/*      $NetBSD: uvm_glue.c,v 1.182 2023/10/04 20:34:19 ad Exp $        */

/*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* Copyright (c) 1991, 1993, The Regents of the University of California.
*
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)vm_glue.c   8.6 (Berkeley) 1/5/94
* from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
*  Software Distribution Coordinator  or  [email protected]
*  School of Computer Science
*  Carnegie Mellon University
*  Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.182 2023/10/04 20:34:19 ad Exp $");

#include "opt_kgdb.h"
#include "opt_kstack.h"
#include "opt_uvmhist.h"

/*
* uvm_glue.c: glue functions
*/

#include <sys/param.h>
#include <sys/kernel.h>

#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/buf.h>
#include <sys/syncobj.h>
#include <sys/cpu.h>
#include <sys/atomic.h>
#include <sys/lwp.h>
#include <sys/asan.h>

#include <uvm/uvm.h>
#include <uvm/uvm_pdpolicy.h>
#include <uvm/uvm_pgflcache.h>

/*
* uvm_kernacc: test if kernel can access a memory region.
*
* => Currently used only by /dev/kmem driver (dev/mm.c).
*/
bool
uvm_kernacc(void *addr, size_t len, vm_prot_t prot)
{
       vaddr_t saddr = trunc_page((vaddr_t)addr);
       vaddr_t eaddr = round_page(saddr + len);
       bool rv;

       vm_map_lock_read(kernel_map);
       rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
       vm_map_unlock_read(kernel_map);

       return rv;
}

#ifdef KGDB
/*
* Change protections on kernel pages from addr to addr+len
* (presumably so debugger can plant a breakpoint).
*
* We force the protection change at the pmap level.  If we were
* to use vm_map_protect a change to allow writing would be lazily-
* applied meaning we would still take a protection fault, something
* we really don't want to do.  It would also fragment the kernel
* map unnecessarily.  We cannot use pmap_protect since it also won't
* enforce a write-enable request.  Using pmap_enter is the only way
* we can ensure the change takes place properly.
*/
void
uvm_chgkprot(void *addr, size_t len, int rw)
{
       vm_prot_t prot;
       paddr_t pa;
       vaddr_t sva, eva;

       prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
       eva = round_page((vaddr_t)addr + len);
       for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
               /*
                * Extract physical address for the page.
                */
               if (pmap_extract(pmap_kernel(), sva, &pa) == false)
                       panic("%s: invalid page", __func__);
               pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
       }
       pmap_update(pmap_kernel());
}
#endif

/*
* uvm_vslock: wire user memory for I/O
*
* - called from physio and sys___sysctl
* - XXXCDC: consider nuking this (or making it a macro?)
*/

int
uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
{
       struct vm_map *map;
       vaddr_t start, end;
       int error;

       map = &vs->vm_map;
       start = trunc_page((vaddr_t)addr);
       end = round_page((vaddr_t)addr + len);
       error = uvm_fault_wire(map, start, end, access_type, 0);
       return error;
}

/*
* uvm_vsunlock: unwire user memory wired by uvm_vslock()
*
* - called from physio and sys___sysctl
* - XXXCDC: consider nuking this (or making it a macro?)
*/

void
uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
{
       uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
               round_page((vaddr_t)addr + len));
}

/*
* uvm_proc_fork: fork a virtual address space
*
* - the address space is copied as per parent map's inherit values
*/
void
uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
{

       if (shared == true) {
               p2->p_vmspace = NULL;
               uvmspace_share(p1, p2);
       } else {
               p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
       }

       cpu_proc_fork(p1, p2);
}

/*
* uvm_lwp_fork: fork a thread
*
* - a new PCB structure is allocated for the child process,
*      and filled in by MD layer
* - if specified, the child gets a new user stack described by
*      stack and stacksize
* - NOTE: the kernel stack may be at a different location in the child
*      process, and thus addresses of automatic variables may be invalid
*      after cpu_lwp_fork returns in the child process.  We do nothing here
*      after cpu_lwp_fork returns.
*/
void
uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
   void (*func)(void *), void *arg)
{

       /* Fill stack with magic number. */
       kstack_setup_magic(l2);

       /*
        * cpu_lwp_fork() copy and update the pcb, and make the child ready
        * to run.  If this is a normal user fork, the child will exit
        * directly to user mode via child_return() on its first time
        * slice and will not return here.  If this is a kernel thread,
        * the specified entry point will be executed.
        */
       cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
}

#ifndef USPACE_ALIGN
#define USPACE_ALIGN    0
#endif

static pool_cache_t uvm_uarea_cache;
#if defined(__HAVE_CPU_UAREA_ROUTINES)
static pool_cache_t uvm_uarea_system_cache;
#else
#define uvm_uarea_system_cache uvm_uarea_cache
#endif

static void *
uarea_poolpage_alloc(struct pool *pp, int flags)
{

       KASSERT((flags & PR_WAITOK) != 0);

#if defined(PMAP_MAP_POOLPAGE)
       while (USPACE == PAGE_SIZE &&
           (USPACE_ALIGN == 0 || USPACE_ALIGN == PAGE_SIZE)) {
               struct vm_page *pg;
               vaddr_t va;
#if defined(PMAP_ALLOC_POOLPAGE)
               pg = PMAP_ALLOC_POOLPAGE(0);
#else
               pg = uvm_pagealloc(NULL, 0, NULL, 0);
#endif
               if (pg == NULL) {
                       uvm_wait("uarea");
                       continue;
               }
               va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
               KASSERT(va != 0);
               return (void *)va;
       }
#endif
#if defined(__HAVE_CPU_UAREA_ROUTINES)
       void *va = cpu_uarea_alloc(false);
       if (va)
               return (void *)va;
#endif
       return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
           USPACE_ALIGN, UVM_KMF_WIRED | UVM_KMF_WAITVA);
}

static void
uarea_poolpage_free(struct pool *pp, void *addr)
{
#if defined(PMAP_MAP_POOLPAGE)
       if (USPACE == PAGE_SIZE &&
           (USPACE_ALIGN == 0 || USPACE_ALIGN == PAGE_SIZE)) {
               paddr_t pa;

               pa = PMAP_UNMAP_POOLPAGE((vaddr_t) addr);
               KASSERT(pa != 0);
               uvm_pagefree(PHYS_TO_VM_PAGE(pa));
               return;
       }
#endif
#if defined(__HAVE_CPU_UAREA_ROUTINES)
       if (cpu_uarea_free(addr))
               return;
#endif
       uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
           UVM_KMF_WIRED);
}

static struct pool_allocator uvm_uarea_allocator = {
       .pa_alloc = uarea_poolpage_alloc,
       .pa_free = uarea_poolpage_free,
       .pa_pagesz = USPACE,
};

#if defined(__HAVE_CPU_UAREA_ROUTINES)
static void *
uarea_system_poolpage_alloc(struct pool *pp, int flags)
{
       void * const va = cpu_uarea_alloc(true);
       if (va != NULL)
               return va;

       return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
           USPACE_ALIGN, UVM_KMF_WIRED |
           ((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
           (UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
}

static void
uarea_system_poolpage_free(struct pool *pp, void *addr)
{
       if (cpu_uarea_free(addr))
               return;

       uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
           UVM_KMF_WIRED);
}

static struct pool_allocator uvm_uarea_system_allocator = {
       .pa_alloc = uarea_system_poolpage_alloc,
       .pa_free = uarea_system_poolpage_free,
       .pa_pagesz = USPACE,
};
#endif /* __HAVE_CPU_UAREA_ROUTINES */

void
uvm_uarea_init(void)
{
       int flags = PR_NOTOUCH;

       /*
        * specify PR_NOALIGN unless the alignment provided by
        * the backend (USPACE_ALIGN) is sufficient to provide
        * pool page size (UPSACE) alignment.
        */

       if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
           (USPACE_ALIGN % USPACE) != 0) {
               flags |= PR_NOALIGN;
       }

       uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
           "uarea", &uvm_uarea_allocator, IPL_NONE, NULL, NULL, NULL);
#if defined(__HAVE_CPU_UAREA_ROUTINES)
       uvm_uarea_system_cache = pool_cache_init(USPACE, USPACE_ALIGN,
           0, flags, "uareasys", &uvm_uarea_system_allocator,
           IPL_NONE, NULL, NULL, NULL);
#endif
}

/*
* uvm_uarea_alloc: allocate a u-area
*/

vaddr_t
uvm_uarea_alloc(void)
{

       return (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
}

vaddr_t
uvm_uarea_system_alloc(struct cpu_info *ci)
{
#ifdef __HAVE_CPU_UAREA_ALLOC_IDLELWP
       if (__predict_false(ci != NULL))
               return cpu_uarea_alloc_idlelwp(ci);
#endif

       return (vaddr_t)pool_cache_get(uvm_uarea_system_cache, PR_WAITOK);
}

/*
* uvm_uarea_free: free a u-area
*/

void
uvm_uarea_free(vaddr_t uaddr)
{

       kasan_mark((void *)uaddr, USPACE, USPACE, 0);
       pool_cache_put(uvm_uarea_cache, (void *)uaddr);
}

void
uvm_uarea_system_free(vaddr_t uaddr)
{

       kasan_mark((void *)uaddr, USPACE, USPACE, 0);
       pool_cache_put(uvm_uarea_system_cache, (void *)uaddr);
}

vaddr_t
uvm_lwp_getuarea(lwp_t *l)
{

       return (vaddr_t)l->l_addr - UAREA_PCB_OFFSET;
}

void
uvm_lwp_setuarea(lwp_t *l, vaddr_t addr)
{

       l->l_addr = (void *)(addr + UAREA_PCB_OFFSET);
}

/*
* uvm_proc_exit: exit a virtual address space
*
* - borrow proc0's address space because freeing the vmspace
*   of the dead process may block.
*/

void
uvm_proc_exit(struct proc *p)
{
       struct lwp *l = curlwp; /* XXX */
       struct vmspace *ovm;

       KASSERT(p == l->l_proc);
       ovm = p->p_vmspace;
       KASSERT(ovm != NULL);

       if (__predict_false(ovm == proc0.p_vmspace))
               return;

       /*
        * borrow proc0's address space.
        */
       kpreempt_disable();
       pmap_deactivate(l);
       p->p_vmspace = proc0.p_vmspace;
       pmap_activate(l);
       kpreempt_enable();

       uvmspace_free(ovm);
}

void
uvm_lwp_exit(struct lwp *l)
{
       vaddr_t va = uvm_lwp_getuarea(l);
       bool system = (l->l_flag & LW_SYSTEM) != 0;

       if (system)
               uvm_uarea_system_free(va);
       else
               uvm_uarea_free(va);
#ifdef DIAGNOSTIC
       uvm_lwp_setuarea(l, (vaddr_t)NULL);
#endif
}

/*
* uvm_init_limit: init per-process VM limits
*
* - called for process 0 and then inherited by all others.
*/

void
uvm_init_limits(struct proc *p)
{

       /*
        * Set up the initial limits on process VM.  Set the maximum
        * resident set size to be all of (reasonably) available memory.
        * This causes any single, large process to start random page
        * replacement once it fills memory.
        */

       p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
       p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
       p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
       p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
       p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
       p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
       p->p_rlimit[RLIMIT_RSS].rlim_cur = MIN(VM_MAXUSER_ADDRESS,
           ctob((rlim_t)uvm_availmem(false)));
}

/*
* uvm_scheduler: process zero main loop.
*/

extern struct loadavg averunnable;

void
uvm_scheduler(void)
{
       lwp_t *l = curlwp;

       lwp_lock(l);
       l->l_class = SCHED_FIFO;
       lwp_changepri(l, PRI_VM);
       lwp_unlock(l);

       /* Start the freelist cache. */
       uvm_pgflcache_start();

       for (;;) {
               /* Update legacy stats for post-mortem debugging. */
               uvm_update_uvmexp();

               /* See if the pagedaemon needs to generate some free pages. */
               uvm_kick_pdaemon();

               /* Calculate process statistics. */
               sched_pstats();
               (void)kpause("uvm", false, hz, NULL);
       }
}

/*
* uvm_idle: called from the idle loop.
*/

void
uvm_idle(void)
{
       struct cpu_info *ci = curcpu();
       struct uvm_cpu *ucpu = ci->ci_data.cpu_uvm;

       KASSERT(kpreempt_disabled());

       uvmpdpol_idle(ucpu);
}