if (error != 0)
               panic("swapdrum_add");
       /*
        * If this is the first regular swap create the workqueue.
        * => Protected by swap_syscall_lock.
        */
       if (vp->v_type != VBLK) {
               if (sw_reg_count++ == 0) {
                       KASSERT(sw_reg_workqueue == NULL);
                       if (workqueue_create(&sw_reg_workqueue, "swapiod",
                           sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
                               panic("%s: workqueue_create failed", __func__);
               }
       }

       sdp->swd_drumoffset = (int)result;
       sdp->swd_drumsize = npages;
       sdp->swd_npages = size;
       mutex_enter(&uvm_swap_data_lock);
       sdp->swd_flags &= ~SWF_FAKE;    /* going live */
       sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
       uvmexp.swpages += size;
       uvmexp.swpgavail += size;
       mutex_exit(&uvm_swap_data_lock);
       return (0);

       /*
        * failure: clean up and return error.
        */

bad:
       if (sdp->swd_blist) {
               blist_destroy(sdp->swd_blist);
       }
       if (vp != rootvp) {
               (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
       }
       return (error);
}

/*
* swap_off: stop swapping on swapdev
*
* => swap data should be locked, we will unlock.
*/
static int
swap_off(struct lwp *l, struct swapdev *sdp)
{
       int npages = sdp->swd_npages;
       int error = 0;

       UVMHIST_FUNC(__func__);
       UVMHIST_CALLARGS(pdhist, "  dev=%#jx, npages=%jd", sdp->swd_dev,npages, 0, 0);

       KASSERT(rw_write_held(&swap_syscall_lock));
       KASSERT(mutex_owned(&uvm_swap_data_lock));

       /* disable the swap area being removed */
       sdp->swd_flags &= ~SWF_ENABLE;
       uvmexp.swpgavail -= npages;
       mutex_exit(&uvm_swap_data_lock);

       /*
        * the idea is to find all the pages that are paged out to this
        * device, and page them all in.  in uvm, swap-backed pageable
        * memory can take two forms: aobjs and anons.  call the
        * swapoff hook for each subsystem to bring in pages.
        */

       if (uao_swap_off(sdp->swd_drumoffset,
                        sdp->swd_drumoffset + sdp->swd_drumsize) ||
           amap_swap_off(sdp->swd_drumoffset,
                         sdp->swd_drumoffset + sdp->swd_drumsize)) {
               error = ENOMEM;
       } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
               error = EBUSY;
       }

       if (error) {
               mutex_enter(&uvm_swap_data_lock);
               sdp->swd_flags |= SWF_ENABLE;
               uvmexp.swpgavail += npages;
               mutex_exit(&uvm_swap_data_lock);

               return error;
       }

       /*
        * If this is the last regular swap destroy the workqueue.
        * => Protected by swap_syscall_lock.
        */
       if (sdp->swd_vp->v_type != VBLK) {
               KASSERT(sw_reg_count > 0);
               KASSERT(sw_reg_workqueue != NULL);
               if (--sw_reg_count == 0) {
                       workqueue_destroy(sw_reg_workqueue);
                       sw_reg_workqueue = NULL;
               }
       }

       /*
        * done with the vnode.
        * drop our ref on the vnode before calling VOP_CLOSE()
        * so that spec_close() can tell if this is the last close.
        */
       vrele(sdp->swd_vp);
       if (sdp->swd_vp != rootvp) {
               (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
       }

       mutex_enter(&uvm_swap_data_lock);
       uvmexp.swpages -= npages;
       uvmexp.swpginuse -= sdp->swd_npgbad;

       if (swaplist_find(sdp->swd_vp, true) == NULL)
               panic("%s: swapdev not in list", __func__);
       swaplist_trim();
       mutex_exit(&uvm_swap_data_lock);

       /*
        * free all resources!
        */
       vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
       blist_destroy(sdp->swd_blist);
       bufq_free(sdp->swd_tab);
       kmem_free(__UNVOLATILE(sdp->swd_encmap),
           encmap_size(sdp->swd_drumsize));
       explicit_memset(&sdp->swd_enckey, 0, sizeof sdp->swd_enckey);
       explicit_memset(&sdp->swd_deckey, 0, sizeof sdp->swd_deckey);
       kmem_free(sdp, sizeof(*sdp));
       return (0);
}

void
uvm_swap_shutdown(struct lwp *l)
{
       struct swapdev *sdp;
       struct swappri *spp;
       struct vnode *vp;
       int error;

       if (!uvm_swap_init_done || uvmexp.nswapdev == 0)
               return;
       printf("turning off swap...");
       rw_enter(&swap_syscall_lock, RW_WRITER);
       mutex_enter(&uvm_swap_data_lock);
again:
       LIST_FOREACH(spp, &swap_priority, spi_swappri)
               TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
                       if (sdp->swd_flags & SWF_FAKE)
                               continue;
                       if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
                               continue;
#ifdef DEBUG
                       printf("\nturning off swap on %s...", sdp->swd_path);
#endif
                       /* Have to lock and reference vnode for swap_off(). */
                       vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE|LK_RETRY);
                       vref(vp);
                       error = swap_off(l, sdp);
                       vput(vp);
                       mutex_enter(&uvm_swap_data_lock);
                       if (error) {
                               printf("stopping swap on %s failed "
                                   "with error %d\n", sdp->swd_path, error);
                               TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
                               uvmexp.nswapdev--;
                               swaplist_trim();
                       }
                       goto again;
               }
       printf(" done\n");
       mutex_exit(&uvm_swap_data_lock);
       rw_exit(&swap_syscall_lock);
}


/*
* /dev/drum interface and i/o functions
*/

/*
* swopen: allow the initial open from uvm_swap_init() and reject all others.
*/

static int
swopen(dev_t dev, int flag, int mode, struct lwp *l)
{
       static bool inited = false;

       if (!inited) {
               inited = true;
               return 0;
       }
       return ENODEV;
}

/*
* swstrategy: perform I/O on the drum
*
* => we must map the i/o request from the drum to the correct swapdev.
*/
static void
swstrategy(struct buf *bp)
{
       struct swapdev *sdp;
       struct vnode *vp;
       int pageno, bn;
       UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);

       /*
        * convert block number to swapdev.   note that swapdev can't
        * be yanked out from under us because we are holding resources
        * in it (i.e. the blocks we are doing I/O on).
        */
       pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
       mutex_enter(&uvm_swap_data_lock);
       sdp = swapdrum_getsdp(pageno);
       mutex_exit(&uvm_swap_data_lock);
       if (sdp == NULL) {
               bp->b_error = EINVAL;
               bp->b_resid = bp->b_bcount;
               biodone(bp);
               UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
               return;
       }

       /*
        * convert drum page number to block number on this swapdev.
        */

       pageno -= sdp->swd_drumoffset;  /* page # on swapdev */
       bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */

       UVMHIST_LOG(pdhist, "  Rd/Wr (0/1) %jd: mapoff=%#jx bn=%#jx bcount=%jd",
               ((bp->b_flags & B_READ) == 0) ? 1 : 0,
               sdp->swd_drumoffset, bn, bp->b_bcount);

       /*
        * for block devices we finish up here.
        * for regular files we have to do more work which we delegate
        * to sw_reg_strategy().
        */

       vp = sdp->swd_vp;               /* swapdev vnode pointer */
       switch (vp->v_type) {
       default:
               panic("%s: vnode type 0x%x", __func__, vp->v_type);

       case VBLK:

               /*
                * must convert "bp" from an I/O on /dev/drum to an I/O
                * on the swapdev (sdp).
                */
               bp->b_blkno = bn;               /* swapdev block number */
               bp->b_dev = sdp->swd_dev;       /* swapdev dev_t */

               /*
                * if we are doing a write, we have to redirect the i/o on
                * drum's v_numoutput counter to the swapdevs.
                */
               if ((bp->b_flags & B_READ) == 0) {
                       mutex_enter(bp->b_objlock);
                       vwakeup(bp);    /* kills one 'v_numoutput' on drum */
                       mutex_exit(bp->b_objlock);
                       mutex_enter(vp->v_interlock);
                       vp->v_numoutput++;      /* put it on swapdev */
                       mutex_exit(vp->v_interlock);
               }

               /*
                * finally plug in swapdev vnode and start I/O
                */
               bp->b_vp = vp;
               bp->b_objlock = vp->v_interlock;
               VOP_STRATEGY(vp, bp);
               return;

       case VREG:
               /*
                * delegate to sw_reg_strategy function.
                */
               sw_reg_strategy(sdp, bp, bn);
               return;
       }
       /* NOTREACHED */
}

/*
* swread: the read function for the drum (just a call to physio)
*/
/*ARGSUSED*/
static int
swread(dev_t dev, struct uio *uio, int ioflag)
{
       UVMHIST_FUNC(__func__);
       UVMHIST_CALLARGS(pdhist, "  dev=%#jx offset=%#jx", dev, uio->uio_offset, 0, 0);

       return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
}

/*
* swwrite: the write function for the drum (just a call to physio)
*/
/*ARGSUSED*/
static int
swwrite(dev_t dev, struct uio *uio, int ioflag)
{
       UVMHIST_FUNC(__func__);
       UVMHIST_CALLARGS(pdhist, "  dev=%#jx offset=%#jx", dev, uio->uio_offset, 0, 0);

       return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
}

const struct bdevsw swap_bdevsw = {
       .d_open = swopen,
       .d_close = noclose,
       .d_strategy = swstrategy,
       .d_ioctl = noioctl,
       .d_dump = nodump,
       .d_psize = nosize,
       .d_discard = nodiscard,
       .d_flag = D_OTHER
};

const struct cdevsw swap_cdevsw = {
       .d_open = nullopen,
       .d_close = nullclose,
       .d_read = swread,
       .d_write = swwrite,
       .d_ioctl = noioctl,
       .d_stop = nostop,
       .d_tty = notty,
       .d_poll = nopoll,
       .d_mmap = nommap,
       .d_kqfilter = nokqfilter,
       .d_discard = nodiscard,
       .d_flag = D_OTHER,
};

/*
* sw_reg_strategy: handle swap i/o to regular files
*/
static void
sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
{
       struct vnode    *vp;
       struct vndxfer  *vnx;
       daddr_t         nbn;
       char            *addr;
       off_t           byteoff;
       int             s, off, nra, error, sz, resid;
       UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);

       /*
        * allocate a vndxfer head for this transfer and point it to
        * our buffer.
        */
       vnx = pool_get(&vndxfer_pool, PR_WAITOK);
       vnx->vx_flags = VX_BUSY;
       vnx->vx_error = 0;
       vnx->vx_pending = 0;
       vnx->vx_bp = bp;
       vnx->vx_sdp = sdp;

       /*
        * setup for main loop where we read filesystem blocks into
        * our buffer.
        */
       error = 0;
       bp->b_resid = bp->b_bcount;     /* nothing transferred yet! */
       addr = bp->b_data;              /* current position in buffer */
       byteoff = dbtob((uint64_t)bn);

       for (resid = bp->b_resid; resid; resid -= sz) {
               struct vndbuf   *nbp;

               /*
                * translate byteoffset into block number.  return values:
                *   vp = vnode of underlying device
                *  nbn = new block number (on underlying vnode dev)
                *  nra = num blocks we can read-ahead (excludes requested
                *      block)
                */
               nra = 0;
               error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
                                       &vp, &nbn, &nra);

               if (error == 0 && nbn == (daddr_t)-1) {
                       /*
                        * this used to just set error, but that doesn't
                        * do the right thing.  Instead, it causes random
                        * memory errors.  The panic() should remain until
                        * this condition doesn't destabilize the system.
                        */
#if 1
                       panic("%s: swap to sparse file", __func__);
#else
                       error = EIO;    /* failure */
#endif
               }

               /*
                * punt if there was an error or a hole in the file.
                * we must wait for any i/o ops we have already started
                * to finish before returning.
                *
                * XXX we could deal with holes here but it would be
                * a hassle (in the write case).
                */
               if (error) {
                       s = splbio();
                       vnx->vx_error = error;  /* pass error up */
                       goto out;
               }

               /*
                * compute the size ("sz") of this transfer (in bytes).
                */
               off = byteoff % sdp->swd_bsize;
               sz = (1 + nra) * sdp->swd_bsize - off;
               if (sz > resid)
                       sz = resid;

               UVMHIST_LOG(pdhist, "sw_reg_strategy: "
                   "vp %#jx/%#jx offset %#jx/%#jx",
                   (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);

               /*
                * now get a buf structure.   note that the vb_buf is
                * at the front of the nbp structure so that you can
                * cast pointers between the two structure easily.
                */
               nbp = pool_get(&vndbuf_pool, PR_WAITOK);
               buf_init(&nbp->vb_buf);
               nbp->vb_buf.b_flags    = bp->b_flags;
               nbp->vb_buf.b_cflags   = bp->b_cflags;
               nbp->vb_buf.b_oflags   = bp->b_oflags;
               nbp->vb_buf.b_bcount   = sz;
               nbp->vb_buf.b_bufsize  = sz;
               nbp->vb_buf.b_error    = 0;
               nbp->vb_buf.b_data     = addr;
               nbp->vb_buf.b_lblkno   = 0;
               nbp->vb_buf.b_blkno    = nbn + btodb(off);
               nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
               nbp->vb_buf.b_iodone   = sw_reg_biodone;
               nbp->vb_buf.b_vp       = vp;
               nbp->vb_buf.b_objlock  = vp->v_interlock;
               if (vp->v_type == VBLK) {
                       nbp->vb_buf.b_dev = vp->v_rdev;
               }

               nbp->vb_xfer = vnx;     /* patch it back in to vnx */

               /*
                * Just sort by block number
                */
               s = splbio();
               if (vnx->vx_error != 0) {
                       buf_destroy(&nbp->vb_buf);
                       pool_put(&vndbuf_pool, nbp);
                       goto out;
               }
               vnx->vx_pending++;

               /* sort it in and start I/O if we are not over our limit */
               /* XXXAD locking */
               bufq_put(sdp->swd_tab, &nbp->vb_buf);
               sw_reg_start(sdp);
               splx(s);

               /*
                * advance to the next I/O
                */
               byteoff += sz;
               addr += sz;
       }

       s = splbio();

out: /* Arrive here at splbio */
       vnx->vx_flags &= ~VX_BUSY;
       if (vnx->vx_pending == 0) {
               error = vnx->vx_error;
               pool_put(&vndxfer_pool, vnx);
               if (error) {
                       bp->b_resid = bp->b_bcount;
                       bp->b_error = error;
               }
               biodone(bp);
       }
       splx(s);
}

/*
* sw_reg_start: start an I/O request on the requested swapdev
*
* => reqs are sorted by b_rawblkno (above)
*/
static void
sw_reg_start(struct swapdev *sdp)
{
       struct buf      *bp;
       struct vnode    *vp;
       UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);

       /* recursion control */
       if ((sdp->swd_flags & SWF_BUSY) != 0)
               return;

       sdp->swd_flags |= SWF_BUSY;

       while (sdp->swd_active < sdp->swd_maxactive) {
               bp = bufq_get(sdp->swd_tab);
               if (bp == NULL)
                       break;
               sdp->swd_active++;

               UVMHIST_LOG(pdhist,
                   "sw_reg_start:  bp %#jx vp %#jx blkno %#jx cnt %#jx",
                   (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
                   bp->b_bcount);
               vp = bp->b_vp;
               KASSERT(bp->b_objlock == vp->v_interlock);
               if ((bp->b_flags & B_READ) == 0) {
                       mutex_enter(vp->v_interlock);
                       vp->v_numoutput++;
                       mutex_exit(vp->v_interlock);
               }
               VOP_STRATEGY(vp, bp);
       }
       sdp->swd_flags &= ~SWF_BUSY;
}

/*
* sw_reg_biodone: one of our i/o's has completed
*/
static void
sw_reg_biodone(struct buf *bp)
{
       workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
}

/*
* sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
*
* => note that we can recover the vndbuf struct by casting the buf ptr
*/
static void
sw_reg_iodone(struct work *wk, void *dummy)
{
       struct vndbuf *vbp = (void *)wk;
       struct vndxfer *vnx = vbp->vb_xfer;
       struct buf *pbp = vnx->vx_bp;           /* parent buffer */
       struct swapdev  *sdp = vnx->vx_sdp;
       int s, resid, error;
       KASSERT(&vbp->vb_buf.b_work == wk);
       UVMHIST_FUNC(__func__);
       UVMHIST_CALLARGS(pdhist, "  vbp=%#jx vp=%#jx blkno=%#jx addr=%#jx",
           (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
           (uintptr_t)vbp->vb_buf.b_data);
       UVMHIST_LOG(pdhist, "  cnt=%#jx resid=%#jx",
           vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);

       /*
        * protect vbp at splbio and update.
        */

       s = splbio();
       resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
       pbp->b_resid -= resid;
       vnx->vx_pending--;

       if (vbp->vb_buf.b_error != 0) {
               /* pass error upward */
               error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
               UVMHIST_LOG(pdhist, "  got error=%jd !", error, 0, 0, 0);
               vnx->vx_error = error;
       }

       /*
        * kill vbp structure
        */
       buf_destroy(&vbp->vb_buf);
       pool_put(&vndbuf_pool, vbp);

       /*
        * wrap up this transaction if it has run to completion or, in
        * case of an error, when all auxiliary buffers have returned.
        */
       if (vnx->vx_error != 0) {
               /* pass error upward */
               error = vnx->vx_error;
               if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
                       pbp->b_error = error;
                       pbp->b_resid = pbp->b_bcount;
                       biodone(pbp);
                       pool_put(&vndxfer_pool, vnx);
               }
       } else if (pbp->b_resid == 0) {
               KASSERT(vnx->vx_pending == 0);
               if ((vnx->vx_flags & VX_BUSY) == 0) {
                       UVMHIST_LOG(pdhist, "  iodone, pbp=%#jx error=%jd !",
                           (uintptr_t)pbp, vnx->vx_error, 0, 0);
                       biodone(pbp);
                       pool_put(&vndxfer_pool, vnx);
               }
       }

       /*
        * done!   start next swapdev I/O if one is pending
        */
       sdp->swd_active--;
       sw_reg_start(sdp);
       splx(s);
}


/*
* uvm_swap_alloc: allocate space on swap
*
* => allocation is done "round robin" down the priority list, as we
*      allocate in a priority we "rotate" the circle queue.
* => space can be freed with uvm_swap_free
* => we return the page slot number in /dev/drum (0 == invalid slot)
* => we lock uvm_swap_data_lock
* => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
*/
int
uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
{
       struct swapdev *sdp;
       struct swappri *spp;
       UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);

       /*
        * no swap devices configured yet?   definite failure.
        */
       if (uvmexp.nswapdev < 1)
               return 0;

       /*
        * XXXJAK: BEGIN HACK
        *
        * blist_alloc() in subr_blist.c will panic if we try to allocate
        * too many slots.
        */
       if (*nslots > BLIST_MAX_ALLOC) {
               if (__predict_false(lessok == false))
                       return 0;
               *nslots = BLIST_MAX_ALLOC;
       }
       /* XXXJAK: END HACK */

       /*
        * lock data lock, convert slots into blocks, and enter loop
        */
       mutex_enter(&uvm_swap_data_lock);

ReTry:  /* XXXMRG */
       LIST_FOREACH(spp, &swap_priority, spi_swappri) {
               TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
                       uint64_t result;

                       /* if it's not enabled, then we can't swap from it */
                       if ((sdp->swd_flags & SWF_ENABLE) == 0)
                               continue;
                       if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
                               continue;
                       result = blist_alloc(sdp->swd_blist, *nslots);
                       if (result == BLIST_NONE) {
                               continue;
                       }
                       KASSERT(result < sdp->swd_drumsize);

                       /*
                        * successful allocation!  now rotate the tailq.
                        */
                       TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
                       TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
                       sdp->swd_npginuse += *nslots;
                       uvmexp.swpginuse += *nslots;
                       mutex_exit(&uvm_swap_data_lock);
                       /* done!  return drum slot number */
                       UVMHIST_LOG(pdhist,
                           "success!  returning %jd slots starting at %jd",
                           *nslots, result + sdp->swd_drumoffset, 0, 0);
                       return (result + sdp->swd_drumoffset);
               }
       }

       /* XXXMRG: BEGIN HACK */
       if (*nslots > 1 && lessok) {
               *nslots = 1;
               /* XXXMRG: ugh!  blist should support this for us */
               goto ReTry;
       }
       /* XXXMRG: END HACK */

       mutex_exit(&uvm_swap_data_lock);
       return 0;
}

/*
* uvm_swapisfull: return true if most of available swap is allocated
* and in use.  we don't count some small portion as it may be inaccessible
* to us at any given moment, for example if there is lock contention or if
* pages are busy.
*/
bool
uvm_swapisfull(void)
{
       int swpgonly;
       bool rv;

       if (uvmexp.swpages == 0) {
               return true;
       }

       mutex_enter(&uvm_swap_data_lock);
       KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
       swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
           uvm_swapisfull_factor);
       rv = (swpgonly >= uvmexp.swpgavail);
       mutex_exit(&uvm_swap_data_lock);

       return (rv);
}

/*
* uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
*
* => we lock uvm_swap_data_lock
*/
void
uvm_swap_markbad(int startslot, int nslots)
{
       struct swapdev *sdp;
       UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);

       mutex_enter(&uvm_swap_data_lock);
       sdp = swapdrum_getsdp(startslot);
       KASSERT(sdp != NULL);

       /*
        * we just keep track of how many pages have been marked bad
        * in this device, to make everything add up in swap_off().
        * we assume here that the range of slots will all be within
        * one swap device.
        */

       KASSERT(uvmexp.swpgonly >= nslots);
       atomic_add_int(&uvmexp.swpgonly, -nslots);
       sdp->swd_npgbad += nslots;
       UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
       mutex_exit(&uvm_swap_data_lock);
}

/*
* uvm_swap_free: free swap slots
*
* => this can be all or part of an allocation made by uvm_swap_alloc
* => we lock uvm_swap_data_lock
*/
void
uvm_swap_free(int startslot, int nslots)
{
       struct swapdev *sdp;
       UVMHIST_FUNC(__func__);
       UVMHIST_CALLARGS(pdhist, "freeing %jd slots starting at %jd", nslots,
           startslot, 0, 0);

       /*
        * ignore attempts to free the "bad" slot.
        */

       if (startslot == SWSLOT_BAD) {
               return;
       }

       /*
        * convert drum slot offset back to sdp, free the blocks
        * in the extent, and return.   must hold pri lock to do
        * lookup and access the extent.
        */

       mutex_enter(&uvm_swap_data_lock);
       sdp = swapdrum_getsdp(startslot);
       KASSERT(uvmexp.nswapdev >= 1);
       KASSERT(sdp != NULL);
       KASSERT(sdp->swd_npginuse >= nslots);
       blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
       sdp->swd_npginuse -= nslots;
       uvmexp.swpginuse -= nslots;
       mutex_exit(&uvm_swap_data_lock);
}

/*
* uvm_swap_put: put any number of pages into a contig place on swap
*
* => can be sync or async
*/

int
uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
{
       int error;

       error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
           ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
       return error;
}

/*
* uvm_swap_get: get a single page from swap
*
* => usually a sync op (from fault)
*/

int
uvm_swap_get(struct vm_page *page, int swslot, int flags)
{
       int error;

       atomic_inc_uint(&uvmexp.nswget);
       KASSERT(flags & PGO_SYNCIO);
       if (swslot == SWSLOT_BAD) {
               return EIO;
       }

       error = uvm_swap_io(&page, swslot, 1, B_READ |
           ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
       if (error == 0) {

               /*
                * this page is no longer only in swap.
                */

               KASSERT(uvmexp.swpgonly > 0);
               atomic_dec_uint(&uvmexp.swpgonly);
       }
       return error;
}

/*
* uvm_swap_io: do an i/o operation to swap
*/

static int
uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
{
       daddr_t startblk;
       struct  buf *bp;
       vaddr_t kva;
       int     error, mapinflags;
       bool write, async, swap_encrypt;
       UVMHIST_FUNC(__func__);
       UVMHIST_CALLARGS(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%#jx",
           startslot, npages, flags, 0);

       write = (flags & B_READ) == 0;
       async = (flags & B_ASYNC) != 0;
       swap_encrypt = atomic_load_relaxed(&uvm_swap_encrypt);

       /*
        * allocate a buf for the i/o.
        */

       KASSERT(curlwp != uvm.pagedaemon_lwp || write);
       KASSERT(curlwp != uvm.pagedaemon_lwp || async);
       bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
       if (bp == NULL) {
               uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
               return ENOMEM;
       }

       /*
        * convert starting drum slot to block number
        */

       startblk = btodb((uint64_t)startslot << PAGE_SHIFT);

       /*
        * first, map the pages into the kernel.
        */

       mapinflags = !write ?
               UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
               UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
       if (write && swap_encrypt)      /* need to encrypt in-place */
               mapinflags |= UVMPAGER_MAPIN_READ;
       kva = uvm_pagermapin(pps, npages, mapinflags);

       /*
        * encrypt writes in place if requested
        */

       if (write) do {
               struct swapdev *sdp;
               int i;

               /*
                * Get the swapdev so we can discriminate on the
                * encryption state.  There may or may not be an
                * encryption key generated; we may or may not be asked
                * to encrypt swap.
                *
                * 1. NO KEY, NO ENCRYPTION: Nothing to do.
                *
                * 2. NO KEY, BUT ENCRYPTION: Generate a key, encrypt,
                *    and mark the slots encrypted.
                *
                * 3. KEY, BUT NO ENCRYPTION: The slots may already be
                *    marked encrypted from a past life.  Mark them not
                *    encrypted.
                *
                * 4. KEY, ENCRYPTION: Encrypt and mark the slots
                *    encrypted.
                */
               mutex_enter(&uvm_swap_data_lock);
               sdp = swapdrum_getsdp(startslot);
               if (!sdp->swd_encinit) {
                       if (!swap_encrypt) {
                               mutex_exit(&uvm_swap_data_lock);
                               break;
                       }
                       uvm_swap_genkey(sdp);
               }
               KASSERT(sdp->swd_encinit);
               mutex_exit(&uvm_swap_data_lock);

               for (i = 0; i < npages; i++) {
                       int s = startslot + i;
                       KDASSERT(swapdrum_sdp_is(s, sdp));
                       KASSERT(s >= sdp->swd_drumoffset);
                       s -= sdp->swd_drumoffset;
                       KASSERT(s < sdp->swd_drumsize);

                       if (swap_encrypt) {
                               uvm_swap_encryptpage(sdp,
                                   (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
                               atomic_or_32(&sdp->swd_encmap[s/32],
                                   __BIT(s%32));
                       } else {
                               atomic_and_32(&sdp->swd_encmap[s/32],
                                   ~__BIT(s%32));
                       }
               }
       } while (0);

       /*
        * fill in the bp/sbp.   we currently route our i/o through
        * /dev/drum's vnode [swapdev_vp].
        */

       bp->b_cflags = BC_BUSY | BC_NOCACHE;
       bp->b_flags = (flags & (B_READ|B_ASYNC));
       bp->b_proc = &proc0;    /* XXX */
       bp->b_vnbufs.le_next = NOLIST;
       bp->b_data = (void *)kva;
       bp->b_blkno = startblk;
       bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;

       /*
        * bump v_numoutput (counter of number of active outputs).
        */

       if (write) {
               mutex_enter(swapdev_vp->v_interlock);
               swapdev_vp->v_numoutput++;
               mutex_exit(swapdev_vp->v_interlock);
       }

       /*
        * for async ops we must set up the iodone handler.
        */

       if (async) {
               bp->b_iodone = uvm_aio_aiodone;
               UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
               if (curlwp == uvm.pagedaemon_lwp)
                       BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
               else
                       BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
       } else {
               bp->b_iodone = NULL;
               BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
       }
       UVMHIST_LOG(pdhist,
           "about to start io: data = %#jx blkno = %#jx, bcount = %jd",
           (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);

       /*
        * now we start the I/O, and if async, return.
        */

       VOP_STRATEGY(swapdev_vp, bp);
       if (async) {
               /*
                * Reads are always synchronous; if this changes, we
                * need to add an asynchronous path for decryption.
                */
               KASSERT(write);
               return 0;
       }

       /*
        * must be sync i/o.   wait for it to finish
        */

       error = biowait(bp);
       if (error)
               goto out;

       /*
        * decrypt reads in place if needed
        */

       if (!write) do {
               struct swapdev *sdp;
               bool encinit;
               int i;

               /*
                * Get the sdp.  Everything about it except the encinit
                * bit, saying whether the encryption key is
                * initialized or not, and the encrypted bit for each
                * page, is stable until all swap pages have been
                * released and the device is removed.
                */
               mutex_enter(&uvm_swap_data_lock);
               sdp = swapdrum_getsdp(startslot);
               encinit = sdp->swd_encinit;
               mutex_exit(&uvm_swap_data_lock);

               if (!encinit)
                       /*
                        * If there's no encryption key, there's no way
                        * any of these slots can be encrypted, so
                        * nothing to do here.
                        */
                       break;
               for (i = 0; i < npages; i++) {
                       int s = startslot + i;
                       KDASSERT(swapdrum_sdp_is(s, sdp));
                       KASSERT(s >= sdp->swd_drumoffset);
                       s -= sdp->swd_drumoffset;
                       KASSERT(s < sdp->swd_drumsize);
                       if ((atomic_load_relaxed(&sdp->swd_encmap[s/32]) &
                               __BIT(s%32)) == 0)
                               continue;
                       uvm_swap_decryptpage(sdp,
                           (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
               }
       } while (0);
out:
       /*
        * kill the pager mapping
        */

       uvm_pagermapout(kva, npages);

       /*
        * now dispose of the buf and we're done.
        */

       if (write) {
               mutex_enter(swapdev_vp->v_interlock);
               vwakeup(bp);
               mutex_exit(swapdev_vp->v_interlock);
       }
       putiobuf(bp);
       UVMHIST_LOG(pdhist, "<- done (sync)  error=%jd", error, 0, 0, 0);

       return (error);
}

/*
* uvm_swap_genkey(sdp)
*
*      Generate a key for swap encryption.
*/
static void
uvm_swap_genkey(struct swapdev *sdp)
{
       uint8_t key[32];

       KASSERT(!sdp->swd_encinit);

       cprng_strong(kern_cprng, key, sizeof key, 0);
       aes_setenckey256(&sdp->swd_enckey, key);
       aes_setdeckey256(&sdp->swd_deckey, key);
       explicit_memset(key, 0, sizeof key);

       sdp->swd_encinit = true;
}

/*
* uvm_swap_encryptpage(sdp, kva, slot)
*
*      Encrypt one page of data at kva for the specified slot number
*      in the swap device.
*/
static void
uvm_swap_encryptpage(struct swapdev *sdp, void *kva, int slot)
{
       uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);

       /* iv := AES_k(le32enc(slot) || 0^96) */
       le32enc(preiv, slot);
       aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);

       /* *kva := AES-CBC_k(iv, *kva) */
       aes_cbc_enc(&sdp->swd_enckey, kva, kva, PAGE_SIZE, iv,
           AES_256_NROUNDS);

       explicit_memset(&iv, 0, sizeof iv);
}

/*
* uvm_swap_decryptpage(sdp, kva, slot)
*
*      Decrypt one page of data at kva for the specified slot number
*      in the swap device.
*/
static void
uvm_swap_decryptpage(struct swapdev *sdp, void *kva, int slot)
{
       uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);

       /* iv := AES_k(le32enc(slot) || 0^96) */
       le32enc(preiv, slot);
       aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);

       /* *kva := AES-CBC^{-1}_k(iv, *kva) */
       aes_cbc_dec(&sdp->swd_deckey, kva, kva, PAGE_SIZE, iv,
           AES_256_NROUNDS);

       explicit_memset(&iv, 0, sizeof iv);
}

SYSCTL_SETUP(sysctl_uvmswap_setup, "sysctl uvmswap setup")
{

       sysctl_createv(clog, 0, NULL, NULL,
           CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "swap_encrypt",
           SYSCTL_DESCR("Encrypt data when swapped out to disk"),
           NULL, 0, &uvm_swap_encrypt, 0,
           CTL_VM, CTL_CREATE, CTL_EOL);
}