/*      $NetBSD: uvm_km.c,v 1.166 2024/12/07 23:19:07 chs Exp $ */

/*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* Copyright (c) 1991, 1993, The Regents of the University of California.
*
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)vm_kern.c   8.3 (Berkeley) 1/12/94
* from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
*  Software Distribution Coordinator  or  [email protected]
*  School of Computer Science
*  Carnegie Mellon University
*  Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/

/*
* uvm_km.c: handle kernel memory allocation and management
*/

/*
* overview of kernel memory management:
*
* the kernel virtual address space is mapped by "kernel_map."   kernel_map
* starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
* note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
*
* the kernel_map has several "submaps."   submaps can only appear in
* the kernel_map (user processes can't use them).   submaps "take over"
* the management of a sub-range of the kernel's address space.  submaps
* are typically allocated at boot time and are never released.   kernel
* virtual address space that is mapped by a submap is locked by the
* submap's lock -- not the kernel_map's lock.
*
* thus, the useful feature of submaps is that they allow us to break
* up the locking and protection of the kernel address space into smaller
* chunks.
*
* the vm system has several standard kernel submaps/arenas, including:
*   kmem_arena => used for kmem/pool (memoryallocators(9))
*   pager_map => used to map "buf" structures into kernel space
*   exec_map => used during exec to handle exec args
*   etc...
*
* The kmem_arena is a "special submap", as it lives in a fixed map entry
* within the kernel_map and is controlled by vmem(9).
*
* the kernel allocates its private memory out of special uvm_objects whose
* reference count is set to UVM_OBJ_KERN (thus indicating that the objects
* are "special" and never die).   all kernel objects should be thought of
* as large, fixed-sized, sparsely populated uvm_objects.   each kernel
* object is equal to the size of kernel virtual address space (i.e. the
* value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
*
* note that just because a kernel object spans the entire kernel virtual
* address space doesn't mean that it has to be mapped into the entire space.
* large chunks of a kernel object's space go unused either because
* that area of kernel VM is unmapped, or there is some other type of
* object mapped into that range (e.g. a vnode).    for submap's kernel
* objects, the only part of the object that can ever be populated is the
* offsets that are managed by the submap.
*
* note that the "offset" in a kernel object is always the kernel virtual
* address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
* example:
*   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
*   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
*   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
*   then that means that the page at offset 0x235000 in kernel_object is
*   mapped at 0xf8235000.
*
* kernel object have one other special property: when the kernel virtual
* memory mapping them is unmapped, the backing memory in the object is
* freed right away.   this is done with the uvm_km_pgremove() function.
* this has to be done because there is no backing store for kernel pages
* and no need to save them after they are no longer referenced.
*
* Generic arenas:
*
* kmem_arena:
*      Main arena controlling the kernel KVA used by other arenas.
*
* kmem_va_arena:
*      Implements quantum caching in order to speedup allocations and
*      reduce fragmentation.  The pool(9), unless created with a custom
*      meta-data allocator, and kmem(9) subsystems use this arena.
*
* Arenas for meta-data allocations are used by vmem(9) and pool(9).
* These arenas cannot use quantum cache.  However, kmem_va_meta_arena
* compensates this by importing larger chunks from kmem_arena.
*
* kmem_va_meta_arena:
*      Space for meta-data.
*
* kmem_meta_arena:
*      Imports from kmem_va_meta_arena.  Allocations from this arena are
*      backed with the pages.
*
* Arena stacking:
*
*      kmem_arena
*              kmem_va_arena
*              kmem_va_meta_arena
*                      kmem_meta_arena
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.166 2024/12/07 23:19:07 chs Exp $");

#include "opt_uvmhist.h"

#include "opt_kmempages.h"

#ifndef NKMEMPAGES
#define NKMEMPAGES 0
#endif

/*
* Defaults for lower and upper-bounds for the kmem_arena page count.
* Can be overridden by kernel config options.
*/
#ifndef NKMEMPAGES_MIN
#define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
#endif

#ifndef NKMEMPAGES_MAX
#define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
#endif


#include <sys/param.h>
#include <sys/systm.h>
#include <sys/atomic.h>
#include <sys/proc.h>
#include <sys/pool.h>
#include <sys/vmem.h>
#include <sys/vmem_impl.h>
#include <sys/kmem.h>
#include <sys/msan.h>

#include <uvm/uvm.h>

/*
* global data structures
*/

struct vm_map *kernel_map = NULL;

/*
* local data structures
*/

static struct vm_map            kernel_map_store;
static struct vm_map_entry      kernel_image_mapent_store;
static struct vm_map_entry      kernel_kmem_mapent_store;

size_t nkmempages = 0;
vaddr_t kmembase;
vsize_t kmemsize;

static struct vmem kmem_arena_store;
vmem_t *kmem_arena = NULL;
static struct vmem kmem_va_arena_store;
vmem_t *kmem_va_arena;

/*
* kmeminit_nkmempages: calculate the size of kmem_arena.
*/
void
kmeminit_nkmempages(void)
{
       size_t npages;

       if (nkmempages != 0) {
               /*
                * It's already been set (by us being here before)
                * bail out now;
                */
               return;
       }

#if defined(NKMEMPAGES_MAX_UNLIMITED) && !defined(KMSAN)
       /*
        * The extra 1/9 here is to account for uvm_km_va_starved_p()
        * wanting to keep 10% of kmem virtual space free.
        * The intent is that on "unlimited" platforms we should be able
        * to allocate all of physical memory as kmem without behaving
        * as though we running short of kmem virtual space.
        */
       npages = (physmem * 10) / 9;
#else

#if defined(KMSAN)
       npages = (physmem / 4);
#elif defined(PMAP_MAP_POOLPAGE)
       npages = (physmem / 4);
#else
       npages = (physmem / 3) * 2;
#endif /* defined(PMAP_MAP_POOLPAGE) */

#if !defined(NKMEMPAGES_MAX_UNLIMITED)
       if (npages > NKMEMPAGES_MAX)
               npages = NKMEMPAGES_MAX;
#endif

#endif

       if (npages < NKMEMPAGES_MIN)
               npages = NKMEMPAGES_MIN;

       nkmempages = npages;
}

/*
* uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
* KVM already allocated for text, data, bss, and static data structures).
*
* => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
*    we assume that [vmin -> start] has already been allocated and that
*    "end" is the end.
*/

void
uvm_km_bootstrap(vaddr_t start, vaddr_t end)
{
       bool kmem_arena_small;
       vaddr_t base = VM_MIN_KERNEL_ADDRESS;
       struct uvm_map_args args;
       int error;

       UVMHIST_FUNC(__func__);
       UVMHIST_CALLARGS(maphist, "start=%#jx end=%#jx", start, end, 0,0);

       kmeminit_nkmempages();
       kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
       kmem_arena_small = kmemsize < 64 * 1024 * 1024;

       UVMHIST_LOG(maphist, "kmemsize=%#jx", kmemsize, 0,0,0);

       /*
        * next, init kernel memory objects.
        */

       /* kernel_object: for pageable anonymous kernel memory */
       uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
                               VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);

       /*
        * init the map and reserve any space that might already
        * have been allocated kernel space before installing.
        */

       uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
       kernel_map_store.pmap = pmap_kernel();
       if (start != base) {
               error = uvm_map_prepare(&kernel_map_store,
                   base, start - base,
                   NULL, UVM_UNKNOWN_OFFSET, 0,
                   UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
                               UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
               if (!error) {
                       kernel_image_mapent_store.flags =
                           UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
                       error = uvm_map_enter(&kernel_map_store, &args,
                           &kernel_image_mapent_store);
               }

               if (error)
                       panic(
                           "uvm_km_bootstrap: could not reserve space for kernel");

               kmembase = args.uma_start + args.uma_size;
       } else {
               kmembase = base;
       }

       error = uvm_map_prepare(&kernel_map_store,
           kmembase, kmemsize,
           NULL, UVM_UNKNOWN_OFFSET, 0,
           UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
                       UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
       if (!error) {
               kernel_kmem_mapent_store.flags =
                   UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
               error = uvm_map_enter(&kernel_map_store, &args,
                   &kernel_kmem_mapent_store);
       }

       if (error)
               panic("uvm_km_bootstrap: could not reserve kernel kmem");

       /*
        * install!
        */

       kernel_map = &kernel_map_store;

       pool_subsystem_init();

       kmem_arena = vmem_init(&kmem_arena_store, "kmem",
           kmembase, kmemsize, PAGE_SIZE, NULL, NULL, NULL,
           0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
#ifdef PMAP_GROWKERNEL
       /*
        * kmem_arena VA allocations happen independently of uvm_map.
        * grow kernel to accommodate the kmem_arena.
        */
       if (uvm_maxkaddr < kmembase + kmemsize) {
               uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
               KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
                   "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
                   uvm_maxkaddr, kmembase, kmemsize);
       }
#endif

       vmem_subsystem_init(kmem_arena);

       UVMHIST_LOG(maphist, "kmem vmem created (base=%#jx, size=%#jx",
           kmembase, kmemsize, 0,0);

       kmem_va_arena = vmem_init(&kmem_va_arena_store, "kva",
           0, 0, PAGE_SIZE, vmem_alloc, vmem_free, kmem_arena,
           (kmem_arena_small ? 4 : VMEM_QCACHE_IDX_MAX) * PAGE_SIZE,
           VM_NOSLEEP, IPL_VM);

       UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
}

/*
* uvm_km_init: init the kernel maps virtual memory caches
* and start the pool/kmem allocator.
*/
void
uvm_km_init(void)
{
       kmem_init();
}

/*
* uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
* is allocated all references to that area of VM must go through it.  this
* allows the locking of VAs in kernel_map to be broken up into regions.
*
* => if `fixed' is true, *vmin specifies where the region described
*   pager_map => used to map "buf" structures into kernel space
*      by the submap must start
* => if submap is non NULL we use that as the submap, otherwise we
*      alloc a new map
*/

struct vm_map *
uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
   vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
   struct vm_map *submap)
{
       int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
       UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);

       KASSERT(vm_map_pmap(map) == pmap_kernel());

       size = round_page(size);        /* round up to pagesize */

       /*
        * first allocate a blank spot in the parent map
        */

       if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
           UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
           UVM_ADV_RANDOM, mapflags)) != 0) {
               panic("%s: unable to allocate space in parent map", __func__);
       }

       /*
        * set VM bounds (vmin is filled in by uvm_map)
        */

       *vmax = *vmin + size;

       /*
        * add references to pmap and create or init the submap
        */

       pmap_reference(vm_map_pmap(map));
       if (submap == NULL) {
               submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
       }
       uvm_map_setup(submap, *vmin, *vmax, flags);
       submap->pmap = vm_map_pmap(map);

       /*
        * now let uvm_map_submap plug in it...
        */

       if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
               panic("uvm_km_suballoc: submap allocation failed");

       return(submap);
}

/*
* uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
*/

void
uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
{
       struct uvm_object * const uobj = uvm_kernel_object;
       const voff_t start = startva - vm_map_min(kernel_map);
       const voff_t end = endva - vm_map_min(kernel_map);
       struct vm_page *pg;
       voff_t curoff, nextoff;
       int swpgonlydelta = 0;
       UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);

       KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
       KASSERT(startva < endva);
       KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);

       rw_enter(uobj->vmobjlock, RW_WRITER);
       pmap_remove(pmap_kernel(), startva, endva);
       for (curoff = start; curoff < end; curoff = nextoff) {
               nextoff = curoff + PAGE_SIZE;
               pg = uvm_pagelookup(uobj, curoff);
               if (pg != NULL && pg->flags & PG_BUSY) {
                       uvm_pagewait(pg, uobj->vmobjlock, "km_pgrm");
                       rw_enter(uobj->vmobjlock, RW_WRITER);
                       nextoff = curoff;
                       continue;
               }

               /*
                * free the swap slot, then the page.
                */

               if (pg == NULL &&
                   uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
                       swpgonlydelta++;
               }
               uao_dropswap(uobj, curoff >> PAGE_SHIFT);
               if (pg != NULL) {
                       uvm_pagefree(pg);
               }
       }
       rw_exit(uobj->vmobjlock);

       if (swpgonlydelta > 0) {
               KASSERT(uvmexp.swpgonly >= swpgonlydelta);
               atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
       }
}


/*
* uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
*    regions.
*
* => when you unmap a part of anonymous kernel memory you want to toss
*    the pages right away.    (this is called from uvm_unmap_...).
* => none of the pages will ever be busy, and none of them will ever
*    be on the active or inactive queues (because they have no object).
*/

void
uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
{
#define __PGRM_BATCH 16
       struct vm_page *pg;
       paddr_t pa[__PGRM_BATCH];
       int npgrm, i;
       vaddr_t va, batch_vastart;

       UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);

       KASSERT(VM_MAP_IS_KERNEL(map));
       KASSERTMSG(vm_map_min(map) <= start,
           "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
           " (size=%#"PRIxVSIZE")",
           vm_map_min(map), start, end - start);
       KASSERT(start < end);
       KASSERT(end <= vm_map_max(map));

       for (va = start; va < end;) {
               batch_vastart = va;
               /* create a batch of at most __PGRM_BATCH pages to free */
               for (i = 0;
                    i < __PGRM_BATCH && va < end;
                    va += PAGE_SIZE) {
                       if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
                               continue;
                       }
                       i++;
               }
               npgrm = i;
               /* now remove the mappings */
               pmap_kremove(batch_vastart, va - batch_vastart);
               /* and free the pages */
               for (i = 0; i < npgrm; i++) {
                       pg = PHYS_TO_VM_PAGE(pa[i]);
                       KASSERT(pg);
                       KASSERT(pg->uobject == NULL);
                       KASSERT(pg->uanon == NULL);
                       KASSERT((pg->flags & PG_BUSY) == 0);
                       uvm_pagefree(pg);
               }
       }
#undef __PGRM_BATCH
}

#if defined(DEBUG)
void
uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
{
       vaddr_t va;
       UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);

       KDASSERT(VM_MAP_IS_KERNEL(map));
       KDASSERT(vm_map_min(map) <= start);
       KDASSERT(start < end);
       KDASSERT(end <= vm_map_max(map));

       for (va = start; va < end; va += PAGE_SIZE) {
               paddr_t pa;

               if (pmap_extract(pmap_kernel(), va, &pa)) {
                       panic("uvm_km_check_empty: va %p has pa %#llx",
                           (void *)va, (long long)pa);
               }
               /*
                * kernel_object should not have pages for the corresponding
                * region.  check it.
                *
                * why trylock?  because:
                * - caller might not want to block.
                * - we can recurse when allocating radix_node for
                *   kernel_object.
                */
               if (rw_tryenter(uvm_kernel_object->vmobjlock, RW_READER)) {
                       struct vm_page *pg;

                       pg = uvm_pagelookup(uvm_kernel_object,
                           va - vm_map_min(kernel_map));
                       rw_exit(uvm_kernel_object->vmobjlock);
                       if (pg) {
                               panic("uvm_km_check_empty: "
                                   "has page hashed at %p",
                                   (const void *)va);
                       }
               }
       }
}
#endif /* defined(DEBUG) */

/*
* uvm_km_alloc: allocate an area of kernel memory.
*
* => NOTE: we can return 0 even if we can wait if there is not enough
*      free VM space in the map... caller should be prepared to handle
*      this case.
* => we return KVA of memory allocated
*/

vaddr_t
uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
{
       vaddr_t kva, loopva;
       vaddr_t offset;
       vsize_t loopsize;
       struct vm_page *pg;
       struct uvm_object *obj;
       int pgaflags;
       vm_prot_t prot, vaprot;
       UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);

       KASSERT(vm_map_pmap(map) == pmap_kernel());
       KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
               (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
               (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
       KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
       KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);

       /*
        * setup for call
        */

       kva = vm_map_min(map);  /* hint */
       size = round_page(size);
       obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
       UVMHIST_LOG(maphist,"  (map=%#jx, obj=%#jx, size=%#jx, flags=%#jx)",
           (uintptr_t)map, (uintptr_t)obj, size, flags);

       /*
        * allocate some virtual space
        */

       vaprot = (flags & UVM_KMF_EXEC) ? UVM_PROT_ALL : UVM_PROT_RW;
       if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
           align, UVM_MAPFLAG(vaprot, UVM_PROT_ALL, UVM_INH_NONE,
           UVM_ADV_RANDOM,
           (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
            | UVM_KMF_COLORMATCH)))) != 0)) {
               UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
               return(0);
       }

       /*
        * if all we wanted was VA, return now
        */

       if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
               UVMHIST_LOG(maphist,"<- done valloc (kva=%#jx)", kva,0,0,0);
               return(kva);
       }

       /*
        * recover object offset from virtual address
        */

       offset = kva - vm_map_min(kernel_map);
       UVMHIST_LOG(maphist, "  kva=%#jx, offset=%#jx", kva, offset,0,0);

       /*
        * now allocate and map in the memory... note that we are the only ones
        * whom should ever get a handle on this area of VM.
        */

       loopva = kva;
       loopsize = size;

       pgaflags = UVM_FLAG_COLORMATCH;
       if (flags & UVM_KMF_NOWAIT)
               pgaflags |= UVM_PGA_USERESERVE;
       if (flags & UVM_KMF_ZERO)
               pgaflags |= UVM_PGA_ZERO;
       prot = VM_PROT_READ | VM_PROT_WRITE;
       if (flags & UVM_KMF_EXEC)
               prot |= VM_PROT_EXECUTE;
       while (loopsize) {
               KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
                   "loopva=%#"PRIxVADDR, loopva);

               pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
#ifdef UVM_KM_VMFREELIST
                  UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
#else
                  UVM_PGA_STRAT_NORMAL, 0
#endif
                  );

               /*
                * out of memory?
                */

               if (__predict_false(pg == NULL)) {
                       if ((flags & UVM_KMF_NOWAIT) ||
                           ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
                               /* free everything! */
                               uvm_km_free(map, kva, size,
                                   flags & UVM_KMF_TYPEMASK);
                               return (0);
                       } else {
                               uvm_wait("km_getwait2");        /* sleep here */
                               continue;
                       }
               }

               pg->flags &= ~PG_BUSY;  /* new page */
               UVM_PAGE_OWN(pg, NULL);

               /*
                * map it in
                */

               pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
                   prot, PMAP_KMPAGE);
               loopva += PAGE_SIZE;
               offset += PAGE_SIZE;
               loopsize -= PAGE_SIZE;
       }

       pmap_update(pmap_kernel());

       if ((flags & UVM_KMF_ZERO) == 0) {
               kmsan_orig((void *)kva, size, KMSAN_TYPE_UVM, __RET_ADDR);
               kmsan_mark((void *)kva, size, KMSAN_STATE_UNINIT);
       }

       UVMHIST_LOG(maphist,"<- done (kva=%#jx)", kva,0,0,0);
       return(kva);
}

/*
* uvm_km_protect: change the protection of an allocated area
*/

int
uvm_km_protect(struct vm_map *map, vaddr_t addr, vsize_t size, vm_prot_t prot)
{
       return uvm_map_protect(map, addr, addr + round_page(size), prot, false);
}

/*
* uvm_km_free: free an area of kernel memory
*/

void
uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
{
       UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);

       KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
               (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
               (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
       KASSERT((addr & PAGE_MASK) == 0);
       KASSERT(vm_map_pmap(map) == pmap_kernel());

       size = round_page(size);

       if (flags & UVM_KMF_PAGEABLE) {
               uvm_km_pgremove(addr, addr + size);
       } else if (flags & UVM_KMF_WIRED) {
               /*
                * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
                * remove it after.  See comment below about KVA visibility.
                */
               uvm_km_pgremove_intrsafe(map, addr, addr + size);
       }

       /*
        * Note: uvm_unmap_remove() calls pmap_update() for us, before
        * KVA becomes globally available.
        */

       uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
}

/* Sanity; must specify both or none. */
#if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
   (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
#error Must specify MAP and UNMAP together.
#endif

#if defined(PMAP_ALLOC_POOLPAGE) && \
   !defined(PMAP_MAP_POOLPAGE) && !defined(PMAP_UNMAP_POOLPAGE)
#error Must specify ALLOC with MAP and UNMAP
#endif

int
uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
   vmem_addr_t *addr)
{
       struct vm_page *pg;
       vmem_addr_t va;
       int rc;
       vaddr_t loopva;
       vsize_t loopsize;

       size = round_page(size);

#if defined(PMAP_MAP_POOLPAGE)
       if (size == PAGE_SIZE) {
again:
#ifdef PMAP_ALLOC_POOLPAGE
               pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
                  0 : UVM_PGA_USERESERVE);
#else
               pg = uvm_pagealloc(NULL, 0, NULL,
                  (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
#endif /* PMAP_ALLOC_POOLPAGE */
               if (__predict_false(pg == NULL)) {
                       if (flags & VM_SLEEP) {
                               uvm_wait("plpg");
                               goto again;
                       }
                       return ENOMEM;
               }
               va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
               KASSERT(va != 0);
               *addr = va;
               return 0;
       }
#endif /* PMAP_MAP_POOLPAGE */

       rc = vmem_alloc(vm, size, flags, &va);
       if (rc != 0)
               return rc;

#ifdef PMAP_GROWKERNEL
       /*
        * These VA allocations happen independently of uvm_map
        * so this allocation must not extend beyond the current limit.
        */
       KASSERTMSG(uvm_maxkaddr >= va + size,
           "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
           uvm_maxkaddr, va, size);
#endif

       loopva = va;
       loopsize = size;

       while (loopsize) {
               paddr_t pa __diagused;
               KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
                   "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
                   " pa=%#"PRIxPADDR" vmem=%p",
                   loopva, loopsize, pa, vm);

               pg = uvm_pagealloc(NULL, loopva, NULL,
                   UVM_FLAG_COLORMATCH
                   | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
               if (__predict_false(pg == NULL)) {
                       if (flags & VM_SLEEP) {
                               uvm_wait("plpg");
                               continue;
                       } else {
                               uvm_km_pgremove_intrsafe(kernel_map, va,
                                   va + size);
                               vmem_free(vm, va, size);
                               return ENOMEM;
                       }
               }

               pg->flags &= ~PG_BUSY;  /* new page */
               UVM_PAGE_OWN(pg, NULL);
               pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
                   VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);

               loopva += PAGE_SIZE;
               loopsize -= PAGE_SIZE;
       }
       pmap_update(pmap_kernel());

       *addr = va;

       return 0;
}

void
uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
{

       size = round_page(size);
#if defined(PMAP_UNMAP_POOLPAGE)
       if (size == PAGE_SIZE) {
               paddr_t pa;

               pa = PMAP_UNMAP_POOLPAGE(addr);
               uvm_pagefree(PHYS_TO_VM_PAGE(pa));
               return;
       }
#endif /* PMAP_UNMAP_POOLPAGE */
       uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
       pmap_update(pmap_kernel());

       vmem_free(vm, addr, size);
}

bool
uvm_km_va_starved_p(void)
{
       vmem_size_t total;
       vmem_size_t free;

       if (kmem_arena == NULL)
               return false;

       total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
       free = vmem_size(kmem_arena, VMEM_FREE);

       return (free < (total / 10));
}