/*      $NetBSD: crypto.c,v 1.131 2022/06/26 22:52:30 riastradh Exp $ */
/*      $FreeBSD: src/sys/opencrypto/crypto.c,v 1.4.2.5 2003/02/26 00:14:05 sam Exp $   */
/*      $OpenBSD: crypto.c,v 1.41 2002/07/17 23:52:38 art Exp $ */

/*-
* Copyright (c) 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Coyote Point Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* The author of this code is Angelos D. Keromytis ([email protected])
*
* This code was written by Angelos D. Keromytis in Athens, Greece, in
* February 2000. Network Security Technologies Inc. (NSTI) kindly
* supported the development of this code.
*
* Copyright (c) 2000, 2001 Angelos D. Keromytis
*
* Permission to use, copy, and modify this software with or without fee
* is hereby granted, provided that this entire notice is included in
* all source code copies of any software which is or includes a copy or
* modification of this software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: crypto.c,v 1.131 2022/06/26 22:52:30 riastradh Exp $");

#include <sys/param.h>
#include <sys/reboot.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/pool.h>
#include <sys/kthread.h>
#include <sys/once.h>
#include <sys/sysctl.h>
#include <sys/intr.h>
#include <sys/errno.h>
#include <sys/module.h>
#include <sys/xcall.h>
#include <sys/device.h>
#include <sys/cpu.h>
#include <sys/percpu.h>
#include <sys/kmem.h>

#if defined(_KERNEL_OPT)
#include "opt_ocf.h"
#endif

#include <opencrypto/cryptodev.h>
#include <opencrypto/xform.h>                   /* XXX for M_XDATA */

/*
* Crypto drivers register themselves by allocating a slot in the
* crypto_drivers table with crypto_get_driverid() and then registering
* each algorithm they support with crypto_register() and crypto_kregister().
*/
/* Don't directly access crypto_drivers[i], use crypto_checkdriver(i). */
static struct {
       kmutex_t mtx;
       int num;
       struct cryptocap *list;
} crypto_drv __cacheline_aligned;
#define crypto_drv_mtx          (crypto_drv.mtx)
#define crypto_drivers_num      (crypto_drv.num)
#define crypto_drivers          (crypto_drv.list)

static  void *crypto_q_si;
static  void *crypto_ret_si;

/*
* There are two queues for crypto requests; one for symmetric (e.g.
* cipher) operations and one for asymmetric (e.g. MOD) operations.
* See below for how synchronization is handled.
*/
TAILQ_HEAD(crypto_crp_q, cryptop);
TAILQ_HEAD(crypto_crp_kq, cryptkop);
struct crypto_crp_qs {
       struct crypto_crp_q *crp_q;
       struct crypto_crp_kq *crp_kq;
};
static percpu_t *crypto_crp_qs_percpu;

static inline struct crypto_crp_qs *
crypto_get_crp_qs(int *s)
{

       KASSERT(s != NULL);

       *s = splsoftnet();
       return percpu_getref(crypto_crp_qs_percpu);
}

static inline void
crypto_put_crp_qs(int *s)
{

       KASSERT(s != NULL);

       percpu_putref(crypto_crp_qs_percpu);
       splx(*s);
}

static void
crypto_crp_q_is_busy_pc(void *p, void *arg, struct cpu_info *ci __unused)
{
       struct crypto_crp_qs *qs_pc = p;
       bool *isempty = arg;

       if (!TAILQ_EMPTY(qs_pc->crp_q) || !TAILQ_EMPTY(qs_pc->crp_kq))
               *isempty = true;
}

static void
crypto_crp_qs_init_pc(void *p, void *arg __unused, struct cpu_info *ci __unused)
{
       struct crypto_crp_qs *qs = p;

       qs->crp_q = kmem_alloc(sizeof(struct crypto_crp_q), KM_SLEEP);
       qs->crp_kq = kmem_alloc(sizeof(struct crypto_crp_kq), KM_SLEEP);

       TAILQ_INIT(qs->crp_q);
       TAILQ_INIT(qs->crp_kq);
}

/*
* There are two queues for processing completed crypto requests; one
* for the symmetric and one for the asymmetric ops.  We only need one
* but have two to avoid type futzing (cryptop vs. cryptkop).  See below
* for how synchronization is handled.
*/
TAILQ_HEAD(crypto_crp_ret_q, cryptop);
TAILQ_HEAD(crypto_crp_ret_kq, cryptkop);
struct crypto_crp_ret_qs {
       kmutex_t crp_ret_q_mtx;
       bool crp_ret_q_exit_flag;

       struct crypto_crp_ret_q crp_ret_q;
       int crp_ret_q_len;
       int crp_ret_q_maxlen; /* queue length limit. <=0 means unlimited. */
       int crp_ret_q_drops;

       struct crypto_crp_ret_kq crp_ret_kq;
       int crp_ret_kq_len;
       int crp_ret_kq_maxlen; /* queue length limit. <=0 means unlimited. */
       int crp_ret_kq_drops;
};
struct crypto_crp_ret_qs **crypto_crp_ret_qs_list;


static inline struct crypto_crp_ret_qs *
crypto_get_crp_ret_qs(struct cpu_info *ci)
{
       u_int cpuid;
       struct crypto_crp_ret_qs *qs;

       KASSERT(ci != NULL);

       cpuid = cpu_index(ci);
       qs = crypto_crp_ret_qs_list[cpuid];
       mutex_enter(&qs->crp_ret_q_mtx);
       return qs;
}

static inline void
crypto_put_crp_ret_qs(struct cpu_info *ci)
{
       u_int cpuid;
       struct crypto_crp_ret_qs *qs;

       KASSERT(ci != NULL);

       cpuid = cpu_index(ci);
       qs = crypto_crp_ret_qs_list[cpuid];
       mutex_exit(&qs->crp_ret_q_mtx);
}

#ifndef CRYPTO_RET_Q_MAXLEN
#define CRYPTO_RET_Q_MAXLEN 0
#endif
#ifndef CRYPTO_RET_KQ_MAXLEN
#define CRYPTO_RET_KQ_MAXLEN 0
#endif

static int
sysctl_opencrypto_q_len(SYSCTLFN_ARGS)
{
       int error, len = 0;
       struct sysctlnode node = *rnode;

       for (int i = 0; i < ncpu; i++) {
               struct crypto_crp_ret_qs *qs;
               struct cpu_info *ci = cpu_lookup(i);

               qs = crypto_get_crp_ret_qs(ci);
               len += qs->crp_ret_q_len;
               crypto_put_crp_ret_qs(ci);
       }

       node.sysctl_data = &len;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

       return 0;
}

static int
sysctl_opencrypto_q_drops(SYSCTLFN_ARGS)
{
       int error, drops = 0;
       struct sysctlnode node = *rnode;

       for (int i = 0; i < ncpu; i++) {
               struct crypto_crp_ret_qs *qs;
               struct cpu_info *ci = cpu_lookup(i);

               qs = crypto_get_crp_ret_qs(ci);
               drops += qs->crp_ret_q_drops;
               crypto_put_crp_ret_qs(ci);
       }

       node.sysctl_data = &drops;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

       return 0;
}

static int
sysctl_opencrypto_q_maxlen(SYSCTLFN_ARGS)
{
       int error, maxlen;
       struct crypto_crp_ret_qs *qs;
       struct sysctlnode node = *rnode;

       /* each crp_ret_kq_maxlen is the same. */
       qs = crypto_get_crp_ret_qs(curcpu());
       maxlen = qs->crp_ret_q_maxlen;
       crypto_put_crp_ret_qs(curcpu());

       node.sysctl_data = &maxlen;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

       for (int i = 0; i < ncpu; i++) {
               struct cpu_info *ci = cpu_lookup(i);

               qs = crypto_get_crp_ret_qs(ci);
               qs->crp_ret_q_maxlen = maxlen;
               crypto_put_crp_ret_qs(ci);
       }

       return 0;
}

static int
sysctl_opencrypto_kq_len(SYSCTLFN_ARGS)
{
       int error, len = 0;
       struct sysctlnode node = *rnode;

       for (int i = 0; i < ncpu; i++) {
               struct crypto_crp_ret_qs *qs;
               struct cpu_info *ci = cpu_lookup(i);

               qs = crypto_get_crp_ret_qs(ci);
               len += qs->crp_ret_kq_len;
               crypto_put_crp_ret_qs(ci);
       }

       node.sysctl_data = &len;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

       return 0;
}

static int
sysctl_opencrypto_kq_drops(SYSCTLFN_ARGS)
{
       int error, drops = 0;
       struct sysctlnode node = *rnode;

       for (int i = 0; i < ncpu; i++) {
               struct crypto_crp_ret_qs *qs;
               struct cpu_info *ci = cpu_lookup(i);

               qs = crypto_get_crp_ret_qs(ci);
               drops += qs->crp_ret_kq_drops;
               crypto_put_crp_ret_qs(ci);
       }

       node.sysctl_data = &drops;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

       return 0;
}

static int
sysctl_opencrypto_kq_maxlen(SYSCTLFN_ARGS)
{
       int error, maxlen;
       struct crypto_crp_ret_qs *qs;
       struct sysctlnode node = *rnode;

       /* each crp_ret_kq_maxlen is the same. */
       qs = crypto_get_crp_ret_qs(curcpu());
       maxlen = qs->crp_ret_kq_maxlen;
       crypto_put_crp_ret_qs(curcpu());

       node.sysctl_data = &maxlen;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

       for (int i = 0; i < ncpu; i++) {
               struct cpu_info *ci = cpu_lookup(i);

               qs = crypto_get_crp_ret_qs(ci);
               qs->crp_ret_kq_maxlen = maxlen;
               crypto_put_crp_ret_qs(ci);
       }

       return 0;
}

/*
* Crypto op and descriptor data structures are allocated
* from separate private zones(FreeBSD)/pools(netBSD/OpenBSD) .
*/
static pool_cache_t cryptop_cache;
static pool_cache_t cryptodesc_cache;
static pool_cache_t cryptkop_cache;

int     crypto_usercrypto = 1;          /* userland may open /dev/crypto */
int     crypto_userasymcrypto = 1;      /* userland may do asym crypto reqs */
/*
* cryptodevallowsoft is (intended to be) sysctl'able, controlling
* access to hardware versus software transforms as below:
*
* crypto_devallowsoft < 0:  Force userlevel requests to use software
*                              transforms, always
* crypto_devallowsoft = 0:  Use hardware if present, grant userlevel
*                              requests for non-accelerated transforms
*                              (handling the latter in software)
* crypto_devallowsoft > 0:  Allow user requests only for transforms which
*                               are hardware-accelerated.
*/
int     crypto_devallowsoft = 1;        /* only use hardware crypto */

static void
sysctl_opencrypto_setup(struct sysctllog **clog)
{
       const struct sysctlnode *ocnode;
       const struct sysctlnode *retqnode, *retkqnode;

       sysctl_createv(clog, 0, NULL, NULL,
                      CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
                      CTLTYPE_INT, "usercrypto",
                      SYSCTL_DESCR("Enable/disable user-mode access to "
                          "crypto support"),
                      NULL, 0, &crypto_usercrypto, 0,
                      CTL_KERN, CTL_CREATE, CTL_EOL);
       sysctl_createv(clog, 0, NULL, NULL,
                      CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
                      CTLTYPE_INT, "userasymcrypto",
                      SYSCTL_DESCR("Enable/disable user-mode access to "
                          "asymmetric crypto support"),
                      NULL, 0, &crypto_userasymcrypto, 0,
                      CTL_KERN, CTL_CREATE, CTL_EOL);
       sysctl_createv(clog, 0, NULL, NULL,
                      CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
                      CTLTYPE_INT, "cryptodevallowsoft",
                      SYSCTL_DESCR("Enable/disable use of software "
                          "asymmetric crypto support"),
                      NULL, 0, &crypto_devallowsoft, 0,
                      CTL_KERN, CTL_CREATE, CTL_EOL);

       sysctl_createv(clog, 0, NULL, &ocnode,
                      CTLFLAG_PERMANENT,
                      CTLTYPE_NODE, "opencrypto",
                      SYSCTL_DESCR("opencrypto related entries"),
                      NULL, 0, NULL, 0,
                      CTL_CREATE, CTL_EOL);

       sysctl_createv(clog, 0, &ocnode, &retqnode,
                      CTLFLAG_PERMANENT,
                      CTLTYPE_NODE, "crypto_ret_q",
                      SYSCTL_DESCR("crypto_ret_q related entries"),
                      NULL, 0, NULL, 0,
                      CTL_CREATE, CTL_EOL);
       sysctl_createv(clog, 0, &retqnode, NULL,
                      CTLFLAG_PERMANENT|CTLFLAG_READONLY,
                      CTLTYPE_INT, "len",
                      SYSCTL_DESCR("Current queue length"),
                      sysctl_opencrypto_q_len, 0,
                      NULL, 0,
                      CTL_CREATE, CTL_EOL);
       sysctl_createv(clog, 0, &retqnode, NULL,
                      CTLFLAG_PERMANENT|CTLFLAG_READONLY,
                      CTLTYPE_INT, "drops",
                      SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
                      sysctl_opencrypto_q_drops, 0,
                      NULL, 0,
                      CTL_CREATE, CTL_EOL);
       sysctl_createv(clog, 0, &retqnode, NULL,
                      CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
                      CTLTYPE_INT, "maxlen",
                      SYSCTL_DESCR("Maximum allowed queue length"),
                      sysctl_opencrypto_q_maxlen, 0,
                      NULL, 0,
                      CTL_CREATE, CTL_EOL);


       sysctl_createv(clog, 0, &ocnode, &retkqnode,
                      CTLFLAG_PERMANENT,
                      CTLTYPE_NODE, "crypto_ret_kq",
                      SYSCTL_DESCR("crypto_ret_kq related entries"),
                      NULL, 0, NULL, 0,
                      CTL_CREATE, CTL_EOL);
       sysctl_createv(clog, 0, &retkqnode, NULL,
                      CTLFLAG_PERMANENT|CTLFLAG_READONLY,
                      CTLTYPE_INT, "len",
                      SYSCTL_DESCR("Current queue length"),
                      sysctl_opencrypto_kq_len, 0,
                      NULL, 0,
                      CTL_CREATE, CTL_EOL);
       sysctl_createv(clog, 0, &retkqnode, NULL,
                      CTLFLAG_PERMANENT|CTLFLAG_READONLY,
                      CTLTYPE_INT, "drops",
                      SYSCTL_DESCR("Crypto requests dropped due to full ret queue"),
                      sysctl_opencrypto_kq_drops, 0,
                      NULL, 0,
                      CTL_CREATE, CTL_EOL);
       sysctl_createv(clog, 0, &retkqnode, NULL,
                      CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
                      CTLTYPE_INT, "maxlen",
                      SYSCTL_DESCR("Maximum allowed queue length"),
                      sysctl_opencrypto_kq_maxlen, 0,
                      NULL, 0,
                      CTL_CREATE, CTL_EOL);
}

/*
* Synchronization: read carefully, this is non-trivial.
*
* Crypto requests are submitted via crypto_dispatch.  Typically
* these come in from network protocols at spl0 (output path) or
* spl[,soft]net (input path).
*
* Requests are typically passed on the driver directly, but they
* may also be queued for processing by a software interrupt thread,
* cryptointr, that runs at splsoftcrypto.  This thread dispatches
* the requests to crypto drivers (h/w or s/w) who call crypto_done
* when a request is complete.  Hardware crypto drivers are assumed
* to register their IRQ's as network devices so their interrupt handlers
* and subsequent "done callbacks" happen at spl[imp,net].
*
* Completed crypto ops are queued for a separate kernel thread that
* handles the callbacks at spl0.  This decoupling insures the crypto
* driver interrupt service routine is not delayed while the callback
* takes place and that callbacks are delivered after a context switch
* (as opposed to a software interrupt that clients must block).
*
* This scheme is not intended for SMP machines.
*/
static  void cryptointr(void *);        /* swi thread to dispatch ops */
static  void cryptoret_softint(void *); /* kernel thread for callbacks*/
static  int crypto_destroy(bool);
static  int crypto_invoke(struct cryptop *crp, int hint);
static  int crypto_kinvoke(struct cryptkop *krp, int hint);

static struct cryptocap *crypto_checkdriver_lock(u_int32_t);
static struct cryptocap *crypto_checkdriver_uninit(u_int32_t);
static struct cryptocap *crypto_checkdriver(u_int32_t);
static void crypto_driver_lock(struct cryptocap *);
static void crypto_driver_unlock(struct cryptocap *);
static void crypto_driver_clear(struct cryptocap *);

static int crypto_init_finalize(device_t);

static struct cryptostats cryptostats;
#ifdef CRYPTO_TIMING
static  int crypto_timing = 0;
#endif

static struct sysctllog *sysctl_opencrypto_clog;

static void
crypto_crp_ret_qs_init(void)
{
       int i;

       crypto_crp_ret_qs_list = kmem_alloc(sizeof(struct crypto_crp_ret_qs *) * ncpu,
           KM_SLEEP);

       for (i = 0; i < ncpu; i++) {
               struct crypto_crp_ret_qs *qs;

               qs = kmem_alloc(sizeof(struct crypto_crp_ret_qs), KM_SLEEP);
               mutex_init(&qs->crp_ret_q_mtx, MUTEX_DEFAULT, IPL_NET);
               qs->crp_ret_q_exit_flag = false;

               TAILQ_INIT(&qs->crp_ret_q);
               qs->crp_ret_q_len = 0;
               qs->crp_ret_q_maxlen = CRYPTO_RET_Q_MAXLEN;
               qs->crp_ret_q_drops = 0;

               TAILQ_INIT(&qs->crp_ret_kq);
               qs->crp_ret_kq_len = 0;
               qs->crp_ret_kq_maxlen = CRYPTO_RET_KQ_MAXLEN;
               qs->crp_ret_kq_drops = 0;

               crypto_crp_ret_qs_list[i] = qs;
       }
}

static int
crypto_init0(void)
{

       mutex_init(&crypto_drv_mtx, MUTEX_DEFAULT, IPL_NONE);
       cryptop_cache = pool_cache_init(sizeof(struct cryptop),
           coherency_unit, 0, 0, "cryptop", NULL, IPL_NET, NULL, NULL, NULL);
       cryptodesc_cache = pool_cache_init(sizeof(struct cryptodesc),
           coherency_unit, 0, 0, "cryptdesc", NULL, IPL_NET, NULL, NULL, NULL);
       cryptkop_cache = pool_cache_init(sizeof(struct cryptkop),
           coherency_unit, 0, 0, "cryptkop", NULL, IPL_NET, NULL, NULL, NULL);

       crypto_crp_qs_percpu = percpu_create(sizeof(struct crypto_crp_qs),
           crypto_crp_qs_init_pc, /*XXX*/NULL, NULL);

       crypto_crp_ret_qs_init();

       crypto_drivers = kmem_zalloc(CRYPTO_DRIVERS_INITIAL *
           sizeof(struct cryptocap), KM_SLEEP);
       crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;

       crypto_q_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE, cryptointr, NULL);
       if (crypto_q_si == NULL) {
               printf("crypto_init: cannot establish request queue handler\n");
               return crypto_destroy(false);
       }

       /*
        * Some encryption devices (such as mvcesa) are attached before
        * ipi_sysinit(). That causes an assertion in ipi_register() as
        * crypto_ret_si softint uses SOFTINT_RCPU.
        */
       if (config_finalize_register(NULL, crypto_init_finalize) != 0) {
               printf("crypto_init: cannot register crypto_init_finalize\n");
               return crypto_destroy(false);
       }

       sysctl_opencrypto_setup(&sysctl_opencrypto_clog);

       return 0;
}

static int
crypto_init_finalize(device_t self __unused)
{

       crypto_ret_si = softint_establish(SOFTINT_NET|SOFTINT_MPSAFE|SOFTINT_RCPU,
           &cryptoret_softint, NULL);
       KASSERT(crypto_ret_si != NULL);

       return 0;
}

int
crypto_init(void)
{
       static ONCE_DECL(crypto_init_once);

       return RUN_ONCE(&crypto_init_once, crypto_init0);
}

static int
crypto_destroy(bool exit_kthread)
{
       int i;

       if (exit_kthread) {
               struct cryptocap *cap = NULL;
               bool is_busy = false;

               /* if we have any in-progress requests, don't unload */
               percpu_foreach(crypto_crp_qs_percpu, crypto_crp_q_is_busy_pc,
                                  &is_busy);
               if (is_busy)
                       return EBUSY;
               /* FIXME:
                * prohibit enqueue to crp_q and crp_kq after here.
                */

               mutex_enter(&crypto_drv_mtx);
               for (i = 0; i < crypto_drivers_num; i++) {
                       cap = crypto_checkdriver(i);
                       if (cap == NULL)
                               continue;
                       if (cap->cc_sessions != 0) {
                               mutex_exit(&crypto_drv_mtx);
                               return EBUSY;
                       }
               }
               mutex_exit(&crypto_drv_mtx);
               /* FIXME:
                * prohibit touch crypto_drivers[] and each element after here.
                */

               /* Ensure cryptoret_softint() is never scheduled again.  */
               for (i = 0; i < ncpu; i++) {
                       struct crypto_crp_ret_qs *qs;
                       struct cpu_info *ci = cpu_lookup(i);

                       qs = crypto_get_crp_ret_qs(ci);
                       qs->crp_ret_q_exit_flag = true;
                       crypto_put_crp_ret_qs(ci);
               }
       }

       if (sysctl_opencrypto_clog != NULL)
               sysctl_teardown(&sysctl_opencrypto_clog);

       if (crypto_ret_si != NULL)
               softint_disestablish(crypto_ret_si);

       if (crypto_q_si != NULL)
               softint_disestablish(crypto_q_si);

       mutex_enter(&crypto_drv_mtx);
       if (crypto_drivers != NULL)
               kmem_free(crypto_drivers,
                   crypto_drivers_num * sizeof(struct cryptocap));
       mutex_exit(&crypto_drv_mtx);

       percpu_free(crypto_crp_qs_percpu, sizeof(struct crypto_crp_qs));

       pool_cache_destroy(cryptop_cache);
       pool_cache_destroy(cryptodesc_cache);
       pool_cache_destroy(cryptkop_cache);

       mutex_destroy(&crypto_drv_mtx);

       return 0;
}

static bool
crypto_driver_suitable(struct cryptocap *cap, struct cryptoini *cri)
{
       struct cryptoini *cr;

       for (cr = cri; cr; cr = cr->cri_next)
               if (cap->cc_alg[cr->cri_alg] == 0) {
                       DPRINTF("alg %d not supported\n", cr->cri_alg);
                       return false;
               }

       return true;
}

#define CRYPTO_ACCEPT_HARDWARE 0x1
#define CRYPTO_ACCEPT_SOFTWARE 0x2
/*
* The algorithm we use here is pretty stupid; just use the
* first driver that supports all the algorithms we need.
* If there are multiple drivers we choose the driver with
* the fewest active sessions. We prefer hardware-backed
* drivers to software ones.
*
* XXX We need more smarts here (in real life too, but that's
* XXX another story altogether).
*/
static struct cryptocap *
crypto_select_driver_lock(struct cryptoini *cri, int hard)
{
       u_int32_t hid;
       int accept;
       struct cryptocap *cap, *best;
       int error = 0;

       best = NULL;
       /*
        * hard == 0 can use both hardware and software drivers.
        * We use hardware drivers prior to software drivers, so search
        * hardware drivers at first time.
        */
       if (hard >= 0)
               accept = CRYPTO_ACCEPT_HARDWARE;
       else
               accept = CRYPTO_ACCEPT_SOFTWARE;
again:
       for (hid = 0; hid < crypto_drivers_num; hid++) {
               cap = crypto_checkdriver(hid);
               if (cap == NULL)
                       continue;

               crypto_driver_lock(cap);

               /*
                * If it's not initialized or has remaining sessions
                * referencing it, skip.
                */
               if (cap->cc_newsession == NULL ||
                   (cap->cc_flags & CRYPTOCAP_F_CLEANUP)) {
                       crypto_driver_unlock(cap);
                       continue;
               }

               /* Hardware required -- ignore software drivers. */
               if ((accept & CRYPTO_ACCEPT_SOFTWARE) == 0
                   && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE)) {
                       crypto_driver_unlock(cap);
                       continue;
               }
               /* Software required -- ignore hardware drivers. */
               if ((accept & CRYPTO_ACCEPT_HARDWARE) == 0
                   && (cap->cc_flags & CRYPTOCAP_F_SOFTWARE) == 0) {
                       crypto_driver_unlock(cap);
                       continue;
               }

               /* See if all the algorithms are supported. */
               if (crypto_driver_suitable(cap, cri)) {
                       if (best == NULL) {
                               /* keep holding crypto_driver_lock(cap) */
                               best = cap;
                               continue;
                       } else if (cap->cc_sessions < best->cc_sessions) {
                               crypto_driver_unlock(best);
                               /* keep holding crypto_driver_lock(cap) */
                               best = cap;
                               continue;
                       }
               }

               crypto_driver_unlock(cap);
       }
       if (best == NULL && hard == 0
           && (accept & CRYPTO_ACCEPT_SOFTWARE) == 0) {
               accept = CRYPTO_ACCEPT_SOFTWARE;
               goto again;
       }

       if (best == NULL && hard == 0 && error == 0) {
               mutex_exit(&crypto_drv_mtx);
               error = module_autoload("swcrypto", MODULE_CLASS_DRIVER);
               mutex_enter(&crypto_drv_mtx);
               if (error == 0) {
                       error = EINVAL;
                       goto again;
               }
       }

       return best;
}

/*
* Create a new session.
*/
int
crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int hard)
{
       struct cryptocap *cap;
       int err = EINVAL;

       /*
        * On failure, leave *sid initialized to a sentinel value that
        * crypto_freesession will ignore.  This is the same as what
        * you get from zero-initialized memory -- some callers (I'm
        * looking at you, netipsec!) have paths that lead from
        * zero-initialized memory into crypto_freesession without any
        * crypto_newsession.
        */
       *sid = 0;

       mutex_enter(&crypto_drv_mtx);

       cap = crypto_select_driver_lock(cri, hard);
       if (cap != NULL) {
               u_int32_t hid, lid;

               hid = cap - crypto_drivers;
               KASSERT(hid < 0xffffff);
               /*
                * Can't do everything in one session.
                *
                * XXX Fix this. We need to inject a "virtual" session layer right
                * XXX about here.
                */

               /* Call the driver initialization routine. */
               lid = hid;              /* Pass the driver ID. */
               crypto_driver_unlock(cap);
               err = cap->cc_newsession(cap->cc_arg, &lid, cri);
               crypto_driver_lock(cap);
               if (err == 0) {
                       (*sid) = hid + 1;
                       (*sid) <<= 32;
                       (*sid) |= (lid & 0xffffffff);
                       KASSERT(*sid != 0);
                       cap->cc_sessions++;
               } else {
                       DPRINTF("crypto_drivers[%d].cc_newsession() failed. error=%d\n",
                           hid, err);
               }
               crypto_driver_unlock(cap);
       }

       mutex_exit(&crypto_drv_mtx);

       return err;
}

/*
* Delete an existing session (or a reserved session on an unregistered
* driver).
*/
void
crypto_freesession(u_int64_t sid)
{
       struct cryptocap *cap;

       /*
        * crypto_newsession never returns 0 as a sid (by virtue of
        * never returning 0 as a hid, which is part of the sid).
        * However, some callers assume that freeing zero is safe.
        * Previously this relied on all drivers to agree that freeing
        * invalid sids is a no-op, but that's a terrible API contract
        * that we're getting rid of.
        */
       if (sid == 0)
               return;

       /* Determine two IDs. */
       cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(sid));
       KASSERTMSG(cap != NULL, "sid=%"PRIx64, sid);

       KASSERT(cap->cc_sessions > 0);
       cap->cc_sessions--;

       /* Call the driver cleanup routine, if available. */
       if (cap->cc_freesession)
               cap->cc_freesession(cap->cc_arg, sid);

       /*
        * If this was the last session of a driver marked as invalid,
        * make the entry available for reuse.
        */
       if ((cap->cc_flags & CRYPTOCAP_F_CLEANUP) && cap->cc_sessions == 0)
               crypto_driver_clear(cap);

       crypto_driver_unlock(cap);
}

static bool
crypto_checkdriver_initialized(const struct cryptocap *cap)
{

       return cap->cc_process != NULL ||
           (cap->cc_flags & CRYPTOCAP_F_CLEANUP) != 0 ||
           cap->cc_sessions != 0;
}

/*
* Return an unused driver id.  Used by drivers prior to registering
* support for the algorithms they handle.
*/
int32_t
crypto_get_driverid(u_int32_t flags)
{
       struct cryptocap *newdrv;
       struct cryptocap *cap = NULL;
       int i;

       (void)crypto_init();            /* XXX oh, this is foul! */

       mutex_enter(&crypto_drv_mtx);
       for (i = 0; i < crypto_drivers_num; i++) {
               cap = crypto_checkdriver_uninit(i);
               if (cap == NULL || crypto_checkdriver_initialized(cap))
                       continue;
               break;
       }

       /* Out of entries, allocate some more. */
       if (cap == NULL) {
               /* Be careful about wrap-around. */
               if (2 * crypto_drivers_num <= crypto_drivers_num) {
                       mutex_exit(&crypto_drv_mtx);
                       printf("crypto: driver count wraparound!\n");
                       return -1;
               }

               newdrv = kmem_zalloc(2 * crypto_drivers_num *
                   sizeof(struct cryptocap), KM_SLEEP);
               memcpy(newdrv, crypto_drivers,
                   crypto_drivers_num * sizeof(struct cryptocap));
               kmem_free(crypto_drivers,
                   crypto_drivers_num * sizeof(struct cryptocap));

               crypto_drivers_num *= 2;
               crypto_drivers = newdrv;

               cap = crypto_checkdriver_uninit(i);
               KASSERT(cap != NULL);
       }

       /* NB: state is zero'd on free */
       cap->cc_sessions = 1;   /* Mark */
       cap->cc_flags = flags;
       mutex_init(&cap->cc_lock, MUTEX_DEFAULT, IPL_NET);

       if (bootverbose)
               printf("crypto: assign driver %u, flags %u\n", i, flags);

       mutex_exit(&crypto_drv_mtx);

       return i;
}

static struct cryptocap *
crypto_checkdriver_lock(u_int32_t hid)
{
       struct cryptocap *cap;

       KASSERT(crypto_drivers != NULL);

       if (hid >= crypto_drivers_num)
               return NULL;

       cap = &crypto_drivers[hid];
       mutex_enter(&cap->cc_lock);
       return cap;
}

/*
* Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
* situations
*     - crypto_drivers[] may not be allocated
*     - crypto_drivers[hid] may not be initialized
*/
static struct cryptocap *
crypto_checkdriver_uninit(u_int32_t hid)
{

       KASSERT(mutex_owned(&crypto_drv_mtx));

       if (crypto_drivers == NULL)
               return NULL;

       return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
}

/*
* Use crypto_checkdriver_uninit() instead of crypto_checkdriver() below two
* situations
*     - crypto_drivers[] may not be allocated
*     - crypto_drivers[hid] may not be initialized
*/
static struct cryptocap *
crypto_checkdriver(u_int32_t hid)
{

       KASSERT(mutex_owned(&crypto_drv_mtx));

       if (crypto_drivers == NULL || hid >= crypto_drivers_num)
               return NULL;

       struct cryptocap *cap = &crypto_drivers[hid];
       return crypto_checkdriver_initialized(cap) ? cap : NULL;
}

static inline void
crypto_driver_lock(struct cryptocap *cap)
{

       KASSERT(cap != NULL);

       mutex_enter(&cap->cc_lock);
}

static inline void
crypto_driver_unlock(struct cryptocap *cap)
{

       KASSERT(cap != NULL);

       mutex_exit(&cap->cc_lock);
}

static void
crypto_driver_clear(struct cryptocap *cap)
{

       if (cap == NULL)
               return;

       KASSERT(mutex_owned(&cap->cc_lock));

       cap->cc_sessions = 0;
       memset(&cap->cc_max_op_len, 0, sizeof(cap->cc_max_op_len));
       memset(&cap->cc_alg, 0, sizeof(cap->cc_alg));
       memset(&cap->cc_kalg, 0, sizeof(cap->cc_kalg));
       cap->cc_flags = 0;
       cap->cc_qblocked = 0;
       cap->cc_kqblocked = 0;

       cap->cc_arg = NULL;
       cap->cc_newsession = NULL;
       cap->cc_process = NULL;
       cap->cc_freesession = NULL;
       cap->cc_kprocess = NULL;
}

/*
* Register support for a key-related algorithm.  This routine
* is called once for each algorithm supported a driver.
*/
int
crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags,
   int (*kprocess)(void *, struct cryptkop *, int),
   void *karg)
{
       struct cryptocap *cap;
       int err;

       mutex_enter(&crypto_drv_mtx);

       cap = crypto_checkdriver_lock(driverid);
       if (cap != NULL &&
           (CRK_ALGORITHM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
               /*
                * XXX Do some performance testing to determine placing.
                * XXX We probably need an auxiliary data structure that
                * XXX describes relative performances.
                */

               cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
               if (bootverbose) {
                       printf("crypto: driver %u registers key alg %u "
                              " flags %u\n",
                               driverid,
                               kalg,
                               flags
                       );
               }

               if (cap->cc_kprocess == NULL) {
                       cap->cc_karg = karg;
                       cap->cc_kprocess = kprocess;
               }
               err = 0;
       } else
               err = EINVAL;

       mutex_exit(&crypto_drv_mtx);
       return err;
}

/*
* Register support for a non-key-related algorithm.  This routine
* is called once for each such algorithm supported by a driver.
*/
int
crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
   u_int32_t flags,
   int (*newses)(void *, u_int32_t*, struct cryptoini*),
   void (*freeses)(void *, u_int64_t),
   int (*process)(void *, struct cryptop *, int),
   void *arg)
{
       struct cryptocap *cap;
       int err;

       cap = crypto_checkdriver_lock(driverid);
       if (cap == NULL)
               return EINVAL;

       /* NB: algorithms are in the range [1..max] */
       if (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) {
               /*
                * XXX Do some performance testing to determine placing.
                * XXX We probably need an auxiliary data structure that
                * XXX describes relative performances.
                */

               cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
               cap->cc_max_op_len[alg] = maxoplen;
               if (bootverbose) {
                       printf("crypto: driver %u registers alg %u "
                               "flags %u maxoplen %u\n",
                               driverid,
                               alg,
                               flags,
                               maxoplen
                       );
               }

               if (cap->cc_process == NULL) {
                       cap->cc_arg = arg;
                       cap->cc_newsession = newses;
                       cap->cc_process = process;
                       cap->cc_freesession = freeses;
                       cap->cc_sessions = 0;           /* Unmark */
               }
               err = 0;
       } else
               err = EINVAL;

       crypto_driver_unlock(cap);

       return err;
}

static int
crypto_unregister_locked(struct cryptocap *cap, int alg, bool all)
{
       int i;
       u_int32_t ses;
       bool lastalg = true;

       KASSERT(cap != NULL);
       KASSERT(mutex_owned(&cap->cc_lock));

       if (alg < CRYPTO_ALGORITHM_MIN || CRYPTO_ALGORITHM_MAX < alg)
               return EINVAL;

       if (!all && cap->cc_alg[alg] == 0)
               return EINVAL;

       cap->cc_alg[alg] = 0;
       cap->cc_max_op_len[alg] = 0;

       if (all) {
               if (alg != CRYPTO_ALGORITHM_MAX)
                       lastalg = false;
       } else {
               /* Was this the last algorithm ? */
               for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++)
                       if (cap->cc_alg[i] != 0) {
                               lastalg = false;
                               break;
                       }
       }
       if (lastalg) {
               ses = cap->cc_sessions;
               crypto_driver_clear(cap);
               if (ses != 0) {
                       /*
                        * If there are pending sessions, just mark as invalid.
                        */
                       cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
                       cap->cc_sessions = ses;
               }
       }

       return 0;
}

/*
* Unregister a crypto driver. If there are pending sessions using it,
* leave enough information around so that subsequent calls using those
* sessions will correctly detect the driver has been unregistered and
* reroute requests.
*/
int
crypto_unregister(u_int32_t driverid, int alg)
{
       int err;
       struct cryptocap *cap;

       cap = crypto_checkdriver_lock(driverid);
       err = crypto_unregister_locked(cap, alg, false);
       crypto_driver_unlock(cap);

       return err;
}

/*
* Unregister all algorithms associated with a crypto driver.
* If there are pending sessions using it, leave enough information
* around so that subsequent calls using those sessions will
* correctly detect the driver has been unregistered and reroute
* requests.
*/
int
crypto_unregister_all(u_int32_t driverid)
{
       int err, i;
       struct cryptocap *cap;

       cap = crypto_checkdriver_lock(driverid);
       for (i = CRYPTO_ALGORITHM_MIN; i <= CRYPTO_ALGORITHM_MAX; i++) {
               err = crypto_unregister_locked(cap, i, true);
               if (err)
                       break;
       }
       crypto_driver_unlock(cap);

       return err;
}

/*
* Clear blockage on a driver.  The what parameter indicates whether
* the driver is now ready for cryptop's and/or cryptokop's.
*/
int
crypto_unblock(u_int32_t driverid, int what)
{
       struct cryptocap *cap;
       int needwakeup = 0;

       cap = crypto_checkdriver_lock(driverid);
       if (cap == NULL)
               return EINVAL;

       if (what & CRYPTO_SYMQ) {
               needwakeup |= cap->cc_qblocked;
               cap->cc_qblocked = 0;
       }
       if (what & CRYPTO_ASYMQ) {
               needwakeup |= cap->cc_kqblocked;
               cap->cc_kqblocked = 0;
       }
       crypto_driver_unlock(cap);
       if (needwakeup) {
               kpreempt_disable();
               softint_schedule(crypto_q_si);
               kpreempt_enable();
       }

       return 0;
}

/*
* Dispatch a crypto request to a driver or queue
* it, to be processed by the kernel thread.
*/
void
crypto_dispatch(struct cryptop *crp)
{
       int result, s;
       struct cryptocap *cap;
       struct crypto_crp_qs *crp_qs;
       struct crypto_crp_q *crp_q;

       KASSERT(crp != NULL);
       KASSERT(crp->crp_callback != NULL);
       KASSERT(crp->crp_desc != NULL);
       KASSERT(crp->crp_buf != NULL);
       KASSERT(!cpu_intr_p());

       DPRINTF("crp %p, alg %d\n", crp, crp->crp_desc->crd_alg);

       cryptostats.cs_ops++;

#ifdef CRYPTO_TIMING
       if (crypto_timing)
               nanouptime(&crp->crp_tstamp);
#endif

       if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
               int wasempty;
               /*
                * Caller marked the request as ``ok to delay'';
                * queue it for the swi thread.  This is desirable
                * when the operation is low priority and/or suitable
                * for batching.
                *
                * don't care list order in batch job.
                */
               crp_qs = crypto_get_crp_qs(&s);
               crp_q = crp_qs->crp_q;
               wasempty  = TAILQ_EMPTY(crp_q);
               TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
               crypto_put_crp_qs(&s);
               crp_q = NULL;
               if (wasempty) {
                       kpreempt_disable();
                       softint_schedule(crypto_q_si);
                       kpreempt_enable();
               }
               return;
       }

       crp_qs = crypto_get_crp_qs(&s);
       crp_q = crp_qs->crp_q;
       cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
       /*
        * TODO:
        * If we can ensure the driver has been valid until the driver is
        * done crypto_unregister(), this migrate operation is not required.
        */
       if (cap == NULL) {
               /*
                * The driver must be detached, so this request will migrate
                * to other drivers in cryptointr() later.
                */
               TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
               goto out;
       }

       if (cap->cc_qblocked != 0) {
               crypto_driver_unlock(cap);
               /*
                * The driver is blocked, just queue the op until
                * it unblocks and the swi thread gets kicked.
                */
               TAILQ_INSERT_TAIL(crp_q, crp, crp_next);
               goto out;
       }

       /*
        * Caller marked the request to be processed
        * immediately; dispatch it directly to the
        * driver unless the driver is currently blocked.
        */
       crypto_driver_unlock(cap);
       result = crypto_invoke(crp, 0);
       KASSERTMSG(result == 0 || result == ERESTART, "result=%d", result);
       if (result == ERESTART) {
               /*
                * The driver ran out of resources, mark the
                * driver ``blocked'' for cryptop's and put
                * the op on the queue.
                */
               crypto_driver_lock(cap);
               cap->cc_qblocked = 1;
               crypto_driver_unlock(cap);
               TAILQ_INSERT_HEAD(crp_q, crp, crp_next);
               cryptostats.cs_blocks++;
       }

out:
       crypto_put_crp_qs(&s);
}

/*
* Add an asymmetric crypto request to a queue,
* to be processed by the kernel thread.
*/
void
crypto_kdispatch(struct cryptkop *krp)
{
       int result, s;
       struct cryptocap *cap;
       struct crypto_crp_qs *crp_qs;
       struct crypto_crp_kq *crp_kq;

       KASSERT(krp != NULL);
       KASSERT(krp->krp_callback != NULL);
       KASSERT(!cpu_intr_p());

       cryptostats.cs_kops++;

       crp_qs = crypto_get_crp_qs(&s);
       crp_kq = crp_qs->crp_kq;
       cap = crypto_checkdriver_lock(krp->krp_hid);
       /*
        * TODO:
        * If we can ensure the driver has been valid until the driver is
        * done crypto_unregister(), this migrate operation is not required.
        */
       if (cap == NULL) {
               TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
               goto out;
       }

       if (cap->cc_kqblocked != 0) {
               crypto_driver_unlock(cap);
               /*
                * The driver is blocked, just queue the op until
                * it unblocks and the swi thread gets kicked.
                */
               TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
               goto out;
       }

       crypto_driver_unlock(cap);
       result = crypto_kinvoke(krp, 0);
       KASSERTMSG(result == 0 || result == ERESTART, "result=%d", result);
       if (result == ERESTART) {
               /*
                * The driver ran out of resources, mark the
                * driver ``blocked'' for cryptop's and put
                * the op on the queue.
                */
               crypto_driver_lock(cap);
               cap->cc_kqblocked = 1;
               crypto_driver_unlock(cap);
               TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
               cryptostats.cs_kblocks++;
       }

out:
       crypto_put_crp_qs(&s);
}

/*
* Dispatch an asymmetric crypto request to the appropriate crypto devices.
*/
static int
crypto_kinvoke(struct cryptkop *krp, int hint)
{
       struct cryptocap *cap = NULL;
       u_int32_t hid;
       int error;

       KASSERT(krp != NULL);
       KASSERT(krp->krp_callback != NULL);
       KASSERT(!cpu_intr_p());

       mutex_enter(&crypto_drv_mtx);
       for (hid = 0; hid < crypto_drivers_num; hid++) {
               cap = crypto_checkdriver(hid);
               if (cap == NULL)
                       continue;
               crypto_driver_lock(cap);
               if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
                   crypto_devallowsoft == 0) {
                       crypto_driver_unlock(cap);
                       continue;
               }
               if (cap->cc_kprocess == NULL) {
                       crypto_driver_unlock(cap);
                       continue;
               }
               if ((cap->cc_kalg[krp->krp_op] &
                       CRYPTO_ALG_FLAG_SUPPORTED) == 0) {
                       crypto_driver_unlock(cap);
                       continue;
               }
               break;
       }
       mutex_exit(&crypto_drv_mtx);
       if (cap != NULL) {
               int (*process)(void *, struct cryptkop *, int);
               void *arg;

               process = cap->cc_kprocess;
               arg = cap->cc_karg;
               krp->krp_hid = hid;
               krp->reqcpu = curcpu();
               crypto_driver_unlock(cap);
               error = (*process)(arg, krp, hint);
               KASSERTMSG(error == 0 || error == ERESTART, "error=%d",
                   error);
               return error;
       } else {
               krp->krp_status = ENODEV;
               krp->reqcpu = curcpu();
               crypto_kdone(krp);
               return 0;
       }
}

#ifdef CRYPTO_TIMING
static void
crypto_tstat(struct cryptotstat *ts, struct timespec *tv)
{
       struct timespec now, t;

       nanouptime(&now);
       t.tv_sec = now.tv_sec - tv->tv_sec;
       t.tv_nsec = now.tv_nsec - tv->tv_nsec;
       if (t.tv_nsec < 0) {
               t.tv_sec--;
               t.tv_nsec += 1000000000;
       }
       timespecadd(&ts->acc, &t, &t);
       if (timespeccmp(&t, &ts->min, <))
               ts->min = t;
       if (timespeccmp(&t, &ts->max, >))
               ts->max = t;
       ts->count++;

       *tv = now;
}
#endif

/*
* Dispatch a crypto request to the appropriate crypto devices.
*/
static int
crypto_invoke(struct cryptop *crp, int hint)
{
       struct cryptocap *cap;
       int error;

       KASSERT(crp != NULL);
       KASSERT(crp->crp_callback != NULL);
       KASSERT(crp->crp_desc != NULL);
       KASSERT(!cpu_intr_p());

#ifdef CRYPTO_TIMING
       if (crypto_timing)
               crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
#endif

       cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(crp->crp_sid));
       if (cap != NULL && (cap->cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
               int (*process)(void *, struct cryptop *, int);
               void *arg;

               process = cap->cc_process;
               arg = cap->cc_arg;
               crp->reqcpu = curcpu();

               /*
                * Invoke the driver to process the request.
                */
               DPRINTF("calling process for %p\n", crp);
               crypto_driver_unlock(cap);
               error = (*process)(arg, crp, hint);
               KASSERTMSG(error == 0 || error == ERESTART, "error=%d",
                   error);
               return error;
       } else {
               if (cap != NULL) {
                       crypto_driver_unlock(cap);
                       crypto_freesession(crp->crp_sid);
               }
               crp->crp_etype = ENODEV;
               crypto_done(crp);
               return 0;
       }
}

/*
* Release a set of crypto descriptors.
*/
void
crypto_freereq(struct cryptop *crp)
{
       struct cryptodesc *crd;

       if (crp == NULL)
               return;
       DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);

       /* sanity check */
       if (crp->crp_flags & CRYPTO_F_ONRETQ) {
               panic("crypto_freereq() freeing crp on RETQ\n");
       }

       while ((crd = crp->crp_desc) != NULL) {
               crp->crp_desc = crd->crd_next;
               pool_cache_put(cryptodesc_cache, crd);
       }
       pool_cache_put(cryptop_cache, crp);
}

/*
* Acquire a set of crypto descriptors.
*/
struct cryptop *
crypto_getreq(int num)
{
       struct cryptodesc *crd;
       struct cryptop *crp;
       struct crypto_crp_ret_qs *qs;

       KASSERT(num > 0);

       /*
        * When crp_ret_q is full, we restrict here to avoid crp_ret_q overflow
        * by error callback.
        */
       qs = crypto_get_crp_ret_qs(curcpu());
       if (qs->crp_ret_q_maxlen > 0
           && qs->crp_ret_q_len > qs->crp_ret_q_maxlen) {
               qs->crp_ret_q_drops++;
               crypto_put_crp_ret_qs(curcpu());
               return NULL;
       }
       crypto_put_crp_ret_qs(curcpu());

       crp = pool_cache_get(cryptop_cache, PR_NOWAIT);
       if (crp == NULL) {
               return NULL;
       }
       memset(crp, 0, sizeof(struct cryptop));

       while (num--) {
               crd = pool_cache_get(cryptodesc_cache, PR_NOWAIT);
               if (crd == NULL) {
                       crypto_freereq(crp);
                       return NULL;
               }

               memset(crd, 0, sizeof(struct cryptodesc));
               crd->crd_next = crp->crp_desc;
               crp->crp_desc = crd;
       }

       return crp;
}

/*
* Release a set of asymmetric crypto descriptors.
* Currently, support one descriptor only.
*/
void
crypto_kfreereq(struct cryptkop *krp)
{

       if (krp == NULL)
               return;

       DPRINTF("krp %p\n", krp);

       /* sanity check */
       if (krp->krp_flags & CRYPTO_F_ONRETQ) {
               panic("crypto_kfreereq() freeing krp on RETQ\n");
       }

       pool_cache_put(cryptkop_cache, krp);
}

/*
* Acquire a set of asymmetric crypto descriptors.
* Currently, support one descriptor only.
*/
struct cryptkop *
crypto_kgetreq(int num __diagused, int prflags)
{
       struct cryptkop *krp;
       struct crypto_crp_ret_qs *qs;

       KASSERTMSG(num == 1, "num=%d not supported", num);

       /*
        * When crp_ret_kq is full, we restrict here to avoid crp_ret_kq
        * overflow by error callback.
        */
       qs = crypto_get_crp_ret_qs(curcpu());
       if (qs->crp_ret_kq_maxlen > 0
           && qs->crp_ret_kq_len > qs->crp_ret_kq_maxlen) {
               qs->crp_ret_kq_drops++;
               crypto_put_crp_ret_qs(curcpu());
               return NULL;
       }
       crypto_put_crp_ret_qs(curcpu());

       krp = pool_cache_get(cryptkop_cache, prflags);
       if (krp == NULL) {
               return NULL;
       }
       memset(krp, 0, sizeof(struct cryptkop));

       return krp;
}

/*
* Invoke the callback on behalf of the driver.
*/
void
crypto_done(struct cryptop *crp)
{
       int wasempty;
       struct crypto_crp_ret_qs *qs;
       struct crypto_crp_ret_q *crp_ret_q;

       KASSERT(crp != NULL);

       if (crp->crp_etype != 0)
               cryptostats.cs_errs++;
#ifdef CRYPTO_TIMING
       if (crypto_timing)
               crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
#endif
       DPRINTF("lid[%u]: crp %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);

       qs = crypto_get_crp_ret_qs(crp->reqcpu);
       crp_ret_q = &qs->crp_ret_q;
       wasempty = TAILQ_EMPTY(crp_ret_q);
       DPRINTF("lid[%u]: queueing %p\n", CRYPTO_SESID2LID(crp->crp_sid), crp);
       crp->crp_flags |= CRYPTO_F_ONRETQ;
       TAILQ_INSERT_TAIL(crp_ret_q, crp, crp_next);
       qs->crp_ret_q_len++;
       if (wasempty && !qs->crp_ret_q_exit_flag) {
               DPRINTF("lid[%u]: waking cryptoret, crp %p hit empty queue\n.",
                   CRYPTO_SESID2LID(crp->crp_sid), crp);
               softint_schedule_cpu(crypto_ret_si, crp->reqcpu);
       }
       crypto_put_crp_ret_qs(crp->reqcpu);
}

/*
* Invoke the callback on behalf of the driver.
*/
void
crypto_kdone(struct cryptkop *krp)
{
       int wasempty;
       struct crypto_crp_ret_qs *qs;
       struct crypto_crp_ret_kq *crp_ret_kq;

       KASSERT(krp != NULL);

       if (krp->krp_status != 0)
               cryptostats.cs_kerrs++;

       qs = crypto_get_crp_ret_qs(krp->reqcpu);
       crp_ret_kq = &qs->crp_ret_kq;

       wasempty = TAILQ_EMPTY(crp_ret_kq);
       krp->krp_flags |= CRYPTO_F_ONRETQ;
       TAILQ_INSERT_TAIL(crp_ret_kq, krp, krp_next);
       qs->crp_ret_kq_len++;
       if (wasempty && !qs->crp_ret_q_exit_flag)
               softint_schedule_cpu(crypto_ret_si, krp->reqcpu);
       crypto_put_crp_ret_qs(krp->reqcpu);
}

int
crypto_getfeat(int *featp)
{

       if (crypto_userasymcrypto == 0) {
               *featp = 0;
               return 0;
       }

       mutex_enter(&crypto_drv_mtx);

       int feat = 0;
       for (int hid = 0; hid < crypto_drivers_num; hid++) {
               struct cryptocap *cap;
               cap = crypto_checkdriver(hid);
               if (cap == NULL)
                       continue;

               crypto_driver_lock(cap);

               if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
                   crypto_devallowsoft == 0)
                       goto unlock;

               if (cap->cc_kprocess == NULL)
                       goto unlock;

               for (int kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
                       if ((cap->cc_kalg[kalg] &
                           CRYPTO_ALG_FLAG_SUPPORTED) != 0)
                               feat |=  1 << kalg;

unlock:         crypto_driver_unlock(cap);
       }

       mutex_exit(&crypto_drv_mtx);
       *featp = feat;
       return (0);
}

/*
* Software interrupt thread to dispatch crypto requests.
*/
static void
cryptointr(void *arg __unused)
{
       struct cryptop *crp, *submit, *cnext;
       struct cryptkop *krp, *knext;
       struct cryptocap *cap;
       struct crypto_crp_qs *crp_qs;
       struct crypto_crp_q *crp_q;
       struct crypto_crp_kq *crp_kq;
       int result, hint, s;

       cryptostats.cs_intrs++;
       crp_qs = crypto_get_crp_qs(&s);
       crp_q = crp_qs->crp_q;
       crp_kq = crp_qs->crp_kq;
       do {
               /*
                * Find the first element in the queue that can be
                * processed and look-ahead to see if multiple ops
                * are ready for the same driver.
                */
               submit = NULL;
               hint = 0;
               TAILQ_FOREACH_SAFE(crp, crp_q, crp_next, cnext) {
                       u_int32_t hid = CRYPTO_SESID2HID(crp->crp_sid);
                       cap = crypto_checkdriver_lock(hid);
                       if (cap == NULL || cap->cc_process == NULL) {
                               if (cap != NULL)
                                       crypto_driver_unlock(cap);
                               /* Op needs to be migrated, process it. */
                               submit = crp;
                               break;
                       }

                       /*
                        * skip blocked crp regardless of CRYPTO_F_BATCH
                        */
                       if (cap->cc_qblocked != 0) {
                               crypto_driver_unlock(cap);
                               continue;
                       }
                       crypto_driver_unlock(cap);

                       /*
                        * skip batch crp until the end of crp_q
                        */
                       if ((crp->crp_flags & CRYPTO_F_BATCH) != 0) {
                               if (submit == NULL) {
                                       submit = crp;
                               } else {
                                       if (CRYPTO_SESID2HID(submit->crp_sid)
                                           == hid)
                                               hint = CRYPTO_HINT_MORE;
                               }

                               continue;
                       }

                       /*
                        * found first crp which is neither blocked nor batch.
                        */
                       submit = crp;
                       /*
                        * batch crp can be processed much later, so clear hint.
                        */
                       hint = 0;
                       break;
               }
               if (submit != NULL) {
                       TAILQ_REMOVE(crp_q, submit, crp_next);
                       result = crypto_invoke(submit, hint);
                       KASSERTMSG(result == 0 || result == ERESTART,
                           "result=%d", result);
                       /* we must take here as the TAILQ op or kinvoke
                          may need this mutex below.  sigh. */
                       if (result == ERESTART) {
                               /*
                                * The driver ran out of resources, mark the
                                * driver ``blocked'' for cryptop's and put
                                * the request back in the queue.  It would
                                * best to put the request back where we got
                                * it but that's hard so for now we put it
                                * at the front.  This should be ok; putting
                                * it at the end does not work.
                                */
                               /* validate sid again */
                               cap = crypto_checkdriver_lock(CRYPTO_SESID2HID(submit->crp_sid));
                               if (cap == NULL) {
                                       /* migrate again, sigh... */
                                       TAILQ_INSERT_TAIL(crp_q, submit, crp_next);
                               } else {
                                       cap->cc_qblocked = 1;
                                       crypto_driver_unlock(cap);
                                       TAILQ_INSERT_HEAD(crp_q, submit, crp_next);
                                       cryptostats.cs_blocks++;
                               }
                       }
               }

               /* As above, but for key ops */
               TAILQ_FOREACH_SAFE(krp, crp_kq, krp_next, knext) {
                       cap = crypto_checkdriver_lock(krp->krp_hid);
                       if (cap == NULL || cap->cc_kprocess == NULL) {
                               if (cap != NULL)
                                       crypto_driver_unlock(cap);
                               /* Op needs to be migrated, process it. */
                               break;
                       }
                       if (!cap->cc_kqblocked) {
                               crypto_driver_unlock(cap);
                               break;
                       }
                       crypto_driver_unlock(cap);
               }
               if (krp != NULL) {
                       TAILQ_REMOVE(crp_kq, krp, krp_next);
                       result = crypto_kinvoke(krp, 0);
                       KASSERTMSG(result == 0 || result == ERESTART,
                           "result=%d", result);
                       /* the next iteration will want the mutex. :-/ */
                       if (result == ERESTART) {
                               /*
                                * The driver ran out of resources, mark the
                                * driver ``blocked'' for cryptkop's and put
                                * the request back in the queue.  It would
                                * best to put the request back where we got
                                * it but that's hard so for now we put it
                                * at the front.  This should be ok; putting
                                * it at the end does not work.
                                */
                               /* validate sid again */
                               cap = crypto_checkdriver_lock(krp->krp_hid);
                               if (cap == NULL) {
                                       /* migrate again, sigh... */
                                       TAILQ_INSERT_TAIL(crp_kq, krp, krp_next);
                               } else {
                                       cap->cc_kqblocked = 1;
                                       crypto_driver_unlock(cap);
                                       TAILQ_INSERT_HEAD(crp_kq, krp, krp_next);
                                       cryptostats.cs_kblocks++;
                               }
                       }
               }
       } while (submit != NULL || krp != NULL);
       crypto_put_crp_qs(&s);
}

/*
* softint handler to do callbacks.
*/
static void
cryptoret_softint(void *arg __unused)
{
       struct crypto_crp_ret_qs *qs;
       struct crypto_crp_ret_q *crp_ret_q;
       struct crypto_crp_ret_kq *crp_ret_kq;

       qs = crypto_get_crp_ret_qs(curcpu());
       crp_ret_q = &qs->crp_ret_q;
       crp_ret_kq = &qs->crp_ret_kq;
       for (;;) {
               struct cryptop *crp;
               struct cryptkop *krp;

               crp = TAILQ_FIRST(crp_ret_q);
               if (crp != NULL) {
                       TAILQ_REMOVE(crp_ret_q, crp, crp_next);
                       qs->crp_ret_q_len--;
                       crp->crp_flags &= ~CRYPTO_F_ONRETQ;
               }
               krp = TAILQ_FIRST(crp_ret_kq);
               if (krp != NULL) {
                       TAILQ_REMOVE(crp_ret_kq, krp, krp_next);
                       qs->crp_ret_q_len--;
                       krp->krp_flags &= ~CRYPTO_F_ONRETQ;
               }

               /* drop before calling any callbacks. */
               if (crp == NULL && krp == NULL)
                       break;

               mutex_spin_exit(&qs->crp_ret_q_mtx);
               if (crp != NULL) {
#ifdef CRYPTO_TIMING
                       if (crypto_timing) {
                               /*
                                * NB: We must copy the timestamp before
                                * doing the callback as the cryptop is
                                * likely to be reclaimed.
                                */
                               struct timespec t = crp->crp_tstamp;
                               crypto_tstat(&cryptostats.cs_cb, &t);
                               crp->crp_callback(crp);
                               crypto_tstat(&cryptostats.cs_finis, &t);
                       } else
#endif
                       {
                               crp->crp_callback(crp);
                       }
               }
               if (krp != NULL)
                       krp->krp_callback(krp);

               mutex_spin_enter(&qs->crp_ret_q_mtx);
       }
       crypto_put_crp_ret_qs(curcpu());
}

/* NetBSD module interface */

MODULE(MODULE_CLASS_MISC, opencrypto, NULL);

static int
opencrypto_modcmd(modcmd_t cmd, void *opaque)
{
       int error = 0;

       switch (cmd) {
       case MODULE_CMD_INIT:
#ifdef _MODULE
               error = crypto_init();
#endif
               break;
       case MODULE_CMD_FINI:
#ifdef _MODULE
               error = crypto_destroy(true);
#endif
               break;
       default:
               error = ENOTTY;
       }
       return error;
}