/* $NetBSD: efiblock.c,v 1.20 2023/06/14 00:52:25 rin Exp $ */
/*-
* Copyright (c) 2016 Kimihiro Nonaka <
[email protected]>
* Copyright (c) 2018 Jared McNeill <
[email protected]>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#define FSTYPENAMES
#include <sys/param.h>
#include <sys/md5.h>
#include <sys/uuid.h>
#include <fs/cd9660/iso.h>
#include "efiboot.h"
#include "efiblock.h"
#define EFI_BLOCK_READAHEAD (64 * 1024)
#define EFI_BLOCK_TIMEOUT 120
#define EFI_BLOCK_TIMEOUT_CODE 0x810c0000
/*
* The raidframe support is basic. Ideally, it should be expanded to
* consider raid volumes a first-class citizen like the x86 efiboot does,
* but for now, we simply assume each RAID is potentially bootable.
*/
#define RF_PROTECTED_SECTORS 64 /* XXX refer to <.../rf_optnames.h> */
static EFI_HANDLE *efi_block;
static UINTN efi_nblock;
static struct efi_block_part *efi_block_booted = NULL;
static bool efi_ra_enable = false;
static UINT8 *efi_ra_buffer = NULL;
static UINT32 efi_ra_media_id;
static UINT64 efi_ra_start = 0;
static UINT64 efi_ra_length = 0;
static TAILQ_HEAD(, efi_block_dev) efi_block_devs = TAILQ_HEAD_INITIALIZER(efi_block_devs);
static int
efi_block_parse(const char *fname, struct efi_block_part **pbpart, char **pfile)
{
struct efi_block_dev *bdev;
struct efi_block_part *bpart;
char pathbuf[PATH_MAX], *default_device, *ep = NULL;
const char *full_path;
intmax_t dev;
int part;
default_device = get_default_device();
if (strchr(fname, ':') == NULL) {
if (strlen(default_device) > 0) {
snprintf(pathbuf, sizeof(pathbuf), "%s:%s", default_device, fname);
full_path = pathbuf;
*pfile = __UNCONST(fname);
} else {
return EINVAL;
}
} else {
full_path = fname;
*pfile = strchr(fname, ':') + 1;
}
if (*pfile[0] == '\0') {
*pfile = __UNCONST("/");
}
if (strncasecmp(full_path, "hd", 2) != 0)
return EINVAL;
dev = strtoimax(full_path + 2, &ep, 10);
if (dev < 0 || dev >= efi_nblock)
return ENXIO;
if (ep[0] < 'a' || ep[0] >= 'a' + MAXPARTITIONS || ep[1] != ':')
return EINVAL;
part = ep[0] - 'a';
TAILQ_FOREACH(bdev, &efi_block_devs, entries) {
if (bdev->index == dev) {
TAILQ_FOREACH(bpart, &bdev->partitions, entries) {
if (bpart->index == part) {
*pbpart = bpart;
return 0;
}
}
}
}
return ENOENT;
}
static void
efi_block_generate_hash_mbr(struct efi_block_part *bpart, struct mbr_sector *mbr)
{
MD5_CTX md5ctx;
MD5Init(&md5ctx);
MD5Update(&md5ctx, (void *)mbr, sizeof(*mbr));
MD5Final(bpart->hash, &md5ctx);
}
static EFI_STATUS
efi_block_do_read_blockio(struct efi_block_dev *bdev, UINT64 off, void *buf,
UINTN bufsize)
{
UINT8 *blkbuf, *blkbuf_start;
EFI_STATUS status;
EFI_LBA lba_start, lba_end;
UINT64 blkbuf_offset;
UINT64 blkbuf_size, alloc_size;
lba_start = off / bdev->bio->Media->BlockSize;
lba_end = (off + bufsize - 1) / bdev->bio->Media->BlockSize;
blkbuf_offset = off % bdev->bio->Media->BlockSize;
blkbuf_size = (lba_end - lba_start + 1) * bdev->bio->Media->BlockSize;
alloc_size = blkbuf_size;
if (bdev->bio->Media->IoAlign > 1) {
alloc_size = (blkbuf_size + bdev->bio->Media->IoAlign - 1) /
bdev->bio->Media->IoAlign *
bdev->bio->Media->IoAlign;
}
blkbuf = AllocatePool(alloc_size);
if (blkbuf == NULL) {
return EFI_OUT_OF_RESOURCES;
}
if (bdev->bio->Media->IoAlign > 1) {
blkbuf_start = (void *)roundup2((intptr_t)blkbuf,
bdev->bio->Media->IoAlign);
} else {
blkbuf_start = blkbuf;
}
status = uefi_call_wrapper(bdev->bio->ReadBlocks, 5, bdev->bio,
bdev->media_id, lba_start, blkbuf_size, blkbuf_start);
if (EFI_ERROR(status)) {
goto done;
}
memcpy(buf, blkbuf_start + blkbuf_offset, bufsize);
done:
FreePool(blkbuf);
return status;
}
static EFI_STATUS
efi_block_do_read_diskio(struct efi_block_dev *bdev, UINT64 off, void *buf,
UINTN bufsize)
{
return uefi_call_wrapper(bdev->dio->ReadDisk, 5, bdev->dio,
bdev->media_id, off, bufsize, buf);
}
static EFI_STATUS
efi_block_do_read(struct efi_block_dev *bdev, UINT64 off, void *buf,
UINTN bufsize)
{
/*
* Perform read access using EFI_DISK_IO_PROTOCOL if available,
* otherwise use EFI_BLOCK_IO_PROTOCOL.
*/
if (bdev->dio != NULL) {
return efi_block_do_read_diskio(bdev, off, buf, bufsize);
} else {
return efi_block_do_read_blockio(bdev, off, buf, bufsize);
}
}
static EFI_STATUS
efi_block_readahead(struct efi_block_dev *bdev, UINT64 off, void *buf,
UINTN bufsize)
{
EFI_STATUS status;
UINT64 mediasize, len;
if (efi_ra_buffer == NULL) {
efi_ra_buffer = AllocatePool(EFI_BLOCK_READAHEAD);
if (efi_ra_buffer == NULL) {
return EFI_OUT_OF_RESOURCES;
}
}
if (bdev->media_id != efi_ra_media_id ||
off < efi_ra_start ||
off + bufsize > efi_ra_start + efi_ra_length) {
mediasize = bdev->bio->Media->BlockSize *
(bdev->bio->Media->LastBlock + 1);
len = EFI_BLOCK_READAHEAD;
if (len > mediasize - off) {
len = mediasize - off;
}
status = efi_block_do_read(bdev, off, efi_ra_buffer, len);
if (EFI_ERROR(status)) {
efi_ra_start = efi_ra_length = 0;
return status;
}
efi_ra_start = off;
efi_ra_length = len;
efi_ra_media_id = bdev->media_id;
}
memcpy(buf, &efi_ra_buffer[off - efi_ra_start], bufsize);
return EFI_SUCCESS;
}
static EFI_STATUS
efi_block_read(struct efi_block_dev *bdev, UINT64 off, void *buf,
UINTN bufsize)
{
if (efi_ra_enable) {
return efi_block_readahead(bdev, off, buf, bufsize);
}
return efi_block_do_read(bdev, off, buf, bufsize);
}
static int
efi_block_find_partitions_cd9660(struct efi_block_dev *bdev)
{
struct efi_block_part *bpart;
struct iso_primary_descriptor vd;
EFI_STATUS status;
EFI_LBA lba;
for (lba = 16;; lba++) {
status = efi_block_read(bdev,
lba * ISO_DEFAULT_BLOCK_SIZE, &vd, sizeof(vd));
if (EFI_ERROR(status)) {
goto io_error;
}
if (memcmp(vd.id, ISO_STANDARD_ID, sizeof vd.id) != 0) {
goto io_error;
}
if (isonum_711(vd.type) == ISO_VD_END) {
goto io_error;
}
if (isonum_711(vd.type) == ISO_VD_PRIMARY) {
break;
}
}
if (isonum_723(vd.logical_block_size) != ISO_DEFAULT_BLOCK_SIZE) {
goto io_error;
}
bpart = alloc(sizeof(*bpart));
bpart->index = 0;
bpart->bdev = bdev;
bpart->type = EFI_BLOCK_PART_CD9660;
TAILQ_INSERT_TAIL(&bdev->partitions, bpart, entries);
return 0;
io_error:
return EIO;
}
static int
efi_block_find_partitions_disklabel(struct efi_block_dev *bdev,
struct mbr_sector *mbr, uint32_t start, uint32_t size)
{
struct efi_block_part *bpart;
char buf[DEV_BSIZE]; /* XXX, arbitrary size >= struct disklabel */
struct disklabel d;
struct partition *p;
EFI_STATUS status;
int n;
status = efi_block_read(bdev,
((EFI_LBA)start + LABELSECTOR) * bdev->bio->Media->BlockSize, buf, sizeof(buf));
if (EFI_ERROR(status) || getdisklabel(buf, &d) != NULL)
return EIO;
if (le32toh(d.d_magic) != DISKMAGIC || le32toh(d.d_magic2) != DISKMAGIC)
return EINVAL;
if (le16toh(d.d_npartitions) > MAXPARTITIONS)
return EINVAL;
for (n = 0; n < le16toh(d.d_npartitions); n++) {
p = &d.d_partitions[n];
switch (p->p_fstype) {
case FS_BSDFFS:
case FS_MSDOS:
case FS_BSDLFS:
break;
case FS_RAID:
p->p_size -= RF_PROTECTED_SECTORS;
p->p_offset += RF_PROTECTED_SECTORS;
break;
default:
continue;
}
bpart = alloc(sizeof(*bpart));
bpart->index = n;
bpart->bdev = bdev;
bpart->type = EFI_BLOCK_PART_DISKLABEL;
bpart->disklabel.secsize = d.d_secsize;
bpart->disklabel.part = *p;
efi_block_generate_hash_mbr(bpart, mbr);
TAILQ_INSERT_TAIL(&bdev->partitions, bpart, entries);
}
return 0;
}
static int
efi_block_find_partitions_mbr(struct efi_block_dev *bdev)
{
struct mbr_sector mbr;
struct mbr_partition *mbr_part;
EFI_STATUS status;
int n;
status = efi_block_read(bdev, 0, &mbr, sizeof(mbr));
if (EFI_ERROR(status))
return EIO;
if (le32toh(mbr.mbr_magic) != MBR_MAGIC)
return ENOENT;
for (n = 0; n < MBR_PART_COUNT; n++) {
mbr_part = &mbr.mbr_parts[n];
if (le32toh(mbr_part->mbrp_size) == 0)
continue;
if (mbr_part->mbrp_type == MBR_PTYPE_NETBSD) {
efi_block_find_partitions_disklabel(bdev, &mbr,
le32toh(mbr_part->mbrp_start),
le32toh(mbr_part->mbrp_size));
break;
}
}
return 0;
}
static const struct {
struct uuid guid;
uint8_t fstype;
} gpt_guid_to_str[] = {
{ GPT_ENT_TYPE_NETBSD_FFS, FS_BSDFFS },
{ GPT_ENT_TYPE_NETBSD_LFS, FS_BSDLFS },
{ GPT_ENT_TYPE_NETBSD_RAIDFRAME, FS_RAID },
{ GPT_ENT_TYPE_NETBSD_CCD, FS_CCD },
{ GPT_ENT_TYPE_NETBSD_CGD, FS_CGD },
{ GPT_ENT_TYPE_MS_BASIC_DATA, FS_MSDOS }, /* or NTFS? ambiguous */
{ GPT_ENT_TYPE_EFI, FS_MSDOS },
};
static int
efi_block_find_partitions_gpt_entry(struct efi_block_dev *bdev,
struct gpt_hdr *hdr, struct gpt_ent *ent, UINT32 index)
{
struct efi_block_part *bpart;
uint8_t fstype = FS_UNUSED;
struct uuid uuid;
int n;
memcpy(&uuid, ent->ent_type, sizeof(uuid));
for (n = 0; n < __arraycount(gpt_guid_to_str); n++)
if (memcmp(ent->ent_type, &gpt_guid_to_str[n].guid,
sizeof(ent->ent_type)) == 0) {
fstype = gpt_guid_to_str[n].fstype;
break;
}
if (fstype == FS_UNUSED)
return 0;
bpart = alloc(sizeof(*bpart));
bpart->index = index;
bpart->bdev = bdev;
bpart->type = EFI_BLOCK_PART_GPT;
bpart->gpt.fstype = fstype;
bpart->gpt.ent = *ent;
if (fstype == FS_RAID) {
bpart->gpt.ent.ent_lba_start += RF_PROTECTED_SECTORS;
bpart->gpt.ent.ent_lba_end -= RF_PROTECTED_SECTORS;
}
memcpy(bpart->hash, ent->ent_guid, sizeof(bpart->hash));
TAILQ_INSERT_TAIL(&bdev->partitions, bpart, entries);
return 0;
}
static int
efi_block_find_partitions_gpt(struct efi_block_dev *bdev)
{
struct gpt_hdr hdr;
struct gpt_ent ent;
EFI_STATUS status;
UINT32 entry;
void *buf;
UINTN sz;
status = efi_block_read(bdev, (EFI_LBA)GPT_HDR_BLKNO * bdev->bio->Media->BlockSize, &hdr,
sizeof(hdr));
if (EFI_ERROR(status)) {
return EIO;
}
if (memcmp(hdr.hdr_sig, GPT_HDR_SIG, sizeof(hdr.hdr_sig)) != 0)
return ENOENT;
if (le32toh(hdr.hdr_entsz) < sizeof(ent))
return EINVAL;
sz = le32toh(hdr.hdr_entsz) * le32toh(hdr.hdr_entries);
buf = AllocatePool(sz);
if (buf == NULL)
return ENOMEM;
status = efi_block_read(bdev,
le64toh(hdr.hdr_lba_table) * bdev->bio->Media->BlockSize, buf, sz);
if (EFI_ERROR(status)) {
FreePool(buf);
return EIO;
}
for (entry = 0; entry < le32toh(hdr.hdr_entries); entry++) {
memcpy(&ent, (UINT8 *)buf + (entry * le32toh(hdr.hdr_entsz)),
sizeof(ent));
efi_block_find_partitions_gpt_entry(bdev, &hdr, &ent, entry);
}
FreePool(buf);
return 0;
}
static int
efi_block_find_partitions(struct efi_block_dev *bdev)
{
int error;
error = efi_block_find_partitions_gpt(bdev);
if (error)
error = efi_block_find_partitions_mbr(bdev);
if (error)
error = efi_block_find_partitions_cd9660(bdev);
return error;
}
void
efi_block_probe(void)
{
struct efi_block_dev *bdev;
struct efi_block_part *bpart;
EFI_BLOCK_IO *bio;
EFI_DISK_IO *dio;
EFI_STATUS status;
uint16_t devindex = 0;
int depth = -1;
int n;
status = LibLocateHandle(ByProtocol, &BlockIoProtocol, NULL, &efi_nblock, &efi_block);
if (EFI_ERROR(status))
return;
if (efi_bootdp) {
depth = efi_device_path_depth(efi_bootdp, MEDIA_DEVICE_PATH);
if (depth == 0)
depth = 1;
else if (depth == -1)
depth = 2;
}
for (n = 0; n < efi_nblock; n++) {
/* EFI_BLOCK_IO_PROTOCOL is required */
status = uefi_call_wrapper(BS->HandleProtocol, 3, efi_block[n],
&BlockIoProtocol, (void **)&bio);
if (EFI_ERROR(status) || !bio->Media->MediaPresent)
continue;
/* Ignore logical partitions (we do our own partition discovery) */
if (bio->Media->LogicalPartition)
continue;
/* EFI_DISK_IO_PROTOCOL is optional */
status = uefi_call_wrapper(BS->HandleProtocol, 3, efi_block[n],
&DiskIoProtocol, (void **)&dio);
if (EFI_ERROR(status)) {
dio = NULL;
}
bdev = alloc(sizeof(*bdev));
bdev->index = devindex++;
bdev->bio = bio;
bdev->dio = dio;
bdev->media_id = bio->Media->MediaId;
bdev->path = DevicePathFromHandle(efi_block[n]);
TAILQ_INIT(&bdev->partitions);
TAILQ_INSERT_TAIL(&efi_block_devs, bdev, entries);
efi_block_find_partitions(bdev);
if (depth > 0 && efi_device_path_ncmp(efi_bootdp, DevicePathFromHandle(efi_block[n]), depth) == 0) {
TAILQ_FOREACH(bpart, &bdev->partitions, entries) {
uint8_t fstype = FS_UNUSED;
switch (bpart->type) {
case EFI_BLOCK_PART_DISKLABEL:
fstype = bpart->disklabel.part.p_fstype;
break;
case EFI_BLOCK_PART_GPT:
fstype = bpart->gpt.fstype;
break;
case EFI_BLOCK_PART_CD9660:
fstype = FS_ISO9660;
break;
}
if (fstype == FS_BSDFFS || fstype == FS_ISO9660 || fstype == FS_RAID) {
char devname[9];
snprintf(devname, sizeof(devname), "hd%u%c", bdev->index, bpart->index + 'a');
set_default_device(devname);
set_default_fstype(fstype);
break;
}
}
}
}
}
static void
print_guid(const uint8_t *guid)
{
const int index[] = { 3, 2, 1, 0, 5, 4, 7, 6, 8, 9, 10, 11, 12, 13, 14, 15 };
int i;
for (i = 0; i < 16; i++) {
printf("%02x", guid[index[i]]);
if (i == 3 || i == 5 || i == 7 || i == 9)
printf("-");
}
}
void
efi_block_show(void)
{
struct efi_block_dev *bdev;
struct efi_block_part *bpart;
uint64_t size;
CHAR16 *path;
TAILQ_FOREACH(bdev, &efi_block_devs, entries) {
printf("hd%u (", bdev->index);
/* Size in MB */
size = ((bdev->bio->Media->LastBlock + 1) * bdev->bio->Media->BlockSize) / (1024 * 1024);
if (size >= 10000)
printf("%"PRIu64" GB", size / 1024);
else
printf("%"PRIu64" MB", size);
printf("): ");
path = DevicePathToStr(bdev->path);
Print(L"%s", path);
FreePool(path);
printf("\n");
TAILQ_FOREACH(bpart, &bdev->partitions, entries) {
switch (bpart->type) {
case EFI_BLOCK_PART_DISKLABEL:
printf(" hd%u%c (", bdev->index, bpart->index + 'a');
/* Size in MB */
size = ((uint64_t)bpart->disklabel.secsize * bpart->disklabel.part.p_size) / (1024 * 1024);
if (size >= 10000)
printf("%"PRIu64" GB", size / 1024);
else
printf("%"PRIu64" MB", size);
printf("): ");
printf("%s\n", fstypenames[bpart->disklabel.part.p_fstype]);
break;
case EFI_BLOCK_PART_GPT:
printf(" hd%u%c ", bdev->index, bpart->index + 'a');
if (bpart->gpt.ent.ent_name[0] == 0x0000) {
printf("\"");
print_guid(bpart->gpt.ent.ent_guid);
printf("\"");
} else {
Print(L"\"%s\"", bpart->gpt.ent.ent_name);
}
/* Size in MB */
size = (le64toh(bpart->gpt.ent.ent_lba_end) - le64toh(bpart->gpt.ent.ent_lba_start)) * bdev->bio->Media->BlockSize;
size /= (1024 * 1024);
if (size >= 10000)
printf(" (%"PRIu64" GB): ", size / 1024);
else
printf(" (%"PRIu64" MB): ", size);
printf("%s\n", fstypenames[bpart->gpt.fstype]);
break;
case EFI_BLOCK_PART_CD9660:
printf(" hd%u%c %s\n", bdev->index, bpart->index + 'a', fstypenames[FS_ISO9660]);
break;
default:
break;
}
}
}
}
struct efi_block_part *
efi_block_boot_part(void)
{
return efi_block_booted;
}
int
efi_block_open(struct open_file *f, ...)
{
struct efi_block_part *bpart;
const char *fname;
char **file;
char *path;
va_list ap;
int rv, n;
va_start(ap, f);
fname = va_arg(ap, const char *);
file = va_arg(ap, char **);
va_end(ap);
rv = efi_block_parse(fname, &bpart, &path);
if (rv != 0)
return rv;
for (n = 0; n < ndevs; n++)
if (strcmp(DEV_NAME(&devsw[n]), "efiblock") == 0) {
f->f_dev = &devsw[n];
break;
}
if (n == ndevs)
return ENXIO;
f->f_devdata = bpart;
*file = path;
efi_block_booted = bpart;
return 0;
}
int
efi_block_close(struct open_file *f)
{
return 0;
}
int
efi_block_strategy(void *devdata, int rw, daddr_t dblk, size_t size, void *buf, size_t *rsize)
{
struct efi_block_part *bpart = devdata;
struct efi_block_dev *bdev = bpart->bdev;
EFI_STATUS status;
UINT64 off;
if (rw != F_READ)
return EROFS;
efi_set_watchdog(EFI_BLOCK_TIMEOUT, EFI_BLOCK_TIMEOUT_CODE);
switch (bpart->type) {
case EFI_BLOCK_PART_DISKLABEL:
off = ((EFI_LBA)dblk + bpart->disklabel.part.p_offset) * bdev->bio->Media->BlockSize;
break;
case EFI_BLOCK_PART_GPT:
off = ((EFI_LBA)dblk + le64toh(bpart->gpt.ent.ent_lba_start)) * bdev->bio->Media->BlockSize;
break;
case EFI_BLOCK_PART_CD9660:
off = (EFI_LBA)dblk * ISO_DEFAULT_BLOCK_SIZE;
break;
default:
return EINVAL;
}
status = efi_block_read(bpart->bdev, off, buf, size);
if (EFI_ERROR(status))
return EIO;
*rsize = size;
return 0;
}
void
efi_block_set_readahead(bool onoff)
{
efi_ra_enable = onoff;
}
int
efi_block_ioctl(struct open_file *f, u_long cmd, void *data)
{
struct efi_block_part *bpart = f->f_devdata;
struct efi_block_dev *bdev = bpart->bdev;
int error = 0;
switch (cmd) {
case SAIOSECSIZE:
*(u_int *)data = bdev->bio->Media->BlockSize;
break;
default:
error = ENOTTY;
break;
}
return error;
}