/*      $NetBSD: uvm_pdaemon.c,v 1.134 2023/09/10 15:01:11 ad Exp $     */

/*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* Copyright (c) 1991, 1993, The Regents of the University of California.
*
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)vm_pageout.c        8.5 (Berkeley) 2/14/94
* from: Id: uvm_pdaemon.c,v 1.1.2.32 1998/02/06 05:26:30 chs Exp
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
*  Software Distribution Coordinator  or  [email protected]
*  School of Computer Science
*  Carnegie Mellon University
*  Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/

/*
* uvm_pdaemon.c: the page daemon
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: uvm_pdaemon.c,v 1.134 2023/09/10 15:01:11 ad Exp $");

#include "opt_uvmhist.h"
#include "opt_readahead.h"

#define __RWLOCK_PRIVATE

#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/pool.h>
#include <sys/buf.h>
#include <sys/module.h>
#include <sys/atomic.h>
#include <sys/kthread.h>

#include <uvm/uvm.h>
#include <uvm/uvm_pdpolicy.h>
#include <uvm/uvm_pgflcache.h>

#ifdef UVMHIST
#ifndef UVMHIST_PDHIST_SIZE
#define UVMHIST_PDHIST_SIZE 100
#endif
static struct kern_history_ent pdhistbuf[UVMHIST_PDHIST_SIZE];
UVMHIST_DEFINE(pdhist) = UVMHIST_INITIALIZER(pdhisthist, pdhistbuf);
#endif

/*
* UVMPD_NUMDIRTYREACTS is how many dirty pages the pagedaemon will reactivate
* in a pass thru the inactive list when swap is full.  the value should be
* "small"... if it's too large we'll cycle the active pages thru the inactive
* queue too quickly to for them to be referenced and avoid being freed.
*/

#define UVMPD_NUMDIRTYREACTS    16

/*
* local prototypes
*/

static void     uvmpd_scan(void);
static void     uvmpd_scan_queue(void);
static void     uvmpd_tune(void);
static void     uvmpd_pool_drain_thread(void *);
static void     uvmpd_pool_drain_wakeup(void);

static unsigned int uvm_pagedaemon_waiters;

/* State for the pool drainer thread */
static kmutex_t uvmpd_lock __cacheline_aligned;
static kcondvar_t uvmpd_pool_drain_cv;
static bool uvmpd_pool_drain_run = false;

/*
* XXX hack to avoid hangs when large processes fork.
*/
u_int uvm_extrapages;

/*
* uvm_wait: wait (sleep) for the page daemon to free some pages
*
* => should be called with all locks released
* => should _not_ be called by the page daemon (to avoid deadlock)
*/

void
uvm_wait(const char *wmsg)
{
       int timo = 0;

       if (uvm.pagedaemon_lwp == NULL)
               panic("out of memory before the pagedaemon thread exists");

       mutex_spin_enter(&uvmpd_lock);

       /*
        * check for page daemon going to sleep (waiting for itself)
        */

       if (curlwp == uvm.pagedaemon_lwp && uvmexp.paging == 0) {
               /*
                * now we have a problem: the pagedaemon wants to go to
                * sleep until it frees more memory.   but how can it
                * free more memory if it is asleep?  that is a deadlock.
                * we have two options:
                *  [1] panic now
                *  [2] put a timeout on the sleep, thus causing the
                *      pagedaemon to only pause (rather than sleep forever)
                *
                * note that option [2] will only help us if we get lucky
                * and some other process on the system breaks the deadlock
                * by exiting or freeing memory (thus allowing the pagedaemon
                * to continue).  for now we panic if DEBUG is defined,
                * otherwise we hope for the best with option [2] (better
                * yet, this should never happen in the first place!).
                */

               printf("pagedaemon: deadlock detected!\n");
               timo = hz >> 3;         /* set timeout */
#if defined(DEBUG)
               /* DEBUG: panic so we can debug it */
               panic("pagedaemon deadlock");
#endif
       }

       uvm_pagedaemon_waiters++;
       wakeup(&uvm.pagedaemon);                /* wake the daemon! */
       UVM_UNLOCK_AND_WAIT(&uvmexp.free, &uvmpd_lock, false, wmsg, timo);
}

/*
* uvm_kick_pdaemon: perform checks to determine if we need to
* give the pagedaemon a nudge, and do so if necessary.
*/

void
uvm_kick_pdaemon(void)
{
       int fpages = uvm_availmem(false);

       if (fpages + uvmexp.paging < uvmexp.freemin ||
           (fpages + uvmexp.paging < uvmexp.freetarg &&
            uvmpdpol_needsscan_p()) ||
            uvm_km_va_starved_p()) {
               mutex_spin_enter(&uvmpd_lock);
               wakeup(&uvm.pagedaemon);
               mutex_spin_exit(&uvmpd_lock);
       }
}

/*
* uvmpd_tune: tune paging parameters
*
* => called when ever memory is added (or removed?) to the system
*/

static void
uvmpd_tune(void)
{
       int val;

       UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);

       /*
        * try to keep 0.5% of available RAM free, but limit to between
        * 128k and 1024k per-CPU.  XXX: what are these values good for?
        */
       val = uvmexp.npages / 200;
       val = MAX(val, (128*1024) >> PAGE_SHIFT);
       val = MIN(val, (1024*1024) >> PAGE_SHIFT);
       val *= ncpu;

       /* Make sure there's always a user page free. */
       if (val < uvmexp.reserve_kernel + 1)
               val = uvmexp.reserve_kernel + 1;
       uvmexp.freemin = val;

       /* Calculate free target. */
       val = (uvmexp.freemin * 4) / 3;
       if (val <= uvmexp.freemin)
               val = uvmexp.freemin + 1;
       uvmexp.freetarg = val + atomic_swap_uint(&uvm_extrapages, 0);

       uvmexp.wiredmax = uvmexp.npages / 3;
       UVMHIST_LOG(pdhist, "<- done, freemin=%jd, freetarg=%jd, wiredmax=%jd",
             uvmexp.freemin, uvmexp.freetarg, uvmexp.wiredmax, 0);
}

/*
* uvm_pageout: the main loop for the pagedaemon
*/

void
uvm_pageout(void *arg)
{
       int npages = 0;
       int extrapages = 0;
       int fpages;

       UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);

       UVMHIST_LOG(pdhist,"<starting uvm pagedaemon>", 0, 0, 0, 0);

       mutex_init(&uvmpd_lock, MUTEX_DEFAULT, IPL_VM);
       cv_init(&uvmpd_pool_drain_cv, "pooldrain");

       /* Create the pool drainer kernel thread. */
       if (kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL,
           uvmpd_pool_drain_thread, NULL, NULL, "pooldrain"))
               panic("fork pooldrain");

       /*
        * ensure correct priority and set paging parameters...
        */

       uvm.pagedaemon_lwp = curlwp;
       npages = uvmexp.npages;
       uvmpd_tune();

       /*
        * main loop
        */

       for (;;) {
               bool needsscan, needsfree, kmem_va_starved;

               kmem_va_starved = uvm_km_va_starved_p();

               mutex_spin_enter(&uvmpd_lock);
               if ((uvm_pagedaemon_waiters == 0 || uvmexp.paging > 0) &&
                   !kmem_va_starved) {
                       UVMHIST_LOG(pdhist,"  <<SLEEPING>>",0,0,0,0);
                       UVM_UNLOCK_AND_WAIT(&uvm.pagedaemon,
                           &uvmpd_lock, false, "pgdaemon", 0);
                       uvmexp.pdwoke++;
                       UVMHIST_LOG(pdhist,"  <<WOKE UP>>",0,0,0,0);
               } else {
                       mutex_spin_exit(&uvmpd_lock);
               }

               /*
                * now recompute inactive count
                */

               if (npages != uvmexp.npages || extrapages != uvm_extrapages) {
                       npages = uvmexp.npages;
                       extrapages = uvm_extrapages;
                       uvmpd_tune();
               }

               uvmpdpol_tune();

               /*
                * Estimate a hint.  Note that bufmem are returned to
                * system only when entire pool page is empty.
                */
               fpages = uvm_availmem(false);
               UVMHIST_LOG(pdhist,"  free/ftarg=%jd/%jd",
                   fpages, uvmexp.freetarg, 0,0);

               needsfree = fpages + uvmexp.paging < uvmexp.freetarg;
               needsscan = needsfree || uvmpdpol_needsscan_p();

               /*
                * scan if needed
                */
               if (needsscan) {
                       uvmpd_scan();
               }

               /*
                * if there's any free memory to be had,
                * wake up any waiters.
                */
               if (uvm_availmem(false) > uvmexp.reserve_kernel ||
                   uvmexp.paging == 0) {
                       mutex_spin_enter(&uvmpd_lock);
                       wakeup(&uvmexp.free);
                       uvm_pagedaemon_waiters = 0;
                       mutex_spin_exit(&uvmpd_lock);
               }

               /*
                * scan done.  if we don't need free memory, we're done.
                */

               if (!needsfree && !kmem_va_starved)
                       continue;

               /*
                * kick the pool drainer thread.
                */

               uvmpd_pool_drain_wakeup();
       }
       /*NOTREACHED*/
}

void
uvm_pageout_start(int npages)
{

       atomic_add_int(&uvmexp.paging, npages);
}

void
uvm_pageout_done(int npages)
{

       KASSERT(atomic_load_relaxed(&uvmexp.paging) >= npages);

       if (npages == 0) {
               return;
       }

       atomic_add_int(&uvmexp.paging, -npages);

       /*
        * wake up either of pagedaemon or LWPs waiting for it.
        */

       mutex_spin_enter(&uvmpd_lock);
       if (uvm_availmem(false) <= uvmexp.reserve_kernel) {
               wakeup(&uvm.pagedaemon);
       } else if (uvm_pagedaemon_waiters != 0) {
               wakeup(&uvmexp.free);
               uvm_pagedaemon_waiters = 0;
       }
       mutex_spin_exit(&uvmpd_lock);
}

static krwlock_t *
uvmpd_page_owner_lock(struct vm_page *pg)
{
       struct uvm_object *uobj = pg->uobject;
       struct vm_anon *anon = pg->uanon;
       krwlock_t *slock;

       KASSERT(mutex_owned(&pg->interlock));

#ifdef DEBUG
       if (uobj == (void *)0xdeadbeef || anon == (void *)0xdeadbeef) {
               return NULL;
       }
#endif
       if (uobj != NULL) {
               slock = uobj->vmobjlock;
               KASSERTMSG(slock != NULL, "pg %p uobj %p, NULL lock", pg, uobj);
       } else if (anon != NULL) {
               slock = anon->an_lock;
               KASSERTMSG(slock != NULL, "pg %p anon %p, NULL lock", pg, anon);
       } else {
               slock = NULL;
       }
       return slock;
}

/*
* uvmpd_trylockowner: trylock the page's owner.
*
* => called with page interlock held.
* => resolve orphaned O->A loaned page.
* => return the locked mutex on success.  otherwise, return NULL.
*/

krwlock_t *
uvmpd_trylockowner(struct vm_page *pg)
{
       krwlock_t *slock, *heldslock = NULL;

       KASSERT(mutex_owned(&pg->interlock));

       slock = uvmpd_page_owner_lock(pg);
       if (slock == NULL) {
               /* Page may be in state of flux - ignore. */
               mutex_exit(&pg->interlock);
               return NULL;
       }

       if (rw_tryenter(slock, RW_WRITER)) {
               goto success;
       }

       /*
        * The try-lock didn't work, so now do a blocking lock after
        * dropping the page interlock.  Prevent the owner lock from
        * being freed by taking a hold on it first.
        */

       rw_obj_hold(slock);
       mutex_exit(&pg->interlock);
       rw_enter(slock, RW_WRITER);
       heldslock = slock;

       /*
        * Now we hold some owner lock.  Check if the lock we hold
        * is still the lock for the owner of the page.
        * If it is then return it, otherwise release it and return NULL.
        */

       mutex_enter(&pg->interlock);
       slock = uvmpd_page_owner_lock(pg);
       if (heldslock != slock) {
               rw_exit(heldslock);
               slock = NULL;
       } else {
success:
               /*
                * Set PG_ANON if it isn't set already.
                */
               if (pg->uobject == NULL && (pg->flags & PG_ANON) == 0) {
                       KASSERT(pg->loan_count > 0);
                       pg->loan_count--;
                       pg->flags |= PG_ANON;
                       /* anon now owns it */
               }
       }
       mutex_exit(&pg->interlock);
       if (heldslock != NULL) {
               rw_obj_free(heldslock);
       }
       return slock;
}

#if defined(VMSWAP)
struct swapcluster {
       int swc_slot;
       int swc_nallocated;
       int swc_nused;
       struct vm_page *swc_pages[howmany(MAXPHYS, MIN_PAGE_SIZE)];
};

static void
swapcluster_init(struct swapcluster *swc)
{

       swc->swc_slot = 0;
       swc->swc_nused = 0;
}

static int
swapcluster_allocslots(struct swapcluster *swc)
{
       int slot;
       int npages;

       if (swc->swc_slot != 0) {
               return 0;
       }

       /* Even with strange MAXPHYS, the shift
          implicitly rounds down to a page. */
       npages = MAXPHYS >> PAGE_SHIFT;
       slot = uvm_swap_alloc(&npages, true);
       if (slot == 0) {
               return ENOMEM;
       }
       swc->swc_slot = slot;
       swc->swc_nallocated = npages;
       swc->swc_nused = 0;

       return 0;
}

static int
swapcluster_add(struct swapcluster *swc, struct vm_page *pg)
{
       int slot;
       struct uvm_object *uobj;

       KASSERT(swc->swc_slot != 0);
       KASSERT(swc->swc_nused < swc->swc_nallocated);
       KASSERT((pg->flags & PG_SWAPBACKED) != 0);

       slot = swc->swc_slot + swc->swc_nused;
       uobj = pg->uobject;
       if (uobj == NULL) {
               KASSERT(rw_write_held(pg->uanon->an_lock));
               pg->uanon->an_swslot = slot;
       } else {
               int result;

               KASSERT(rw_write_held(uobj->vmobjlock));
               result = uao_set_swslot(uobj, pg->offset >> PAGE_SHIFT, slot);
               if (result == -1) {
                       return ENOMEM;
               }
       }
       swc->swc_pages[swc->swc_nused] = pg;
       swc->swc_nused++;

       return 0;
}

static void
swapcluster_flush(struct swapcluster *swc, bool now)
{
       int slot;
       int nused;
       int nallocated;
       int error __diagused;

       if (swc->swc_slot == 0) {
               return;
       }
       KASSERT(swc->swc_nused <= swc->swc_nallocated);

       slot = swc->swc_slot;
       nused = swc->swc_nused;
       nallocated = swc->swc_nallocated;

       /*
        * if this is the final pageout we could have a few
        * unused swap blocks.  if so, free them now.
        */

       if (nused < nallocated) {
               if (!now) {
                       return;
               }
               uvm_swap_free(slot + nused, nallocated - nused);
       }

       /*
        * now start the pageout.
        */

       if (nused > 0) {
               uvmexp.pdpageouts++;
               uvm_pageout_start(nused);
               error = uvm_swap_put(slot, swc->swc_pages, nused, 0);
               KASSERT(error == 0 || error == ENOMEM);
       }

       /*
        * zero swslot to indicate that we are
        * no longer building a swap-backed cluster.
        */

       swc->swc_slot = 0;
       swc->swc_nused = 0;
}

static int
swapcluster_nused(struct swapcluster *swc)
{

       return swc->swc_nused;
}

/*
* uvmpd_dropswap: free any swap allocated to this page.
*
* => called with owner locked.
* => return true if a page had an associated slot.
*/

bool
uvmpd_dropswap(struct vm_page *pg)
{
       bool result = false;
       struct vm_anon *anon = pg->uanon;

       if ((pg->flags & PG_ANON) && anon->an_swslot) {
               uvm_swap_free(anon->an_swslot, 1);
               anon->an_swslot = 0;
               uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
               result = true;
       } else if (pg->flags & PG_AOBJ) {
               int slot = uao_set_swslot(pg->uobject,
                   pg->offset >> PAGE_SHIFT, 0);
               if (slot) {
                       uvm_swap_free(slot, 1);
                       uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
                       result = true;
               }
       }

       return result;
}

#endif /* defined(VMSWAP) */

/*
* uvmpd_scan_queue: scan an replace candidate list for pages
* to clean or free.
*
* => we work on meeting our free target by converting inactive pages
*    into free pages.
* => we handle the building of swap-backed clusters
*/

static void
uvmpd_scan_queue(void)
{
       struct vm_page *p;
       struct uvm_object *uobj;
       struct vm_anon *anon;
#if defined(VMSWAP)
       struct swapcluster swc;
#endif /* defined(VMSWAP) */
       int dirtyreacts;
       krwlock_t *slock;
       UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);

       /*
        * swslot is non-zero if we are building a swap cluster.  we want
        * to stay in the loop while we have a page to scan or we have
        * a swap-cluster to build.
        */

#if defined(VMSWAP)
       swapcluster_init(&swc);
#endif /* defined(VMSWAP) */

       dirtyreacts = 0;
       uvmpdpol_scaninit();

       while (/* CONSTCOND */ 1) {

               /*
                * see if we've met the free target.
                */

               if (uvm_availmem(false) + uvmexp.paging
#if defined(VMSWAP)
                   + swapcluster_nused(&swc)
#endif /* defined(VMSWAP) */
                   >= uvmexp.freetarg << 2 ||
                   dirtyreacts == UVMPD_NUMDIRTYREACTS) {
                       UVMHIST_LOG(pdhist,"  met free target: "
                                   "exit loop", 0, 0, 0, 0);
                       break;
               }

               /*
                * first we have the pdpolicy select a victim page
                * and attempt to lock the object that the page
                * belongs to.  if our attempt fails we skip on to
                * the next page (no harm done).  it is important to
                * "try" locking the object as we are locking in the
                * wrong order (pageq -> object) and we don't want to
                * deadlock.
                *
                * the only time we expect to see an ownerless page
                * (i.e. a page with no uobject and !PG_ANON) is if an
                * anon has loaned a page from a uvm_object and the
                * uvm_object has dropped the ownership.  in that
                * case, the anon can "take over" the loaned page
                * and make it its own.
                */

               p = uvmpdpol_selectvictim(&slock);
               if (p == NULL) {
                       break;
               }
               KASSERT(uvmpdpol_pageisqueued_p(p));
               KASSERT(uvm_page_owner_locked_p(p, true));
               KASSERT(p->wire_count == 0);

               /*
                * we are below target and have a new page to consider.
                */

               anon = p->uanon;
               uobj = p->uobject;

               if (p->flags & PG_BUSY) {
                       rw_exit(slock);
                       uvmexp.pdbusy++;
                       continue;
               }

               /* does the page belong to an object? */
               if (uobj != NULL) {
                       uvmexp.pdobscan++;
               } else {
#if defined(VMSWAP)
                       KASSERT(anon != NULL);
                       uvmexp.pdanscan++;
#else /* defined(VMSWAP) */
                       panic("%s: anon", __func__);
#endif /* defined(VMSWAP) */
               }


               /*
                * we now have the object locked.
                * if the page is not swap-backed, call the object's
                * pager to flush and free the page.
                */

#if defined(READAHEAD_STATS)
               if ((p->flags & PG_READAHEAD) != 0) {
                       p->flags &= ~PG_READAHEAD;
                       uvm_ra_miss.ev_count++;
               }
#endif /* defined(READAHEAD_STATS) */

               if ((p->flags & PG_SWAPBACKED) == 0) {
                       KASSERT(uobj != NULL);
                       (void) (uobj->pgops->pgo_put)(uobj, p->offset,
                           p->offset + PAGE_SIZE, PGO_CLEANIT|PGO_FREE);
                       continue;
               }

               /*
                * the page is swap-backed.  remove all the permissions
                * from the page so we can sync the modified info
                * without any race conditions.  if the page is clean
                * we can free it now and continue.
                */

               pmap_page_protect(p, VM_PROT_NONE);
               if (uvm_pagegetdirty(p) == UVM_PAGE_STATUS_UNKNOWN) {
                       if (pmap_clear_modify(p)) {
                               uvm_pagemarkdirty(p, UVM_PAGE_STATUS_DIRTY);
                       } else {
                               uvm_pagemarkdirty(p, UVM_PAGE_STATUS_CLEAN);
                       }
               }
               if (uvm_pagegetdirty(p) != UVM_PAGE_STATUS_DIRTY) {
                       int slot;
                       int pageidx;

                       pageidx = p->offset >> PAGE_SHIFT;
                       uvm_pagefree(p);
                       atomic_inc_uint(&uvmexp.pdfreed);

                       /*
                        * for anons, we need to remove the page
                        * from the anon ourselves.  for aobjs,
                        * pagefree did that for us.
                        */

                       if (anon) {
                               KASSERT(anon->an_swslot != 0);
                               anon->an_page = NULL;
                               slot = anon->an_swslot;
                       } else {
                               slot = uao_find_swslot(uobj, pageidx);
                       }
                       if (slot > 0) {
                               /* this page is now only in swap. */
                               KASSERT(uvmexp.swpgonly < uvmexp.swpginuse);
                               atomic_inc_uint(&uvmexp.swpgonly);
                       }
                       rw_exit(slock);
                       continue;
               }

#if defined(VMSWAP)
               /*
                * this page is dirty, skip it if we'll have met our
                * free target when all the current pageouts complete.
                */

               if (uvm_availmem(false) + uvmexp.paging >
                   uvmexp.freetarg << 2) {
                       rw_exit(slock);
                       continue;
               }

               /*
                * free any swap space allocated to the page since
                * we'll have to write it again with its new data.
                */

               uvmpd_dropswap(p);

               /*
                * start new swap pageout cluster (if necessary).
                *
                * if swap is full reactivate this page so that
                * we eventually cycle all pages through the
                * inactive queue.
                */

               if (swapcluster_allocslots(&swc)) {
                       dirtyreacts++;
                       uvm_pagelock(p);
                       uvm_pageactivate(p);
                       uvm_pageunlock(p);
                       rw_exit(slock);
                       continue;
               }

               /*
                * at this point, we're definitely going reuse this
                * page.  mark the page busy and delayed-free.
                * we should remove the page from the page queues
                * so we don't ever look at it again.
                * adjust counters and such.
                */

               p->flags |= PG_BUSY;
               UVM_PAGE_OWN(p, "scan_queue");
               p->flags |= PG_PAGEOUT;
               uvmexp.pgswapout++;

               uvm_pagelock(p);
               uvm_pagedequeue(p);
               uvm_pageunlock(p);

               /*
                * add the new page to the cluster.
                */

               if (swapcluster_add(&swc, p)) {
                       p->flags &= ~(PG_BUSY|PG_PAGEOUT);
                       UVM_PAGE_OWN(p, NULL);
                       dirtyreacts++;
                       uvm_pagelock(p);
                       uvm_pageactivate(p);
                       uvm_pageunlock(p);
                       rw_exit(slock);
                       continue;
               }
               rw_exit(slock);

               swapcluster_flush(&swc, false);

               /*
                * the pageout is in progress.  bump counters and set up
                * for the next loop.
                */

               atomic_inc_uint(&uvmexp.pdpending);

#else /* defined(VMSWAP) */
               uvm_pagelock(p);
               uvm_pageactivate(p);
               uvm_pageunlock(p);
               rw_exit(slock);
#endif /* defined(VMSWAP) */
       }

       uvmpdpol_scanfini();

#if defined(VMSWAP)
       swapcluster_flush(&swc, true);
#endif /* defined(VMSWAP) */
}

/*
* uvmpd_scan: scan the page queues and attempt to meet our targets.
*/

static void
uvmpd_scan(void)
{
       int swap_shortage, pages_freed, fpages;
       UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);

       uvmexp.pdrevs++;

       /*
        * work on meeting our targets.   first we work on our free target
        * by converting inactive pages into free pages.  then we work on
        * meeting our inactive target by converting active pages to
        * inactive ones.
        */

       UVMHIST_LOG(pdhist, "  starting 'free' loop",0,0,0,0);

       pages_freed = uvmexp.pdfreed;
       uvmpd_scan_queue();
       pages_freed = uvmexp.pdfreed - pages_freed;

       /*
        * detect if we're not going to be able to page anything out
        * until we free some swap resources from active pages.
        */

       swap_shortage = 0;
       fpages = uvm_availmem(false);
       if (fpages < uvmexp.freetarg &&
           uvmexp.swpginuse >= uvmexp.swpgavail &&
           !uvm_swapisfull() &&
           pages_freed == 0) {
               swap_shortage = uvmexp.freetarg - fpages;
       }

       uvmpdpol_balancequeue(swap_shortage);

       /*
        * if still below the minimum target, try unloading kernel
        * modules.
        */

       if (uvm_availmem(false) < uvmexp.freemin) {
               module_thread_kick();
       }
}

/*
* uvm_reclaimable: decide whether to wait for pagedaemon.
*
* => return true if it seems to be worth to do uvm_wait.
*
* XXX should be tunable.
* XXX should consider pools, etc?
*/

bool
uvm_reclaimable(void)
{
       int filepages;
       int active, inactive;

       /*
        * if swap is not full, no problem.
        */

       if (!uvm_swapisfull()) {
               return true;
       }

       /*
        * file-backed pages can be reclaimed even when swap is full.
        * if we have more than 1/16 of pageable memory or 5MB, try to reclaim.
        * NB: filepages calculation does not exclude EXECPAGES - intentional.
        *
        * XXX assume the worst case, ie. all wired pages are file-backed.
        *
        * XXX should consider about other reclaimable memory.
        * XXX ie. pools, traditional buffer cache.
        */

       cpu_count_sync(false);
       filepages = (int)(cpu_count_get(CPU_COUNT_FILECLEAN) +
           cpu_count_get(CPU_COUNT_FILEUNKNOWN) +
           cpu_count_get(CPU_COUNT_FILEDIRTY) - uvmexp.wired);
       uvm_estimatepageable(&active, &inactive);
       if (filepages >= MIN((active + inactive) >> 4,
           5 * 1024 * 1024 >> PAGE_SHIFT)) {
               return true;
       }

       /*
        * kill the process, fail allocation, etc..
        */

       return false;
}

void
uvm_estimatepageable(int *active, int *inactive)
{

       uvmpdpol_estimatepageable(active, inactive);
}


/*
* Use a separate thread for draining pools.
* This work can't done from the main pagedaemon thread because
* some pool allocators need to take vm_map locks.
*/

static void
uvmpd_pool_drain_thread(void *arg)
{
       struct pool *firstpool, *curpool;
       int bufcnt, lastslept;
       bool cycled;

       firstpool = NULL;
       cycled = true;
       for (;;) {
               /*
                * sleep until awoken by the pagedaemon.
                */
               mutex_enter(&uvmpd_lock);
               if (!uvmpd_pool_drain_run) {
                       lastslept = getticks();
                       cv_wait(&uvmpd_pool_drain_cv, &uvmpd_lock);
                       if (getticks() != lastslept) {
                               cycled = false;
                               firstpool = NULL;
                       }
               }
               uvmpd_pool_drain_run = false;
               mutex_exit(&uvmpd_lock);

               /*
                * rate limit draining, otherwise in desperate circumstances
                * this can totally saturate the system with xcall activity.
                */
               if (cycled) {
                       kpause("uvmpdlmt", false, 1, NULL);
                       cycled = false;
                       firstpool = NULL;
               }

               /*
                * drain and temporarily disable the freelist cache.
                */
               uvm_pgflcache_pause();

               /*
                * kill unused metadata buffers.
                */
               bufcnt = uvmexp.freetarg - uvm_availmem(false);
               if (bufcnt < 0)
                       bufcnt = 0;

               mutex_enter(&bufcache_lock);
               buf_drain(bufcnt << PAGE_SHIFT);
               mutex_exit(&bufcache_lock);

               /*
                * drain a pool, and then re-enable the freelist cache.
                */
               (void)pool_drain(&curpool);
               KASSERT(curpool != NULL);
               if (firstpool == NULL) {
                       firstpool = curpool;
               } else if (firstpool == curpool) {
                       cycled = true;
               }
               uvm_pgflcache_resume();
       }
       /*NOTREACHED*/
}

static void
uvmpd_pool_drain_wakeup(void)
{

       mutex_enter(&uvmpd_lock);
       uvmpd_pool_drain_run = true;
       cv_signal(&uvmpd_pool_drain_cv);
       mutex_exit(&uvmpd_lock);
}